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Abstract

Due to the high dimensionality of spectral data, spec-
trum representation techniques have often concentrated on
modelling the spectra as a linear combination of a small ba-
sis set. Here, we focus on the evaluation of a B-Spline rep-
resentation, a Gaussian mixture model, PCA and wavelets
when applied to represent real-world spectrometer and
spectral image data. These representations are important
since they open up the possibility of reducing densely sam-
pled spectra to a compact form for spectrum reconstruction,
interpolation and classification. In particular, we shall per-
form an evaluation of these representations for the above
tasks on two datasets consisting of reflectance spectra and
hyperspectral images.

1. Introduction
The development of image sensor technology has made

it possible to capture image data in hundreds of bands cov-
ering a broad spectrum. Traditionally, multispectral and hy-
perspectral imaging have been developed as a tool for aerial
image classification [12] and aerial surveillance [7]. For
terrestrial applications, imaging spectroscopy poses many
challenges and opportunities in biological and medical ap-
plications [14]. In addition, it has been utilised for colour
reproduction of artworks [5] and historical documents [16],
printing [23] and material recognition [13].

Due to the high dimensional nature of spectral data,
many classical algorithms in pattern recognition and ma-
chine learning have been naturally borrowed and adapted
so as to perform feature extraction and classification [17].
The main bulk of work on spectrum representation so far
has concentrated on modelling spectra as a linear combi-
nation of a small basis set. Maloney validated the use of
low-dimensional linear models for representing reflectance
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spectra through a number of evaluations on empirical mea-
surements of surface reflectance [19]. In [20], Mari-
mont and Wandell computed a set of linear basis functions
which yield the minimal approximating error for surface re-
flectance spectra and illuminant spectra. In another work,
Angelopoulou et al. [3] used spectrophotometric data to
model skin colour using several sets of basis functions in-
cluding Gaussians and their first derivatives, wavelets and
PCA. In [15], Huynh and Robles-Kelly employed a com-
pact B-Spline basis to represent reflectance spectra. On the
other hand, graph-based approaches usually aim at classify-
ing rather than reconstructing hyperspectral images [4, 6].

Here, we focus on the evaluation of a number of these
representations for the purposes of representing, recon-
structing, interpolating and classifying spectral data. For
our analysis we have used the B-Spline representation in
[15], the Gaussian mixture model in [3], PCA and wavelets.
These representations open up the possibility of reducing
densely sampled reflectance spectra, which can consist of
hundreds of spectral samples, to an efficient and compact
form for reconstruction and classification.

Moreover, these representations apply equally to both
spectral radiance and spectral reflectance data. For our eval-
uation, we use real-world spectrometer and spectral images
for evaluating the performance of the representations un-
der study when applied to spectrum reconstruction, interpo-
lation, skin recognition and biometrics. This is important
since the continuous form of the B-Spline, the Gaussian
mixture and the wavelet representations permits a compar-
ison of spectra of dissimilar lengths via a set of numeri-
cally stable algorithms. These representation provide the
additional benefit of allowing operations such as absorption
band detection to be effected in the continuous spectral do-
main using tools from functional analysis rather than dis-
crete approximations.

In the next section, we describe the spectra representa-
tions under our study. In Section 3, we show results on real-
world data pertaining reconstruction, interpolation, recogni-
tion and biometrics. Finally, in Section 4 we conclude our
evaluation.
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2. Spectrum Representations
2.1. BSplines

In [15], the reflectance spectra is treated as a set of
2-D points whose coordinates correspond to wavelength-
reflectance sample pairs. These are interpolated using a
B-Spline via an iterative knot removal scheme which min-
imises the representation length, i.e. the number of knots
and control points, subject to a user-defined approximation
error.

To formulate the representation, the authors in [15]
treated a discrete sample of a reflectance spectrum as a
collection of 2-D points with two coordinates (λk, Rk),
where Rk is the k-th reflectance sample at the wavelength
{λk}, k = 1, . . . , l. With this treatment, the paramet-
ric form of a p-th degree B-spline curve C through these
data points can be represented as two functions denoted as
λ(t) and R(t) corresponding to the wavelength and the re-
flectance, as follows

λ(t) =
n∑

i=0

Ni,p(t)xi R(t) =
n∑

i=0

Ni,p(t)yi, (1)

where t is an independent parameter in a domain U , Pi =
(xi, yi), where i = 0, . . . , n, are the coordinates of the con-
trol points and Ni,p(t) is the i-th B-spline basis function of
degree p defined over the corresponding knot vector [22].

Here we note that the representation presented in [15]
was specifically designed for a single reflectance spec-
trum. In this paper, we extend the representation in [15]
to perform representation and classification tasks on mul-
tiple spectra. To do this, we enforce a common set of B-
Spline basis functions Ni,p(t), i = 0, . . . , n across the in-
put spectra. Thus, for a collection of reflectance spectra
{Rv|Rv = [Rv,1, Rv,2, . . . , Rv,l]

T }, where v denotes the
spectrum index, we have

Rv(t) =

n∑
i=0

Ni,p(t)yv,i, (2)

where the expression in Equation 1 for λ(t) remains un-
affected since the spectra are sampled at the same wave-
lengths and yv,i’s are the reflectance coordinates of the con-
trol points corresponding to the spectrum index v.

Following [15], we consider the optimal interpolating
curve to be the one that minimises the sum of squared dis-
tances from the sampled points of the spectra subject to a
pre-determined length m of the knot vector. The cost func-
tion is given by

K =
∑
v

l∑
k=1

(Rv(tk)−Rv,k)
2, (3)

where the parameter tk ∈ U corresponds to the k-th wave-
length, i.e. λk = λ(tk)∀k.

The modified expression in Equation 2 does not overly
affect the optimisation procedure in [15]. The optimisation
of the cost function in Equation 3 can still be effected by ap-
plying the interpolation algorithm in [22] so as to obtain an
initial B-Spline curve for each spectrum with a zero interpo-
lation error. The centripetal method of Lee [18] is still used
to establish an initial knot vector for each input spectrum.
At this stage, we enforce a common knot vector across all
the input spectra throughout the remainder of the optimisa-
tion procedure. To achieve this, we modify the global inter-
polation method of Piegl and Tiller in [22] by averaging the
knot vectors for individual spectra.

It is worth noting that, since the B-Spline representa-
tion of each spectrum needs to be of the same length, the
knot removal procedure should guarantee to reach a pre-
determined number of knots. Note that there may be cases
in which no knots can be removed within the interpolation
error tolerance. To this end, we follow the method in [10]
to pre-select a knot vector that is one-element shorter than
that obtained in the previous iteration and apply a global
approximation to the original spectra with this knot vector.
Accordingly, this procedure guarantees a reduction in the
knot vector at each iteration.

As observed by Huynh and Robles-Kelly [15], only
the reflectance coordinates yv,i determine the characteristic
shape of a spectrum. Hence, they should provide better rep-
resentation and discrimination power for reflectance spectra
than the knots and the wavelength coordinates. Therefore,
for classification purposes, we form a feature vector Fv for
a spectrum v by concatenating the reflectance coordinates,
i.e. Fv = [yv,0, yv,1, . . . , yv,n]

T .

2.2. Gaussian Mixture

We now turn our attention to the representation reported
in [3]. Here, the spectrum was modelled as a linear mixture
of M Gaussian basis functions. The representation in [3]
treats the reflectance R(.) as a function of the wavelength
λ, where the input reflectance spectrum is given by

R(λ) =
M∑
k=1

γk√
2πσk

exp

(
− (λ− µk)

2

2σ2
k

)
(4)

whereM is the number of mixture components and the k-th
Gaussian component is associated with a mean µk, a stan-
dard deviation σk and a mixture coefficient γk.

Given a number of Gaussian components, we can re-
cover the Gaussian parameters by fitting the Gaussian
mixture to the input spectrum so as to minimise the fit-
ting error with respect to Equation 4. Here, we solve
this non-linear least-squares problem numerically using a
Levenberg-Marquardt optimisation procedure [21]. To con-
struct the Gaussian Mixture feature for recognition pur-
poses, we concatenate the triplet (γk, µk, σk) over the mix-



ture components. We have done this since in our experi-
ments this formulation consistently delivers better classifi-
cation performance than any other combinations of γk, µk

and σk.

2.3. Principal Component Analysis

Another alternative representation is the use of the
principal components of the input reflectance spectra
(PCA) [11]. Thus, we represent each spectrum as a vector
composed of the reflectance values sampled over the wave-
lengths. Subsequently, we subtract the mean spectrum from
the input spectra to obtain a zero mean vector across the
spectra. Next, we assemble the mean-centred vectors into
a data matrix D with dimension |v| × l whose rows corre-
spond to the spectra and columns to the wavelengths.

At this stage, the eigenvectors of the matrix DTD with
the largest eigenvalues correspond to the directions in which
the input spectra have the largest variances. Following
an eigen decomposition of the matrix DTD, we obtain l
eigenvectors ej , j = 1, . . . , l sorted according to decreas-
ing eigenvalue. Assuming that we aim to extract the top k
features from the input spectra, we form an l × k matrix
A whose columns consist of the k eigenvectors. A rep-
resentation F by principal components is obtained by pro-
jecting the input spectra into the k-dimensional subspace
spanned by the top eigenvectors ej , j = 1, . . . , k, according
to F = DA.

2.4. Wavelets

Similar to Angelopoulou et al. [2], we treat the re-
flectance R as a one-dimensional signal with respect to
the wavelength λ. Since the input consists of discrete
wavelength-indexed samples of reflectance spectra, we
model the fluctuation of reflectance in a range of discrete
scales and offsets in the spectral domain. As a result, a re-
flectance spectrum R(λ) can be represented using both the
approximation and wavelet terms [1], as follows

R(λ) =
∞∑

n=−∞
αm0,nϕm0,n(λ)+

m0∑
m=−∞

∞∑
n=−∞

βm,nψm,n(λ).

(5)
In Equation 5, a linear combination of the scaling func-

tions ϕm0,n(λ) provides a coarse approximation of the re-
flectance spectrum R(λ) at a chosen scale m0. In addition,
the signal details of the reflectance spectrum is modelled by
a range of wavelet functions ψm,n(λ) with a scale from m0

down to negative infinity. The scaling and wavelet functions
above are the scaled and shifted version of a father scaling
function ϕ(λ) and a mother wavelet ψ(λ) in the wavelength
domain. Further, αm0,n and βm,n are the approximation
and wavelet (detail) coefficients corresponding to the above

functions and are computed as

αm0,n =
∑
λ∈Λ

R(λ)ϕm0,n(λ) βm,n =
∑
λ∈Λ

R(λ)ψm,n(λ),

(6)
where Λ is the set of all discrete sampled wavelengths in the
spectrum under study.

Note that we can employ a wide range of choice of the
approximation and wavelet functions [1]. Regardless, these
will yield a set of approximation and wavelet coefficients
for each spectrum. Subsequently, we order the approxima-
tion and wavelet terms by sorting the sum of coefficients for
each term over the spectra in descending order. The input
reflectance spectra can then be represented by a linear com-
bination of the functions corresponding to the largest sums
of coefficients [1].

3. Experiments
In this section, we evaluate the performance of the spec-

tral representations described in Section 2. In Sections 3.1
and 3.2, we present the accuracy of reflectance spectrum re-
construction and interpolation using spectrometer data and
hyperspectral images. Subsequently, in Section 3.3, we ex-
amine the use of these representations for skin recognition
and ethnic group classification.

In the following experiments, we have implemented a
third-degree B-Spline representation according to [15] with
a knot vector and wavelength coordinates shared across the
input spectra, as described in Section 2.1. In addition, we
compute the Gaussian Mixture representation [3] by means
of Levenberg-Marquardt optimisation [21]. To reconstruct
spectra using PCA, we employed least-square projections of
the original spectra onto the subspace spanned by the princi-
pal components. To fairly compare with the B-Spline repre-
sentation, we employed the Daubechies 8 (D8) wavelet [9],
which is capable of encoding polynomial information in a
signal up to the third degree.

We perform a comparative evaluation on the two follow-
ing datasets. The first of these consists of 297 reflectance
spectra acquired in house using a StellarNet spectrometer,
which we name the StellarNet dataset. These spectra cor-
respond to nine material categories, including cloth, differ-
ent kinds of paint, human skin, leaves, metals, papers of
different colours, plastic, porcelain and wood. The dataset
includes 157 spectra of human skin and 140 of other mate-
rials. These spectra have been sampled at every 1nm in the
430–720nm wavelength range and the reflectance is nor-
malised to the interval [0, 1]. The second dataset consists
of multi-spectral face images captured by a hyperspectral
camera under 10 artificial light sources with varying illumi-
nation directions and spectral power. The dataset comprises
the frontal views of 51 human subjects in front of cluttered
backgrounds, acquired by a hyperspectral camera at a spec-



Figure 1. Original and reconstructed reflectance spectra of human skin. From left to right: reconstruction results for representation lengths
of 12, 21 and 30.

tral resolution of 10nm between 430nm and 720nm. The
image spectral reflectance is computed as a normalisation
of the input image radiance by the illumination power spec-
trum measured using a white Spectralon calibration target.
Note that, although the above data consists of spectra span-
ning only the visible wavelengths, we could clearly apply
the above spectrum representations to non-visible spectral
segments.

3.1. Reflectance Spectrum Reconstruction

We first turn our attention to the reconstruction results
for the samples in the StellarNet dataset. For this experi-
ment, we have re-sampled the original spectra at an inter-
val of 5nm in the visible range between 430 and 720nm.
In Figure 1, we present reflectance spectra of human skin
reconstructed with the above representations, overlaid on
top of the original spectrum. The columns show the re-
constructed spectra with representation lengths of 12, 21
and 30. In general, for all the representations, the recon-
struction performance improves with an increase in the rep-
resentation length. Among these, the B-Splines and PCA
achieve the highest reconstruction accuracy. These two rep-
resentations are also much better than the Gaussian Mixture
and wavelets at capturing absorption bands. The evidence
for this capability is discernible at the 550nm wavelength
of the skin sample. In contrast, the Gaussian Mixture and
wavelets tend to smooth out the original curves, thus not
being able to reproduce exactly the original spectra.

To provide a quantitative study, we employ two measure-
ments for the reconstruction error. The first of these is the
mean of the absolute difference between the reconstructed
and the original reflectance spectra per band, i.e. the aver-
age absolute reconstruction error (ARE). The second one is
the relative reconstruction error (RRE), which we quantify
as the ratio of the absolute error to the original reflectance
value. With these measurements, we examine the varia-
tion of the reconstruction error as the representation length
ranges between 9 and 30, in increments of 3. Equivalently,
the Gaussian mixture representation in [3] consists of be-

Figure 2. Absolute reconstruction error (ARE) for the reflectance
spectra in the StellarNet dataset with respect to the representa-
tion length. The plot shows errors for the B-Spline representa-
tion [15], the Gaussian Mixture in [3], PCA and the Daubechies 8
(D8) wavelet.

tween 3 and 10 components.

Figure 2 shows the variation of the absolute reconstruc-
tion error of the StellarNet dataset with respect to the repre-
sentation length. In particular, we observe that the B-Spline
representation and PCA yield similar mean errors and con-
sistently outperform the other two when used with a length
of 15 or more. The absolute reconstruction error for all the
representations, except the Gaussian Mixture, diminishes
steadily and stabilises with an increasing number of control
points. However, the Gaussian Mixture representation does
not improve the reconstruction accuracy with six or more
components. We also note that the B-Splines outperform
PCA with a short representation length (of 12 or less) and
yields similar performance to PCA with longer representa-
tion lengths. These observations imply that the B-Spline
representation offers the best overall balance between re-
construction accuracy and compactness.



B-Spline Gaussian Mixture PCA Wavelet
Absolute error (0.42± 0.30)× 10−2 (2.72± 2.85)× 10−2 (0.27± 0.19)× 10−2 (1.02± 0.55)× 10−2

Relative error 4.51± 2.31(%) 16.61± 11.53(%) 2.15± 3.30(%) 15.86± 6.39(%)

Table 1. Absolute and relative error of reconstructing the hyperspectral image database with a representation length of 18. The representa-
tions used include a third-degree B-Spline representation with 18 control points, a Gaussian Mixture with 6 components, a representation
consisting of 18 principal components resulting from PCA and the 18 highest coefficients of a Daubechies 8 wavelet.

In Table 1, we compare the reconstruction performance
of the four representations on the hyperspectral image
dataset described earlier when the representation length is
set to 18. Here, PCA is the best performer, followed by B-
Splines. These two representations significantly outperform
the other two, with errors several times as small as those
delivered by the wavelet and the Gaussian mixture repre-
sentations. Although PCA achieves a higher reconstruction
accuracy than B-Splines, it cannot be utilised for spectrum
interpolation purposes.

3.2. Reflectance Spectrum Interpolation

Now we demonstrate the capability of some of the above
representations for interpolating reflectance spectra in the
spectral domain. We note that PCA cannot be used for spec-
trum interpolation at arbitrary wavelengths. In addition, the
results in Figures 1 and 2 suggest that the wavelet represen-
tation may be of limited practical interest for spectrum in-
terpolation. Therefore, we limit the comparison of spectrum
interpolation performance to only the B-Spline and Gaus-
sian Mixture representations.

To obtain input for interpolation, we down-sampled the
spectral domain of both the StellarNet dataset and the multi-
spectral image database at every 5nm, resulting in 59 bands
per spectrum in the visible range. Next, we derive B-
Spline and Gaussian Mixture representations for the down-
sampled reflectance spectra. We then interpolate the down-
sampled reflectance spectra into the original wavelengths
by evaluating the B-Spline and the Gaussian Mixture func-
tions.

We now assess the variation of the interpolation error for
various representation lengths between 9 and 30, in incre-
ments of 3. These representation lengths are equivalent to
9 to 30 B-Spline control points and 3 to 10 Gaussian com-
ponents. In Figure 3, we plot the means and standard de-
viations of the interpolation errors for the B-Spline and the
Gaussian Mixture representation as separate curves. Similar
to the previous experiment, these representations achieve al-
most identical interpolation accuracy with a short represen-
tation length, i.e. 6. As the length increases, the B-Spline
representation appears to be superior to the Gaussian Mix-
ture in terms of both interpolation accuracy and stability.
Moreover, the interpolation error for the B-Spline represen-
tation decreases at a faster rate than that for the Gaussian
Mixture. This is evident due to the increasing gap between

Figure 3. Absolute interpolation error versus the representation
length for the B-Spline and the Gaussian Mixture representations,
evaluated on the reflectance spectra in the StellarNet dataset.

Length
Descriptor

B-Spline Gaussian Mixture
9 (2.22± 2.98)× 10−2 (2.19± 2.94)× 10−2

12 (1.73± 2.61)× 10−2 (1.89± 2.74)× 10−2

15 (1.38± 2.29)× 10−2 (1.69± 2.58)× 10−2

18 (1.12± 2.12)× 10−2 (1.49± 2.54)× 10−2

21 (0.91± 1.92)× 10−2 (1.42± 2.52)× 10−2

24 (0.84± 1.88)× 10−2 (1.35± 2.23)× 10−2

27 (0.81± 1.83)× 10−2 (1.35± 2.24)× 10−2

30 (0.75± 1.82)× 10−2 (1.35± 2.25)× 10−2

Table 2. Absolute interpolation error for the StellarNet dataset us-
ing B-Splines and Gaussian Mixtures.

the two curves as the representation length increases.
Table 2 shows the numerical errors corresponding to the

graph plotted in Figure 3. As shown, errors are in the or-
der of 10−2, with that for the B-Spline representation below
10−2 using 21 or more control points. It is consistent with
Figure 3 that the Gaussian Mixture representation tends to
reach its performance limit at a length of 24, i.e. 6 Gaussian
components. On the other hand, the B-Spline representation
still improves its interpolation accuracy beyond 24 control
points. With 30 control points, its absolute interpolation er-
ror is just above half of that of the Gaussian Mixture.

Next, we examine the interpolation performance of B-
Splines and Gaussian Mixtures on the multi-spectral im-
age database. To obtain the input for this experiment, we



Figure 4. Absolute interpolation error versus the representation
length for the hyperspectral image database . The plot shows the
performance of a third-degree B-Spline and a Gaussian Mixture
representation with lengths between 6 and 15.

Length
Descriptor

B-Spline Gaussian Mixture
6 (1.06± 0.17)× 10−2 (2.21± 0.40)× 10−2

9 (0.76± 0.13)× 10−2 (1.89± 0.32)× 10−2

12 (0.67± 0.13)× 10−2 (1.99± 0.40)× 10−2

15 (0.48± 0.08)× 10−2 (1.40± 0.22)× 10−2

Table 3. The absolute interpolation error for the hyperspectral
reflectance image database using a third-degree B-Spline and a
Gaussian Mixture representation with various lengths between 6
and 15.

down-sampled the original spectral resolution from 10nm
to 20nm. This reduces the original number of spectral
bands from 30 to 15 . As before, we extracted a third-degree
B-Spline and a Gaussian Mixture representation from the
spectrally down-sampled images. These representations are
then used for an interpolation over the original wavelengths.

In Figure 4, we show the absolute interpolation errors
for both the B-Spline and the Gaussian Mixture representa-
tions with lengths of 6, 9, 12 and 15. Again, the B-Spline
representation outperforms the Gaussian mixture in both ac-
curacy and stability. It is evident that the error difference is
significant, being several standard deviations. In fact, Ta-
ble 3 shows that the error for the B-Spline is consistently
less than half of that for Gaussian Mixture. While the B-
Spline representation exhibits a steady reduction in error
when the representation length increases, the Gaussian Mix-
ture suffers from a fluctuation at the length of 12.

3.3. Skin Recognition and Biometrics

In this section we illustrate the utility of the above repre-
sentations as descriptors for skin recognition and skin bio-
metrics. We commence by performing skin spectrum recog-
nition on the StellarNet dataset and later study the behaviour

of these descriptors in recognising skin types on the multi-
spectral images. As before, we study the recognition accu-
racy with the representation length varying between 9 and
30, in increments of 3.

3.3.1 Skin Spectrum Recognition

To perform the recognition experiments on the StellarNet
dataset, we have repeated the experiment in 20 trials. The
data for this experiment has been sub-sampled at a 5nm
sampling interval in the wavelength domain, resulting in 59
bands per spectrum. For each trial, we randomly selected
50 skin and 50 non-skin spectra for training and use the
remaining ones for testing. The performance of the descrip-
tors involved in this experiment is computed as the average
over the 20 trials. The skin spectra recognition task is ef-
fected using a soft-margin Support Vector Machines (SVM)
classifier [8] with a third-degree polynomial kernel func-
tion. The other parameter values of the SVM classifier are
selected by a four-fold cross validation procedure.

In Table 4, we report the skin recognition accuracy on the
StellarNet dataset. From the second to the sixth columns,
we show the means and standard deviations yielded by the
B-Spline descriptor, the Gaussian Mixture descriptor, PCA,
a Daubechies 8 (D8) wavelet and the Raw input reflectance.
Note that the Raw reflectance feature consists of 59 spectral
bands.

The table shows that the PCA delivers the highest overall
recognition rates among the five features, followed closely
by the D8 wavelet, raw reflectance and B-Splines. However,
the difference in recognition performance between PCA,
the D8 wavelet, raw reflectance and B-Splines is not sig-
nificant, being within a standard deviation. On the other
hand, the Gaussian Mixture descriptor is significantly out-
performed by the former ones, especially with 12 or more
elements in the representation. Although having a compa-
rable or better recognition rate, PCA lacks the capability
of spectrum interpolation, which is accommodated by the
other representations. The performance of PCA can be ex-
plained by the fact that, when applied to the spectra, they
may remove sampling noise.

Furthermore, the B-Spline descriptor does not suffer as
much fluctuation of recognition accuracy as the descriptor
length varies. This is the case for the Gaussian Mixture,
PCA and the D8 wavelet. This implies that B-Splines can
be employed as a descriptor with a short length, to achieve
a high recognition accuracy with a low computational over-
head. With 30 elements, the B-Spline descriptor delivers a
recognition accuracy equivalent to the use of the full raw
reflectance spectrum using nearly twice as many bands, i.e.
59 bands.



Length
Descriptor

B-Spline Gaussian Mix. PCA Wavelet Raw
9 93.25± 2.51 90.66± 2.11 91.75± 2.85 93.53± 2.54

12 92.69± 2.85 81.98± 2.93 97.06± 2.43 95.79± 2.06

15 94.16± 2.12 83.43± 4.05 97.87± 1.37 94.01± 2.27

18 94.14± 1.54 81.65± 3.25 95.10± 3.12 94.42± 1.98

21 93.83± 2.35 83.55± 3.30 95.25± 3.69 95.03± 1.67

24 93.86± 1.75 83.60± 2.95 94.29± 3.22 95.08± 2.55

27 94.54± 2.17 82.13± 4.28 95.89± 2.19 94.62± 1.94

30 94.67± 2.44 85.99± 2.47 96.47± 2.37 93.50± 2.79

59 94.44± 2.72

Table 4. The skin spectrum recognition accuracy (in %) on the StellarNet dataset for several spectral reflectance descriptors, with respect
to the length of the feature vector. The descriptors being compared are the B-Spline descriptor [15]; the Gaussian Mixture descriptor [3];
the principal components recovered by PCA; the Daubechies 8 (D8) wavelet [1] and the raw spectra.

3.3.2 Skin Biometrics

Next, we illustrate the utility of the above representations
for ethnic group identification using skin reflectance. Here,
we perform this experiment on the hyperspectral image
database using a length of 15 for all the descriptors. To clas-
sify the subjects in our dataset into the main ethnic groups
(Caucasian, Indian and Oriental), we use training data from
two typical representatives randomly selected from each
ethnic group. To this end, we use frontally-illuminated im-
ages of these training subjects from each of which we select
5 rectangular skin regions with an average size of 25 × 17
pixels. This results in three training classes (one for each
ethnic group) which we use to train three Support Vector
Machines (SVM) classifiers according to a one-versus-all
strategy. Each of these uses a first-degree polynomial ker-
nel with its parameters tuned through a four-fold cross val-
idation procedure. During the testing phase, the three SVM
classifiers assign an ethnic group association probability to
the skin pixels in the test image.

In Figure 5, we present the probability of pixels being
associated to the three skin groups as 2D maps for a sample
image. On the maps, the values of the red, green and blue
channels of a pixel are proportional to the association prob-
ability of that pixel to the Caucasian, Indian and Oriental
groups, respectively. As shown in the figure, the B-Spline,
PCA and the raw reflectance feature produce similar skin
group association maps. These three features yield a higher
percentage of pixels correctly assigned to the groundtruth
ethnic groups than the Gaussian Mixture and the wavelet
feature. Here, the Gaussian Mixture and the wavelet de-
scriptors suffer from confusion between the Caucasian and
Oriental skin groups when being used to recognise the eth-
nic group of the Caucasian subject.

To elaborate further on the quantitative results of this
experiment, in Table 5, we report the percentage of pixels
classified into each ethnic group as a confusion matrix be-
tween ethnicities. Overall, there is no clear best performer.

XXXXXXXXXXActual
Classified

C I O

B-Spline
C 71.18 3.45 25.37
I 2.74 72.71 24.55
O 20.17 10.70 69.13

Gauss Mixture
C 47.59 4.88 47.53
I 1.40 74.02 24.59
O 11.36 12.65 75.99

PCA
C 64.57 3.78 31.65
I 2.15 75.31 22.54
O 15.42 11.06 73.52

Wavelet
C 62.52 5.04 32.44
I 10.35 67.39 22.26
O 29.37 10.36 60.26

Reflectance
C 64.78 3.79 31.43
I 2.18 75.53 22.29
O 15.51 11.16 73.33

Table 5. Percentage of image pixels classified into the Caucasian
(C), Indian (I) and Oriental (O) ethnic groups. The diagonal ele-
ments for each sub-table spanning columns 3–5 present the overall
classification rates for ethnic groups at the pixel level, whereas the
off-diagonal elements show the “confusion” between these groups
per descriptor under study.

While the B-Spline descriptor leads the recognition rate for
the Caucasian group, the raw reflectance spectrum and the
Gaussian Mixture are the best performers for the Indian
and Oriental groups, respectively. On the other hand, the
Daubechies wavelet feature delivers the lowest recognition
rate. It is worth stressing that, despite PCA and the raw
reflectance spectra deliver comparable performance to the
B-Spline and Gaussian mixture representations, the latter
allow spectrum reconstruction, interpolation and classifica-
tion. In this regard, PCA does not allow the input data to be
reconstructed while the raw spectra can be computationally
costly for recognition purposes due to its full dimensional-
ity.
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Figure 5. Skin type association maps of a Caucasian subject. The red, green and blue values correspond to the likelihood that each pixel is
classified into the Caucasian, Indian and Oriental groups, respectively. First column: input images rendered in pseudo colour; Remaining
columns, from left to right: the skin type association maps for the B-Spline descriptor, the Gaussian Mixture, PCA, the Daubechies 8
wavelet and the raw reflectance spectrum.

4. Conclusions
In this paper, we have evaluated four spectral reflectance

representations for the purposes of spectrum reconstruc-
tion, interpolation, recognition and biometrics on real-world
spectrometer and image data. For purposes of reconstruc-
tion, PCA achieves the highest reconstruction accuracy, fol-
lowed by the B-Splines. Note that PCA cannot be utilised
for spectrum interpolation purposes. Further, we have com-
pared the B-Spline and the Gaussian mixture representa-
tion for the spectrum interpolation task. Of these two, the
B-Spline delivers better reconstruction. For skin recogni-
tion, PCA slightly outperforms the other representations,
followed closely by the wavelets and the B-Splines. Fi-
nally, for biometrics, our results show that there is no clear
best approach, with the wavelets delivering the worst per-
formance amongst the representations under study.
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