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Abstract—This paper proposes a method to approximate the
camera spectral sensitivity functions from a single colour image
of a colour chart under an unknown illumination spectrum.
Here we assume that the scene illumination has a smooth
spectral variation. Although the original problem is rather ill-
posed, we reformulate it as a well-posed optimisation one by
introducing several constraints. The first constraint concerns with
the smoothness of the illuminant power spectrum. The second
one is based on the fact that the spectral sensitivity function
of a digital camera should be constrained to a linear subspace
according to Luther condition. The third constraint limits the
influence of bands with low signal-to-noise ratios. By introducing
these constraints, we can solve the problem in a coordinate-
descent optimisation manner. We validate our method using data
acquired from over 40 commercial camera models and compare
with an alternative in the literature. We also demonstrate the
utility of the estimated colour matching functions for colour
simulation and colour transfer.

I. INTRODUCTION

In computer vision, the accurate capture and reproduction
of colours acquired by digital camera sensors has applications
in colour correction [1], [2], camera simulation [3] and sensor
design [4]. It is often assumed that the spectral sensitivity
of trichromatic imaging sensors to incoming light abides
to the CIE color matching functions [5]. This assumption
is important since colorimetric standards are, by definition,
device independent. However, this may not be the case in
practice as the spectral sensitivity functions of digital cameras
can differ greatly from the CIE standards [6], [7].

Nonetheless it is somewhat well known that it is possi-
ble to recover the spectral response of a particular camera
using narrow band illuminants, calibration targets and charts.
Existing methods employ photogrammetry and spectroscopy
techniques to recover the spectral response of the camera
under study [8]. Several methods for colorimetric simulation
and evaluation with measurements of material reflectance and
illuminant radiance have been proposed, through the use of
tools such as quadratic programming [9], monochromators
[10], spectrophotometers [11] or fluorescence [12].

Other methods elsewhere in the literature require the scene
radiance to be in hand [13] or make a particular assumption
regarding the scene. For instance, in [14], the authors assumed
the sky is visible and employed this assumption to recover the
spectral sensitivity function of the camera. As a result, existing

methods are often restricted to complicated acquisition setups
or strong assumptions on either the illuminant power spectrum
or the scene irradiance. In practice, this is often restrictive since
the user only has at his/her disposal a color checker whose
image has been acquired under a particular illuminant.

In such a situation, we note that the recovery of the
spectral sensitivity functions is ill-posed in a strict sense [15].
Nonetheless, the spectral sensitivity functions can be approx-
imated using a single image from a colour rendition chart,
i.e. an XRite ColorChecker chart captured under an unknown
illuminant covering the full extent of the visible spectrum and
a library of reflectances acquired a priori. This setting allows
for a method with the following assumptions

• The use of illuminants with smooth spectra such as
incandescent lamps, tungsten lights or sunlight.

• A uniformly illuminated colour rendition chart of
known shape.

• Known spectral reflectance for the colour patches in
the chart.

Although the method presented here is somewhat related
to the work presented in [13] and [15], it has noticeable
differences. In contrast with [15], it does not require a known
illumination spectrum. Moreover, it employs iterative optimi-
sation instead of a search over the range of illuminant colour
temperatures as in [15]. To this end, we assume that the
illuminant power spectrum is smooth across the wavelengths
and impose a spectral smoothness constraint on the camera
sensitivity function. Furthermore, we note that the camera
sensitivity functions should obey Luther condition [16] in order
to correctly reproduce the colours perceived by the human eye.
Hence, they lie on a subspace spanned by a linear basis. We
further constrain the optimisation by limiting the influence of
bands with low signal-to-noise ratios.

The paper is structured as follows. In Section II, we
introduce an image formation model with relevant notation.
Based on this model, we propose a coordinate-descent optimi-
sation approach in Section III, where the spectral sensitivity
functions and the illumination power spectrum are estimated
in alternating steps. In Section IV, we validate the accuracy
of our method in comparison to an alternative, and illustrate
its utility for colour simulation and colour transfer. Finally, we
draw conclusions on this work in Section V.



II. IMAGE FORMATION MODEL

In the setting of this work, we are given an input image
consisting of m pixels denoted as u1, . . . , um. Our objective is
to recover the illumination spectrum and the spectral sensitivity
of the sensors at discretely sampled wavelengths λ1, . . . , λn.
Let Ic(u) be the colour value for channel c ∈ {R,G,B} at
pixel u. Here, we consider a scene with a global illuminant
power distribution L(λ), where λ denotes the wavelength. In
addition, let S(u, λ) be the surface reflectance at pixel u and
wavelength λ, and Qc(λ) be the spectral sensitivity of the
colour channel c at wavelength λ.

Further, let Ic be the colour vector for channel c formed
by concatenating Ic(u) over all the image pixels. In addi-
tion, we define the illumination power spectrum L as L ,
[L(λ1), . . . L(λn)]

T and the spectral reflectance spectrum at an
image pixel u as S(u) , [S(u, λ1), . . . S(u, λn)]

T . Building
on this notation, we can construct a matrix of reflectance
spectra over all the image pixels, S = [S(u1), . . . ,S(um)]T .
Also, in the discrete spectral domain, the spectral sensitivity
function for the colour channel c can be described as a vector
Qc = [Qc(λ1), . . . Qc(λn)]

T .

Here, we depart from the image formation model of colour
images to relate the input image to the illuminant power
spectrum, the scene reflectance and the spectral sensitivity of
the imaging sensor. According to [7], the colour value for a
single channel c ∈ {R,G,B} at pixel u is an integration over
the visible spectrum V = [400nm, 780nm], as follows

Ic(u) = sc

∫
V

Qc(λ)L(λ)S(u, λ)dλ, (1)

where sc corresponds to the white balancing factor in channel
c. Note that, we can rewrite Equation 1 in the matrix form as
the following expression

Ic = scS(L�Qc), (2)

where � stands for the element-wise multiplication.

III. OPTIMISATION PROBLEM

We assume that the colour chart under consideration has
known spectral reflectance. The reflectance can be measured
beforehand using either a spectrometer or a hyperspectral
camera. This can be done in a straightforward manner by
capturing a hyperspectral image of the chart under arbitrary
lighting. Since the illuminant power spectrum is deemed to be
the radiance spectra at the white colour patch on the chart, the
reflectance of the entire chart can then be obtained by taking
the ratio of the spectral radiance to the illumination power
spectrum.

We recover the spectral sensitivity function with a two-
stage algorithm. In the first stage, given the known scene
reflectance matrix S, we estimate the element-wise product Pc,
where Pc , scL�Qc for the colour channel c. By Equation 2,
we can recover Pc by solving the following non-negative linear
optimisation problem

minimise ‖Ic − SPc‖
subject to Pc � 0, (3)

where ‖ · ‖ denotes the L2-norm of the vector argument.

We observe that there are n variables in Pc corresponding
to the n discrete wavelengths λ1, . . . , λn. Since S has a dimen-
sion of m × n, the problem in Equation 3 is generally well-
formed if there are more pixels in the image than the number
of wavelengths, i.e. m ≥ n. As a result, the minimisation
above can be solved by standard non-negative least squares
methods [17].

In the second stage, having obtained the vectors Pc, c ∈
{R,G,B}, we aim to decompose them into the illuminant
power spectrum L and the spectral sensitivity function Qc. We
note that the decomposition problem above is ill-posed without
further constraints. In other words, for any illuminant power
spectrum L, there always exists a spectral sensitivity function
Qc such that Qc�L is a scalar multiple of Pc. To tackle the
ambiguity induced by the unknown scalar sc in Equation 2,
here we minimise the spectral angle ∠(Pc,Qc � L) between
the vectors Pc and Qc�L. Moreover, we constrain the vectors
Qc and L to unit L2-norm.

To render the above problem well-formed, we assume
that both the illumination power spectrum and the spectral
sensitivity functions are smooth in the spectral domain. These
assumptions have been employed elsewhere for material end
member decomposition in spectral unmixing [18] and spectral
sensitivity recovery [13]. These works, in particular, model
local segments of the spectra as linear functions . Therefore,
they constrain the spectra such that the magnitude of the
second derivatives with respect to the wavelength is minimised.

In the discrete form, the second derivative of spectra can
be approximated by finite differences with the following (n−
2)× n matrix

D =


1,−2, 1, 0, . . . , 0
0, 1,−2, 1, . . . , 0

. . .
0, . . . , 0, 1,−2, 1

 , (4)

which is a band matrix with non-zero entries on the main
diagonal and its two adjacent upper diagonals.

With this band matrix in hand, the magnitudes of the
second derivatives of the illumination spectrum L and the
spectral sensitivity Qc can be approximated as follows∫ (

∂2L(λ)

∂λ2

)2

dλ ≈ ‖DL‖2 (5)∫ (
∂2Qc(λ)

∂λ2

)2

dλ ≈ ‖DQc‖2. (6)

In addition, we constraint the spectral sensitivity function
making use of Luther’s condition [16]. This condition states
that, in order to reproduce colour accurately, the spectral
sensitivity function of a camera should be a linear combination
of the human eye’s colour matching functions. Several prior
works [19], [15] have empirically verified that the spectral
response functions of digital cameras span a low-dimensional
linear subspace. This experimental work spans a wide variety
of pre-defined linear basis functions such as polynomials,
Fourier series, radial basis functions and the principal com-
ponents obtained by PCA.



For now, we assume a pre-defined basis Bc of the spectral
sensitivity functions in each channel c. To enforce a linear
basis for the sensitivity function Qc, we define a distance
metric between the sensitivity function Qc and the subspace
spanned by Bc. To this end, we concatenate the column vectors
that represent the components in Bc to form a matrix Bc

with a size of n × dq , where dq is the number of basis
components in Bc. The linear projection matrix onto this
subspace is given by BcB

†
c, where † denotes the pseudo-

inverse of a matrix. With these ingredients, we proceed to
define the distance d(Qc, span(Bc)) between the sensitivity
function Qc and the subspace spanned by Bc as the differ-
ence between its projection onto this subspace and itself, i.e.
d(Qc, span(Bc)) = ‖TcQc‖, where Tc , J − BcB

†
c and J

is the identity matrix.

Lastly, we notice that the spectral sensitivity is only sig-
nificant in a number of wavelengths, i.e it peaks at a certain
wavelength and falls off at the tails. This gives rise to a
constraint on the sensitivity values of the insignificant bands,
which we define to have values below a certain proportion
of the maximum value of the function. Formally, we denote
the significance of the wavelength λ for each channel c as
an indicator function wc(λ). We preset the value of wc(λ) as
follows

wc(λ) =

{
0, if Pc(λ) < ε×maxλ′∈V Pc(λ

′)

1, otherwise ,
(7)

where Pc(λ) is the element of Pc at the wavelength λ and ε
is a preset constant.

Subsequently, we construct a significance indicator vector
wc over the wavelength domain for each colour channel c. This
allows for an appropriate weighting of bands based on their
signal-to-noise ratios by minimising the norm ‖(1 − wc) �
Qc‖2, where 1 is the n-element column vector of unit values
and wc = [wc(λ1), . . . wc(λn)]

T .

By combining all the constraints above, we formulate the
problem of decomposing Pc into L and Qc as the following
minimisation problem

minimise F =

{∑
c ∠(Pc,Qc � L) + αL‖DL‖2

+αQ‖DQc‖2 + βQ‖TcQc‖2

+γQ‖(1−wc)�Qc‖2
}

subject to ‖Qc‖ = 1 and ‖L‖ = 1, (8)

where αL, αQ, βQ, γQ are the corresponding Lagrange multi-
pliers for the constraints introduced above.

Subsequently, we employ a coordinate descent method to
minimise the cost function in Problem 8. Specifically, we
refine the estimates of the spectral sensitivity function and
the illumination power spectrum in an iterative manner. At
each iteration, we minimise the cost function in Problem 8
in two interleaved steps, each with respect to either L or Qc

while fixing the update of the other variable. To optimise the
objective function at each step, we employ the interior point
algorithm for large scale non-linear programming described
in [20].

Algorithm 1 Estimate the spectral sensitivity function Qc, c ∈
{R,G,B} and the illumination power spectrum L.
Require: Pc: the scalar multiple of the element-wise product

of Qc and L obtained by solving Problem 3.
1: Initialise t← 0; L(0) ← 1.
2: repeat
3: for c ∈ {R,G,B} do
4: Q

(t)
c ← argminQc

F |L(t−1).
5: end for
6: L(t) ← argminL F |Q

(t)
c .

7: t← t+ 1.
8: until the change in L(t),Q

(t)
c as compared to the previous

iterates is negligible or the maximum number of iterations
is reached.

9: return L(t),Q
(t)
c .

In Algorithm 1, we present the pseudocode for our method.
In the algorithm, the superscript t denotes the iteration index.
The algorithm takes the solution Pc resulting from the minimi-
sation problem 3 as input and commences with an initialisation
of the illumination power to a uniform spectrum. The algorithm
terminates when the changes in the illumination spectrum and
the sensitivity function estimates are negligible, or a maximum
number of iterations is achieved.

IV. EXPERIMENTS

In this section, we first evaluate our method for spectral
sensitivity estimation in comparison with an alternative. The
alternative method used here is that proposed by Jiang et
al. [15], which assumes known material reflectance for every
pixel and a global CIE standard daylight illuminant. This
method also constrains spectral sensitivity functions to a two-
dimensional subspace spanned by the principal components
of a library of camera sensitivity functions. Later on in the
section, we demonstrate the application of our method to
camera simulation, and colour transfer across camera spectral
sensitivity functions.

To generate synthetic input for validation purposes, we
have simulated colour images from a spectral reflectance image
of the semi-gloss Xrite ColorChecker, which comprises 140
colour patches, and a Macbeth ColorChecker with 24 colour
tiles. This imagery was captured using a hyperspectral camera
equipped with an Liquid Crystal Tunable filter resolving wave-
lengths in the visible range, i.e. between 400 nm and 720 nm,
at 10 nm steps. The chart reflectance is computed as the ratio
of the measured irradiance to that falling on a white patch on
the chart.

Subsequently, we render the images of the colour charts
using two datasets of spectral sensitivity functions acquired by
Jiang et al. [15] and Zhao et al. [19] from over 40 commercial
digital camera models. To generate the colour images, we
employ two representative illuminants that cover the full extent
of the visible spectrum, including an incandescent light and
the natural sunlight. Throughout our experiments, we have set
the above algorithm parameters as follows, αL = 50, αQ =
0.5, βQ = 1, γQ = 1 and ε = 0.05.

In Tables I and II, we show the mean root-mean-square
(RMS) errors for the spectral sensitivity functions in the



Camera Our method Jiang et al. [15]
model Red Green Blue Red Green Blue

NikonD40 0.15 0.1 0.11 0.082 0.03 0.095
NikonD700 0.063 0.074 0.056 0.072 0.029 0.04
NokiaN900 0.11 0.1 0.075 0.12 0.1 0.18
PentaxK5 0.053 0.085 0.037 0.056 0.047 0.05
Average 0.085± 0.0309 0.081± 0.0217 0.071± 0.027 0.088± 0.0255 0.049± 0.0257 0.079± 0.0497

TABLE I. RMS ERRORS FOR THE SPECTRAL SENSITIVITY FUNCTIONS IN THE CAMERA DATASET COLLECTED BY JIANG et al. [15] AVERAGED OVER
ALL THE ILLUMINATION CONDITIONS.

Camera Our method Jiang et al. [15]
model Red Green Blue Red Green Blue

Kodak DCS 460 0.18 0.065 0.13 0.19 0.082 0.2
Canon 400D 0.058 0.043 0.047 0.066 0.042 0.067

Average 0.11± 0.0641 0.066± 0.0272 0.086± 0.0394 0.12± 0.0645 0.073± 0.0249 0.1± 0.0509

TABLE II. RMS ERRORS FOR THE SPECTRAL SENSITIVITY FUNCTIONS FOR CAMERA DATASET COLLECTED BY ZHAO et al. [19] AVERAGED OVER ALL
THE ILLUMINATION CONDITIONS.

(a) Pentax K5 (0.058) (b) Nikon D700 (0.047)

(c) Nikon D40 (0.12) (d) Nokia N900 (0.133)

(e) Canon 300D (0.0773) (f) Canon 600D (0.075)

Our method Jiang et al. [15]

Fig. 1. The spectral sensitivity functions in the dataset collected by
Jiang et al. [15], with the corresponding average RMS errors across
the colour channels in parentheses.

datasets in [15] and [19], respectively. The errors resulting
from our method and the alternative are presented per camera
and colour channel, averaged over all the illumination condi-
tions. Here, for the sake of brevity, we only show the error
measure for the camera models that yield the most (in bold)
and the least accurate (underlined) estimates for each method.
From the tables, we can observe that the performance of our
method on Jiang et al.’s dataset is largely comparable to the
alternatives. Meanwhile, our method consistently outperforms

(a) Canon 400D (0.0493) (b) Canon 400D (0.0583)

(c) Kodak DCS460 (0.125) (d) Kodak DCS460 (0.1573)

(e) Nikon D1x (0.0823) (f) Canon 5D (0.0943)

Our method Jiang et al. [15]

Fig. 2. The spectral sensitivity functions in the dataset collected by
Zhao et al. [19], with the corresponding average RMS errors across
the colour channels in parentheses.

the alternative when applied to Zhao et al.’s dataset, with
the mean RMS errors approximately 10% lower than those
produced by the alternative. Interestingly, both our method and
the alternative yield the highest and lowest performance on
the same cameras, i.e. the Canon 400D and Kodak DCS460
camera. These results suggest that although our algorithm
makes weaker assumptions on the illuminant than the alter-
native, its performance is at least comparable or better than
the alternative. Note that our optimisation framework can be



treated as generalisation of the alternative, where the additional
constraints on the colour matching functions (including the
smoothness constraint and the weighting of bands) help guide
the estimates closer to the ground truth.

In Figures 1 and 2, we plot the ground truth spectral
sensitivity functions (in solid traces) and the estimates (in
dashed lines) produced by the two methods under study for the
two camera datasets. In the plots, the estimates for our method
and the alternative are shown in the left-hand and right-hand
column, respectively. From top-to-bottom, we show the best,
worst and average estimates for each method, respectively. We
note that the RMS differences between the estimates and the
ground truth (in the parentheses under the plots) reflect the
numerical results in Tables I and II.

Next, we employ the image formation model in Equation 2
to render spectral images in the colour depicted by the camera
sensitivity functions resulting from the two methods above.
This simulation takes input from the dataset of spectral re-
flectance images acquired by Foster et al. [21]. In Figure 3,
we show the simulated colour for a sample scene using the
most and least accurate estimate for the spectral sensitivity
function produced by our method over the two camera datasets
above. These renderings correspond to the Pentax K5 and the
Kodak DCS460 cameras. In the figure, the first, second and
fourth columns show the simulated colours using the ground
truth spectral sensitivity functions, and those estimated by our
method and Jiang et al.’s method, respectively. In the third and
last columns, we visualise the rendering error for our estimate
and the alternative. The error maps are scaled up by a factor
of 5 for the sake of clarity of presentation.

Note that, our error for the Pentax K5 camera (in the first
row) is almost negligible while that for the alternative is visible
in the well-lit areas. On the other hand, both error maps for the
Kodak DCS460 camera in the second row exhibit noticeable
errors in various parts. This is consistent with the results above,
where the sensitivity function estimation for the Pentax K5 is
much more accurate than that for the Kodak DCS460.

Lastly, we utilise the estimated spectral sensitivity func-
tions for the task of colour transfer between camera models.
In particular, given a real-world image captured by a known
camera model, we transfer the input colour to that perceived
by a target spectral sensitivity function or the human standard
observer. This is, in effect, a linear transformation to map the
input colour to that corresponding to a target spectral sensitiv-
ity function. Here, suppose that the colour matching functions
corresponding to the CIE 1931 2◦ Standard Observer [22] is
Q̂. We denote the camera colour matching functions across the
three colour channels as Q and the image colour as an m× 3
matrix I. After normalising Q and Q̂, we obtain the colour
vector observed by the target colour matching function as
IQ†Q̂diag([σR, σG, σB ]), where σc is a normalising constant
for the channel c.

In Figure 4, we show input images captured by a Nikon
D80 and a Nikon D5100 in the first and third columns.
The second and fourth columns depict the colour images
resulting from the transfer matrix between the colour matching
functions of the above cameras and the CIE standard ob-
server’s functions [22]. We note the similarity between the
hues transferred from images captured by the two camera

models under the same illumination. Furthermore, the transfer
operation only modifies the chrominance of the image while
preserving the luminance. This is expected since the spectral
sensitivity functions are independent from the image intensity.
We also notice that both the Nikon D80 and Nikon D5100
sensors are more sensitive to the long wavelengths and less
sensitive to the short wavelengths than the eye. Thus, the
images they capture exhibit a stronger red tone and a milder
blue tone than perceived by the human eye.

V. CONCLUSION

We have presented a method for estimating the spectral
sensitivity function of a digital camera from a single image of
a colour chart captured under an unknown illuminant with a
smooth spectrum. We have turned this ill-posed problem into
a well-formed one by introducing constraints on the spectral
sensitivity function and the illuminant power spectrum. These
constraints aim to model the characteristic variation of both
the illuminant and the spectral sensitivity functions over the
spectral domain. Our experiments show favourable results over
an alternative [15] when applied to 40 commercially available
digital cameras. We have also illustrated the utility of our
method for the purposes of colour simulation and colour
transfer.

ACKNOWLEDGMENT

NICTA is funded by the Australian Government as rep-
resented by the Department of Broadband, Communications
and the Digital Economy and the Australian Research Council
through the ICT Centre of Excellence program.

REFERENCES

[1] D. H. Brainard and A. Stockman, Colorimetry. McGraw-Hill, 1995.
[2] G. D. Finlayson and M. S. Drew, “The maximum ignorance assumption

with positivity,” in Proceedings of the IS&T/SID 4th Color Imaging
Conference, 1996, pp. 202–204.

[3] P. Longere and D. H. Brainard, “Simulation of digital camera images
from hyperspectral input,” in Vision Models and Applications to Image
and Video Processing, C. van den Branden Lambrecht, Ed. Kluwer,
2001, pp. 123–150.

[4] T. Ejaz, T. Horiuchi, G. Ohashi, and Y. Shimodaira, “Development
of a camera system for the acquisition of high-fidelity colors,” IEICE
Transactions on Electronics, vol. E89–C, no. 10, pp. 1441–1447, 2006.

[5] W. S. Stiles and J. M. Burch, “Interim report to the Commission
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Cambridge University Press, Cambridge, 1932.


