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ABSTRACT

In this paper, we present a system for automatic spectral sig-
nature acquisition and recognition of skin from hyperspectral
face imagery. In the acquisition step, hyperspectral cameras
are used to capture multispectral or hyperspectral images of
faces for skin recognition. The acquired signature may ei-
ther be stored in a database for future testing or be used for
purposes of identification. In the recognition step, the sys-
tem accounts for variations in the illumination by recovering
the light power spectrum in the scene and obtains the scene
reflectance by normalising the input image radiance accord-
ingly. Furthermore, incorporated into this system is a Non-
Uniform Rational B-Spline (NURBS) compact descriptor of
spectral reflectance for recognition purposes. We have em-
ployed this system as a profiling tool to classify a real-world
multispectral face image database into separate ethnic groups.

Index Terms— multi-spectral imaging, hyper-spectral
imaging, biometrics, reflectance, skin recognition, NURBS.

1. INTRODUCTION

For decades, hyperspectral imaging [1] has been an active
area of research in remote sensing. However, until recently,
hyperspectral images had only been available to a limited
number of researchers. Furthermore, the few commercial
hyperspectral imaging systems were mainly airborne ones
which could not be used for ground-based applications. With
the advent of commercial systems such as the Hyperspec-
tral Image Intensified Camera System1 of OKSI, terrestrial
spectral imaging is expected to become a sensing technology
with ample applications in areas such as face recognition,
biosecurity and surveillance.

In hyperspectral imaging, the imagery does not comprise
brightness or colour values, but rather an “image cube”. This
image cube is constituted by a number of “slices”, each of
which represents a wavelength-resolved image. As a result,
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every slice is a spatially resolved sample over the light spec-
trum. This integration of the spectral and spatial information
produces a very information-rich representation of the scene
and opens up the possibility of exploiting the interdependency
of the spectral and spatial information to represent targets and
subjects of interest in unique and novel ways.

Moreover, the spectral response of the material under
study over a number of wavelengths permits the recovery of
the reflectance spectra as a feature for material identification
and recognition. Methods such as those presented in [2, 3, 4]
often treat recognition as a pixel-based classification task,
based upon individual spectral signatures. This is related to
the chemistry of the object, where each signature is generally
related to the object material. These methods hinge on the
notion that different materials have different characteristic
responses as a function of wavelengths, which can be used to
provide descriptions of the target objects.

In this paper, we explore hyperspectral imaging as a pro-
filing tool and present a system to classify subject faces into
separate ethnic groups. We also explore the use of alternatives
to raw spectra as a means to classification and recognition
by presenting results for a number of reflectance descriptors.
These are robust to changes in illumination, noise and surface
geometry. The work presented here illustrates how these de-
scriptors can be used for profiling and recognition tasks, such
as those arising in biometrics or positive access technologies.

2. IMAGE ACQUISITION & PROCESSING SYSTEM

In this section, we present a system for multispectral and
hyperspectral imagery acquisition and processing for the
purposes of skin recognition and ethnic group identification
based upon spectral reflectance features. Here, we present
both the acquisition equipment as well as an algorithm for
material-intrinsic reflectance recovery and a compact spectral
reflectance descriptor for recognition purposes.

The system presented here incorporates a spectral re-
flectance descriptor designed to be compact and efficient
for classifying spectral data. At the current state-of-the-art,
the research on spectral feature extraction from spectral im-
ages mainly focuses on the analysis of absorption bands and
dimensionality reduction on the image cube. Unlike the pre-
vious work, the NURBS-based spectral descriptor allows an



analytical representation of arbitrary free-form spectral data
through the use of B-Spline basis functions, by which func-
tional analysis on spectral curves, such as spectral derivative
analysis, is possible. Furthermore, we also introduce a de-
scriptor extraction algorithm that operates on the entire image
cube simultaneously, rather than on a single spectrum [5].

2.1. Apparatus

Our apparatus includes a pair of OKSI Turnkey Hyperspec-
tral Cameras for the purpose of ground-based image acquisi-
tion in the visible and near-infrared ranges. The cameras are
equipped with Liquid Crystal Tunable Filters (LCTF) which
allow spectral bands to be resolved up to 10nm in both the
visible (430–720nm) and near infrared (650–990nm) wave-
length ranges. Incoming light is received by the front optics,
and dispersed by the spectral filters, before passing through
the relay optics to reach the imaging sensor. The CCD imag-
ing sensor is capable of recording up to 12-bit monochromatic
images with a spatial resolution of 1392× 1040 pixels.

With this equipment, we collect a face image database of
51 human subjects, each captured under one of 10 directional
light sources with varying directions and spectral power. The
light sources are divided into two rows, one placed above and
the other at the same height as the camera system. The main
direction of the lights is adjusted to point towards the centre
of the scene. To obtain the ground truth illuminant spectrum
for each image, we measured the average radiance reflected
from a white calibration target, i.e. a LabSphere Spectralon,
illuminated by the light sources under consideration.

2.2. Illumination Invariant Spectral Features

In this section, we first present a method of recovering mate-
rial reflectance that is robust to changes in illumination, sur-
face shading and specularity. Later, we formulate a compact
descriptor of spectral reflectance of materials for the purposes
of material recognition.

2.2.1. Illumination Spectrum Recovery

Accurate information of illumination power spectra allows
proper normalisation of the input image radiance to recover
material-intrinsic reflectance. This information may be mea-
sured in laboratory conditions using a reference material.
However, in certain circumstances such as outdoor settings
with varying natural sunlight power and direction, this cal-
ibration process becomes time-consuming and laborious.
We have introduced a method of predicting the illumina-
tion power spectrum, up to a scaling constant, from a single
hyperspectral image [6]. The method also enables the re-
covery of material-intrinsic reflectance which is invariant to
illumination, surface shading and specularity.

2.2.2. NURBS-based Spectral Reflectance Descriptor

Having obtained the spectral reflectance as described in [6],
we proceed by formulating a compact representation of re-
flectance spectra using B-Spline basis functions. By treating
each reflectance spectrum as a set of 2-D points whose coordi-
nates are corresponding pairs of wavelengths and reflectance,
we aim to interpolate a B-spline curve to each spectrum and
perform knot removal to minimise the number of knots and
control points.

Suppose that we are given a collection of wavelength-
indexed reflectance spectra as input, in the form of Rv =
[Rv,1, Rv,2, . . . , Rv,l]T , where v denotes the spectrum index
(or pixel index in case of hyperspectral images) and Rv,k

is the reflectance of the spectrum v sampled at the discrete
wavelength λk, k = 1, 2, . . . , l. We aim to interpolate a
set of B-spline curves of the same degree p, with a com-
mon knot vector and the same basis functions to the input
reflectance spectra. For the spectrum index v, suppose that
the corresponding curve Cv is defined by n + 1 control points
Pv,i = (xi, yv,i), i = 0, . . . , n, and a common knot vec-
tor U for all the given spectra, where U = {u0, . . . , um},
m = n + p + 1. The wavelength and reflectance coordinates
on this curve are defined as functions of an independent pa-
rameter t

λ(t) =
n∑

i=0

Ni,p(t)xi (1)

Rv(t) =
n∑

i=0

Ni,p(t)yv,i (2)

In Equations 1 and 2, Ni,p(t) is the ith B-spline basis
function of degree p, as defined in [7]. To provide a com-
mon basis for recognition and comparison between different
spectra, we enforce a common set of basis functions, knot
vector U and control point coordinates xi in the wavelength
dimension for all the given spectra. In contrast, the reflectance
interpolation function Rv(t) and its associated control point
coordinates yv,i characterise the input spectral signatures.

In pattern recognition, a descriptor is desired to con-
tain characteristic information that yields high discriminative
power. Hence, we derive a target function to optimise the
choice of the interpolating B-spline curves for a given set of
reflectance spectra. Here, the cost function aims to minimise
both the reconstruction error of the interpolated curves with
respect to the input spectra and the descriptor length.

Suppose that the parameter tk corresponds to the kth

wavelength, i.e. λk = λ(tk)∀k. Then the interpolation cost
using the B-spline curves above through the set of reflectance
spectra {Rv|Rv = [Rv,1, Rv,2, . . . , Rv,l]T } is given by

K = α
1
N

∑
v

l∑
k=1

(Rv(tk)−Rv,k)2 + (1− α)|U | (3)



where N is the number of spectral signatures, |.| denotes the
length of the vector argument. The choice of the balance fac-
tor α ∈ [0, 1] governs the trade-off between the reconstruction
error and the descriptor length.

Next, we turn our attention to the task of minimising the
cost function in Equation 3. The algorithm departs from an
initial interpolation of the sampled reflectance spectra so as
to arrive at a set of curves that minimises the cost function
through a knot removal algorithm. To initialise the B-Spline
curves, we apply the curve interpolation algorithm in [7],
which employs the centripetal method of Lee [8] to recover
the curve parameter values for every sampled reflectance
spectrum.

With these initial curves at hand, we proceed to remove
knots sequentially so as to maximise the total cost reduction.
The algorithm is a two-pass one. In the first pass, removable
knots are identified. Once they are determined as removable,
our algorithm computes the potential cost reduction for their
removal. Then, the knot that yields the maximum cost reduc-
tion is selected for removal. In the second pass, we employ
Tiller’s algorithm [9] to remove the selected knot and its cor-
responding control point, while recomputing the other con-
trol points in the local support to best fit the given spectral
reflectance samples. This process iterates until either a target
number of knots has been achieved or the reconstruction error
exceeds a preset threshold.

Note that this iterative process can be interleaved with a
resampling operation in the parameter domain. The resam-
pling operation allows further knots to be removed by reduc-
ing the number of curve sections fitted to the spectra without
changing the distribution of the control points. Hence, the
knot removal method described above can be applied recur-
sively on the resampled data points in the parameter domain.

3. ETHNIC GROUP PROFILING

In this section, we illustrate the utility of the system described
in Section 2.2.2 for the task of ethnicity identification from
skin reflectance. First we compact the input reflectance image
cube along the spectral dimension to obtain a third-degree B-
Spline curve with 18 control points and 22 knots. For recogni-
tion purposes, we reconstruct a reflectance vector from these
optimal knots and control points, according to Equations 1
and 2.

We also consider alternative methods of feature extrac-
tion from reflectance spectra. The first of these consists of 15
principal components yielded by Linear Discriminant Anal-
ysis (LDA) on a vector made of the coefficients, means and
standard deviations of a mixture of 6 Gaussian components
fitted to the given reflectance spectra [10]. We also compare
the performance of the NURBS descriptor with the raw re-
flectance spectra consisting of 30 spectral bands, and their 15
principal LDA components extracted from the raw spectra.

We perform the experiment on the visible face images
from the database described in Section 2.1. Here, we obtain

reflectance images by normalising the raw multispectral im-
ages with the groundtruth illumination power spectrum. Note
that, as an alternative, the illumination power spectrum may
also be estimated from single multispectral radiance images,
as discussed in [6].

The dataset involved in this illustration consists of three
different ethnic groups, including 22 Caucasian, 8 Indian and
18 Oriental subjects. The training data includes spectral sig-
natures of 5 rectangular skin regions, with an average size of
25× 17, from the frontally-illuminated images of two typical
representatives of each ethnic group. A Support Vector Ma-
chines (SVM) classifier with a first-degree polynomial kernel
is then trained on the spectral features, with its parameters
tuned through a 5-fold cross validation procedure. During the

(a) NURBS feature

(b) Gaussian Mixture feature

Fig. 1. Visualisation of the association of individuals with three
ethnic groups in a 3D coordinate system with the three axes corre-
sponding to the groups. Sample face images of the ethnic groups
are shown in pseudo RGB colours. (a) a plot of the class associa-
tion probabilities yielded by the third-degree NURBS feature with
22 control points and 18 knots; (b) a plot of the class association
probabilities yielded by the 15 principal LDA components of the
Gaussian Mixture feature with 6 components.



NURBS Gaussian Mixture Raw Spectra Raw Spectra + LDA

Actual
Classified

C I O C I O C I O C I O

Caucasian (C) 95 0 5 90 0 10 90 0 10 90 0 10
Indian (I) 0 83.33 16.66 0 100 0 0 83.33 16.66 0 100 0

Oriental (O) 12.5 0 87.5 6.25 0 93.75 6.25 0 93.75 6.25 0 93.75

Table 1. The percentage of test subjects classified into the Caucasian (C), Indian (I) and Oriental (O) ethnic groups, using different spectral
descriptors. Columns 2–4 result from the use of the NURBS-based descriptor with 18 control points. Columns 5–7 are yielded using 15

LDA components of a Gaussian Mixture descriptor with 6 components. Columns 8–10 are yielded using 30 spectral bands of raw reflectance.
Columns 11–13 are yielded using 15 principal LDA components of the raw spectra.

test phase, the trained SVM classifier assigns an ethnic group
association probability to each skin pixel in the test images.
Note that skin regions may be segmented from the test images
in a manner similar to that in [6]. The overall ethnic identity
associated with the test subjects is determined by the majority
voting of the ethnic group association across their skin pixels.

In Figure 1, we visualise the ethnic group association
probabilities of the test subjects as points in a 3-D coordinate
system, with the three axes representing the ethnic groups.
The ground-truth ethnic groups of the test subjects are colour-
coded, as red, green and blue for Caucasian, Indian and Ori-
ental, respectively. In both plots, the Indian skin cluster is
well-separated from the other groups. This is expected as the
Indian skin reflectance spectra from our database have flatter
slopes and less absorption bands than the other two groups.
The Caucasian and Oriental groups are fairly separable from
each other with a few examples confounded by image sat-
uration. It is also noted that each ethnic group is correctly
located in a proximity of an extreme point corresponding to
the pure skin example of the group.

In Table 1, we report the percentage of individuals classi-
fied into the ethnic groups as a confusion matrix between the
groups. While the NURBS-based descriptor outperforms the
others in recognising Caucasian skin, the application of LDA
to the Gaussian Mixture feature and raw spectra yields a bet-
ter recognition rate for the other groups. Although there is a
slight difference in classification accuracy between the above
spectral reflectance features, the plots in Figure 1 show sim-
ilar distributions of invididual skin reflectance identity. This
can be explained by the fact that the difference in classifi-
cation accuracy could be attributed to the decision boundary
determined by the SVM classifier, rather than the difference
between spectral descriptors.

4. CONCLUSION

In this paper, we have provided the design and implementa-
tion of a multispectral imaging system for skin biometric ap-
plications. The first component of our system comprises an
apparatus for acquiring skin reflectance samples from multi-
spectral or hyperspectral images. The second component of
the system is a collection of algorithms to recover material

reflectance robust to illumination changes and to represent
spectral reflectance of materials, including skin, in an effi-
cient and compact form for classification purposes. We have
also demonstrated the utility of this system as an ethnic group
profiling tool.
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