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Abstract

In this paper, we present an approach to robust es-
timation of shape from single-view multi-spectral po-
larisation images. The developed technique tackles the
problem of recovering the azimuth angle of surface nor-
mals robust to image noise and a low degree of polari-
sation. We note that the linear least-squares estimation
results in a considerable phase shift from the ground
truth in the presence of noise and weak polarisation in
multispectral and hyperspectral imaging. This paper
discusses the utility of robust statistics to discount the
large error attributed to outliers and noise. Combin-
ing this approach with Shape from Shading, we fully
recover the surface shape. We demonstrate the effec-
tiveness of the robust estimator compared to the linear
least-squares estimator through shape recovery experi-
ments on both synthetic and real images.

1. Introduction

Shape recovery is a common subject of interest to
which much of the research effort in the Computer
Vision and Graphics communities has been devoted.
Shape from Shading focuses on the recovery of shapes
from shading information in single images. One of
the earliest work in Shape from Shading [3] was based
on the compliance with the image irradiance equation
and local surface smoothness, under the Lambertian re-
flectance assumption. However, this treatment leads
to the need to resolve the azimuth angle of the object
surface normals as it is not constrained by the irradi-
ance equation. As a result, regularisation techniques
have been employed to enforce surface curvature con-
sistency [11] or to impose the Lambertian reflectance
constraint in a hard manner [10].
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Polarisation, on the other hand, adds another dimen-
sion to the image analysis at hand. Although the human
vision system is oblivious to polarisation, its effects can
be captured by devices such as polarimeters and more
recently, polarisation cameras [9]. There has also been
research aimed at exploiting polarisation information
for shape recovery. Miyazaki et al. [7] mapped the de-
gree of polarisation to zenith angle, under the assump-
tion that the histogram of zenith angles of a given object
is similar to that of a sphere. More recently, Atkinson
and Hancock [1] published their work concerning the
recovery of surface orientation from diffuse polarisation
applied to smooth dielectric surfaces.

This paper focuses on providing a robust estimation
of polarisation components from multi-spectral images
captured from a single view. Further, it shows how
to utilise both the polarisation and shading information
for the task of surface orientation recovery. In this pa-
per, we study the diffuse polarisation of light reflection
from smooth surfaces made of unknown materials. The
recovery method is formulated making use of robust
statistics so as to achieve robustness against noise ef-
fects and weak degrees of polarisation. As a result, the
resulting polarisation phase angles enable the estima-
tion of the azimuth angle, while the shading map gives
rise to an estimation of the zenith angle.

2. Robust Shape Recovery

In this section, we present a two-step process to re-
cover surface orientation from a set of polarisation im-
ages captured from a single view. The first of these in-
volves robust statistics to reliably estimate the surface
normal’s azimuth angle. In the latter step, we estimate
the zenith angle using a technique akin to Shape from
Shading.

Light, in general, exhibits polarisation upon reflec-
tion from a smooth surface. Let us consider a linear
polarisation component propagating in the line-of-sight,
which oscillates in a plane oriented at an angle J with
respect to a reference direction in the image plane. The
intensity captured varies sinusoidally with respect to the



orientation of the plane of polarisation. At image pixel
u and wavelength ), this variation conforms to a Trans-
mitted Radiance Sinusoid (TRS) as follows
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where ¢ is the phase angle of the polarised reflected
light, and I,,,;,, and I,,,, are, respectively, the mini-
mum and maximum intensities on the sinusoidal curve.

2.1. Robust Recovery of the Azimuth Angle

We now note that there exists a relationship between
the azimuth angle of surface normals and the phase an-
gle ¢ described in Equation 1. In this paper, we consider
a diffuse reflection process from dielectric surfaces. Re-
call that diffuse polarisation is caused by the refrac-
tion of subsurface scattered light through the material-
air boundary. Further, the linear polarisation compo-
nent with the maximal amplitude oscillates in a plane
parallel to the plane of reflection according to Snell’s
law of refraction and Fresnel’s reflection theory [1]. In
addition, Equation 1 shows that the TRS curve peaks
when the angle of polarisation ¥ coincides with the
phase angle ¢. Thus, we have the relation a(u) = ¢
or a(u) = ¢ =« [1]. To disambiguate the azimuth
angle between these two possibilities, we can assume
convexity on the surface under observation.

Now we turn our attention to estimating the pa-
rameters Lin, Imaee and ¢ in Equation 1 from a set
of single-view polarisation images captured at N po-
lariser’s orientations. Here, we denote ©; as the i*"
step-angle of the polariser’s transmission axis with re-
spect to a reference direction. We index these im-
ages to the wavelength A € {)\;,... \g} by denoting
I;(u,\) = I(u,\,9;) as the measured intensity at the
pixel-site u and wavelength A on the polarised image
corresponding to the i*" polariser angle 1J;.

We commence by rewriting Equation 1 in the
following vector form, using the shorthands z =
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Since we have measurements at N > 3 polariser’s
orientations, the linear system in Equation 2 becomes
over-determined and a least-squares solution can be
found by standard techniques. However, least-squares
solutions are prone to outliers induced by image noise
and more importantly, low degrees of polarisation,
which may render the TRS curve nearly “flat”. This
may ultimately cause bogus results due to significant
shifts of the estimated phase angle from the actual

one. To remedy this problem, we resort to a robust M-
estimator which, instead, minimises the following ob-
jective function, in which g, (+) is a robust kernel func-
tion with a kernel width o.
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Formally speaking, a robust kernel function g, ()
quantifies an energy associated with both the residual
n and its influence [4]. Each residual is assigned a
weight as defined by an influence function (7). Thus
the energy is related to the first-moment of the influence
function as 6957757’) = nh(n). Some well-known kernel
functions include Tukey’s bi-weight [2] and Huber’s M-
estimators [4].

To minimise the function in Equation 3, it is nec-
essary that its derivative vanishes at the solution, i.e.
BEéZ’” = vaﬂ (Miho (03)| w2y i) = 0, where 7; =
ff2z — I;(u, \). In other words
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Since h,(7;) is normally a non-linear function of z,
it is not always possible to find a closed-form solution
to Equation 4. Nonetheless, we can adopt an iterative
approach to find a fixed-point solution to Equation 4 by
fixing its right hand side as a constant given the current
value of the iterate xj, where k is the iteration number.
As aresult, we obtain the update equation for the iterate
Zk+1 given by the following expression

Zij\;1 ha(m)\msz
Zi:1 ho(m‘)‘zk 005(2191‘)]61 Thk+1
S e ()], sin(20,) £7
S o (0|, Ti(u, M)
= Zi:l h‘U(m)‘mc cos(219i)]i(u,/\) (5)
Sy o (0) |y, sin(20;) 1 (u, A)

Note that the objective function in Equation 3 is a
composition of g, (.) with an affine function of z, there-
fore being convex in x if g, (.) is convex in its corre-
sponding composed domain. This assumption holds for
the robust kernel functions mentioned above. There-
fore, the sequence of solutions z; to the system in
Equation 5 eventually converges to the global minimum
of the objective function in Equation 3. Note, however,
that the global solution may be dependent on the choice
of the kernel width o.

To mitigate this issue, we employ a deterministic an-
nealing process [6] which starts with a large enough ker-
nel width to guarantee the convexity of the cost function
in a large interval of x. In subsequent stages, we track
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Figure 1. (a) Error measurements, in degrees, of the needle maps recovered for several shapes versus the Gaussian noise
standard deviation. Left: errors yielded by the robust estimator. Right: errors yielded by the linear least-squares estimator.

the optimal solution of the cost function as the kernel
width is reduced. As ¢ — 0T, we approximate the
global minimum z*. Having obtained the globally opti-
mal value 2* = [x1, 22, 23)T, the phase of polarisation
at pixel u and wavelength X is recovered through the
equation ¢(u, \) = 1 arctan =

Finally, we note that, at each pixel, the phase angles
of polarisation across various wavelengths are deemed
to approximate the tilt of surface orientation. Here, we
treat the problem of recovering the azimuth angle as an
estimation from the set of spectral phase angles at the
same image location. Under this setting, the azimuth

angle at pixel-site u can be estimated using the follow-
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Figure 2. Top row: Pseudo RGB colour images of
real-world objects; Middle row: Needle-maps recov-
ered by the robust estimator; Bottom row: Needle-
maps yielded by the linear least-squares estimator.

tion with a chosen kernel width ~.

2.2. Recovery of the Zenith Angle via Shape
from Shading

We now focus on the recovery of the zenith an-
gle from the shading image given by I,,(u,\) =
5 (Imaz (u, A) + Imin(u, X)) = @1(u, A). Suppose that
the illuminant direction coincides with the viewing di-
rection and its power L(\) is known at each wavelength
A. Moreover, the shading image complies with Lam-
bert’s law, i.e. Ip,(u,A) = L(A)G(u)pa(A), where
pm(A) is the spectral reflectance of the material M of
pixel u. As a result, the geometric shading factor G(u)
is proportional to cos 6(u), where 6(u) is the normal’s
zenith angle with respect to the view direction.

Therefore, the wavelength-indexed reflectance vec-
tor pat = [pam(A1), - - pam(Ax)]T can be recovered at
each pixel up to a multiple scalar. By quantifying the
similarity between pixel reflectance vectors making use
of their spectral angle, we can cluster pixels into mate-
rials using a standard clustering approach. Having ob-
tained the pixel cluster belonging to a material M and
its normalised spectral reflectance paq(A), the cosine of
the zenith angle at pixel u for u € M is determined up
to scale as cos 0(u) = S(M)% where s(M) is
a per-material scaling constant. Here, s(M) is sought
as to minimise the difference between the shading fac-
tors along the boundaries of adjacent materials.

3. Experiments

In this section, we present results of shape recov-
ery on synthetic and real-world polarisation images.
Specifically, we compare the performance of a robust
estimator based on the Tukey’s bi-weight function [2]
with the linear least-squares estimator which directly
solves the linear system in Equation 2.



3.1. Synthetic Images

We first perform experiments on a synthetic dataset
generated from the 3D surfaces of a dome, a ridge, a
torus, a volcano and a two-dome test shape. We ren-
der the images of these synthetic shapes using the re-
fractive index of plastic and liquid materials reported
in [5], under a frontal light source direction. The im-
age dataset is synthesized using the Wolff diffuse re-
flectance model [8] with the total diffuse albedo being
that of Polyvinyl Chloride (PVC).

For each combination of shape and material, five po-
larisation images are generated corresponding to five
polariser orientations at 0°, 30°, 45°, 60° and 90° in
the clockwise direction with respect to the vertical ori-
entation. The spectral dimension of the images spans
the 430 — 720nm range, with a resolution of 10nm. To
simulate noise effects, we perturb the clean images with
zero-mean Gaussian noise with increasing local stan-
dard deviation v from 0.02 to 0.1 times the image in-
tensity, in increments of 0.02.

In Figure 1, we plot the mean and standard deviation
of the shape error yielded by both the robust and lin-
ear least-squares estimators. The shape error is quan-
tified as the Euclidean angle, in degrees, between the
estimated surface normal direction and the correspond-
ing ground truth, averaged per pixel. Overall, the ro-
bust estimator significantly outperforms the alternative,
in terms of accuracy and stability, for most shapes. In
fact, the disparity in their performance becomes more
distinct as the noise increases. When the noise is most
extreme (v = 0.1), the robust estimator achieves a mean
angular error of about 5 degrees lower than that yielded
by the alternative method for the dome, torus and two-
dome test shape.

3.2. Real Images

We now perform shape recovery using the above two
estimators on a real-world dataset consisting of multi-
spectral images of four different objects made of plastic
and porcelain. These have been acquired in house using
a hyperspectral camera with an acousto-optic tunable
filter, which we have tuned to the wavelength range of
400 — 650nm, with a spectral resolution of 5nm. To
measure polarisation, we align the polariser’s transmis-
sion axis to each of the seven angles of 45, 60, 75, 90,
105, 120 and 135 degrees in the clock-wise direction
with respect to the vertical direction.

In Figure 2, we present the images of the objects po-
larised at an angle of 45 degrees in the first row and their
needle-maps recovered by the robust and linear least-
squares estimators in the subsequence rows. Note that
the real-world images are subject to sensor noise and a

low degree of polarisation that can occur at surface loca-
tions where the normal vector is nearly aligned with the
camera’s optical axis. Here, we notice that the robust
estimator produces needle-maps which clearly indicate
the curvature and locations of the folds on the shapes,
whereas the alternative estimator yields a flatter appear-
ance of these surfaces.

4. Conclusion

In this paper, we have demonstrated that polarisation
and shading information can complement each other for
the task of shape recovery from single-view polarisation
images. We have presented a method based upon robust
statistics aimed at recovering the azimuth of the object
surface normals. The estimator is robust to noise and a
low degree of polarisation. We have shown the effec-
tiveness of the method for purposes of shape recovery
on both synthetic and real-world multispectral images.
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