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Abstract—In this paper, we develop a method for reconstruct-
ing the polarisation components from unpolarised imagery. Our
approach rests on a model of polarisation which accounts for
reflection from rough surfaces illuminated at moderate and large
angles of incidence. Departing from the microfacet structure of
rough surfaces, we relate the maximal and minimal polarimetric
intensities to the diffuse and specular components of an un-
polarised image via the Fresnel reflection theory. This allows
us to reconstruct the polarimetric components from a single
unpolarised image. Thus, the model presented here provides a
link between the microfacet structure and polarisation of light
upon reflection from rough surfaces. We evaluate the accuracy
of the reconstructed polarisation components and illustrate the
utility of the method for the simulation of a polarising filter on
real-world images.

I. INTRODUCTION

The polarisation of light is a property that describes the
oscillations of its electric field in the plane perpendicular
to the direction of propagation. The effects of polarisation
can be captured by devices such as polarimeters and more
recently, polarisation cameras [1]. Such developments have
broadened the applications of polarisation to areas such as
target detection [2] and material property recovery [3].

Indeed, polarisation has shown to be an effective tool in
revealing the underlying properties of the surface under study.
For instance, Wolff and Boult [3] made use of polarisation
images to distinguish metallic from dielectric materials based
on the ratio between the two Fresnel reflection components, i.e.
the so-called Fresnel ratio. More recently, Chen and Wolff [4]
examined the phase shift between the polarisation components
reflected from surfaces to distinguish conducting metallic from
dielectric materials.

A vast body of Computer Vision literature has been ded-
icated to the modelling of unpolarised reflectance for rough
surfaces. Oren and Nayar [5] generalised the Lambertian model
to account for variation of reflected light with respect to the
viewing direction. In earlier work, Torrance and Sparrow [6]
formulated a reflectance model based on the Fresnel reflection
theory to explain the off-specular spike phenomenon, in which
the specular spike occurred at a viewing angle larger than the
specular reflection angle. Beckmann [7] modelled the surface
reflectance as a wave scattering process. However, none of the
latter models takes into account polarisation effects.

On the other hand, a number of polarimetric reflectance
models have been formulated for smooth surfaces. In [8],
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Wolff derived a polarisation reflectance model based on the
Fresnel reflection theory and employed it for the classifica-
tion of dielectrics and metals. In addition, the Wolff diffuse
reflectance model [9] could be extended to derive the parallel
and perpendicular polarisation components with respect to the
plane of reflection. We note that these models only apply to
smooth surfaces without a notion of their level of roughness.
In these models, polarisation is expressed as being dependent
on the material refractive index and the reflection geometry in
a single equation.

Although reflectance modelling is a significant area of
research within physics-based computer vision, there has been
little work on the modelling of polarisation of light reflected
from rough surfaces. An early empirical approach was adopted
by Torrance, Sparrow and Birkebak to measure the specular
reflectance distribution of rough surfaces for different polari-
sation orientations [10]. In a separate development, Priest and
Germer provided a physics-based polarimetric bidirectional
reflectance distribution function (BRDF) of light scattered
from micro-facets [11]. The model describes the most general
polarisation state of light in terms of physical parameters
including the refractive index and the surface roughness using
Stokes vectors and the Mueller matrix. As a result, this model
permits the estimation of refractive index and reflection angle
from polarisation images [12].

Although being general in nature, the polarimetric model
in [11] is often overly complex and cumbersome for practical
applications. This is due to the many degrees of freedom
inherent in the elements of the Mueller matrix that need to be
measured precisely by specialised equipment. To simplify the
model, we notice that, upon surface reflection, light is mainly
linearly polarised. As a consequence, we can model the three
polarisation components including the unpolarised intensity,
the phase of linear polarisation and the degree of polarisation,
instead of four elements of the Stokes vector.

The theoretical contribution of this paper is a model of
polarisation upon specular reflection from rough surfaces. The
model is simpler than the one proposed in [11]. Despite having
less degrees of freedom, our model can describe the influence
of the surface geometry and physical parameters such as the
micro-facet structure and the refractive index on specular po-
larisation. Departed from the statistical model of surface micro-
facets in [6], [10], we derive the polarisation components of the
electric fields that are perpendicular and parallel to the plane
of reflection, i.e. the plane spanned by the surface normal and
the viewer direction. In the model, the polarisation components
depend on the index of refraction, the angle of incidence
and the surface roughness. To our knowledge, no other work



has provided a model which relates polarisation to microfacet
structure based on the Fresnel reflection theory.

Furthermore, we demonstrate the application of the model
to the simulation of a polarising filter using only a single
unpolarised image. This approach confers advantages in em-
ulating polarisation effects without the use of a polariser. In
this respect, our theory offers a software-based alternative to
optical polarising filters used in photography. This is partic-
ularly useful and beneficial for cameras with no mounting
threads for polarisers, including camera phones and compact
point-and-shoot cameras. The resulting polarisation imagery
will facilitate further applications such as metal/dielectric
classification [13], recognition of camouflaged objects, glare
reduction and dynamic range enhancement.

The paper is structured as follows. In Section II, we pro-
pose a polarisation model for rough surfaces. Subsequently, we
make use of this model to reconstruct the minimal and maximal
polarisation components from a single unpolarised image in
Section III. The reconstruction of polarisation components
takes into account the surface geometry, the surface roughness
and the material refractive index. In Section IV, we presents
results on estimating polarisation components and simulating
a polarising filter, followed by our conclusion.

II. POLARISATION MODEL FOR ROUGH SURFACES

We commence by introducing polarisation images and
polarisation components in Section II-A. Subsequently, in
Section II-B, we present a micro-facet distribution model in
a local coordinate system related to the viewer direction, the
surface normal and the microfacet normal. This allows us
to model the polarisation mechanism upon reflection from
rough surfaces and to relate the polarisation components to
the diffuse and specular components of an unpolarised image
in Section II-C.

A. Polarisation Images

A polarisation image exhibits the transmitted radiance of
the electric field vector oscillating along a certain orientation
in the plane perpendicular to the direction of propagation. This
phenomenon can be measured by mounting a linear polariser in
front of the camera’s optics. By rotating the polariser, one can
capture polarisation components that are oriented at different
angles in a plane orthogonal to the light propagation direction.
With this setup, the intensity captured at each image pixel
varies sinusoidally with respect to the angle of rotation of the
polariser. According to this model, the intensity I fluctuates
along a Transmitted Radiance Sinusoid (TRS) curve bounded
by Imin and Imax. Let ϑ be the polariser orientation angle
with respect to a reference axis and ψ be the phase angle of
the sinusoid. Also, we denote λ as the sampled wavelength
of the image and u as the pixel index. With this notation, the
intensity of the polarisation component corresponding to the
orientation ϑ is expressed as

I(u, λ, ϑ) =
Imax + Imin

2
+
Imax − Imin

2
cos(2ϑ− 2ψ) (1)

Here, for brevity reasons, we have omitted the pixel and
wavelength indices in the notations of Imin, Imax and the
phase ψ.

Fig. 1. Geometry of the micro-facet distribution.

B. Micro-facet Distribution Model

In [6], surfaces with microscopic level of detail can be
modelled using a statisically large collection of mirror-like
microfacets. Light arriving at these surfaces either reflects off
a microfacet a single time, or undergoes multiple specular
reflections from the microfacets, or penetrates into and scatters
within the material body before being refracted back into
the air. The first phenomenon accounts for surface specular
reflection while the latter two accounts for diffuse reflection.
Similar to the work in [13], we assume that the diffuse
reflection component is unpolarized due to the random nature
of multiple reflections and scattering whereas the specular
component causes partial polarisation according to the Fresnel
law of reflection.

The coordinate system used throughout the paper is de-
picted in Figure 1. Here, the origin is the surface location
O under observation and the z-axis is aligned to the viewer
direction

−→
V . In this coordinate system, we view the object

surface as being composed of microfacets, each with a normal
direction

−→
M . The average slope of these microfacets can be

represented by the mean surface normal
−→
N with unit length,

i.e. ∥
−→
N ∥ = 1, which lies on the yz-plane spanned by the

viewer’s direction
−→
V and the y-axis.

Note that the unit surface normal
−→
N with the terminal point

B forms an angle θ with the viewer direction
−→
V . Since we only

need to consider surface points visible to the viewer, we have
θ ≤ π

2 . Moreover, we suppose that the plane passing through
B and perpendicular to

−→
N intersects the z-axis at A and the

microfacet normal
−→
M at C. We choose to parameterise the

microfacet normal via the location of C. In fact, the position
of this point is uniquely determined by the angle ϕ between
the vector

−−→
BA and

−−→
BC and the distance r between the points

B and C.

Now we consider a statistical model for the distribution
of the microfacet normal about the mean surface normal.



Fig. 2. A cross section of the decomposition of the reflected electromagnetic
field observed from the viewer’s position.

Similar to the work in [6], we assume that the surface under
consideration is isotropic and adopt a Gaussian model for the
microfacet normal distribution. In effect, the angle α between
the facet normal

−→
M and the mean surface normal

−→
N assumes

a Gaussian distribution with a zero mean. Therefore, the
probability distribution of the microfacet normal direction is
given by

P (
−→
M) = K exp

(
−σ tan2 α

)
= K exp

(
−σr2

)
(2)

since, from Figure 1, it is straightforward to deduce that
tanα = r. Here, K is the normalising constant of the micro-
facet distribution, σ indicates the roughness of the microfacet
structure.

C. Polarisation Upon Reflection from Rough Surfaces

In this section, we derive a polarimetric reflection model
for rough surfaces. To achieve this, we consider the electric
field reflected from each microfacet and integrate the power of
these fields across all the possible microfacet orientations. The
polarisation effect is modelled by decomposing these fields
into two orthogonal components, one of which lies in the
mean plane of reflection, which is formed by the mean surface
normal

−→
N and the viewing direction

−→
V in Figure 1, and the

other one perpendicular to this plane.

Let us consider a microfacet with the normal
−→
M . As light

is reflected by this facet in the viewer direction
−→
V (the z-

axis), it induces an electromagnetic field with the electric field
vector oscillating about and perpendicular to

−→
V . In Figure 2,

we show a cross-section of Figure 1 as observed from the
viewer’s position so as to illustrate the electric field reflected
from the microfacet, where the mean surface normal

−→
N is

aligned with the y axis.

In the figure, the electric field vector of the reflected light is
decomposed into two orthogonal harmonic components. One

of the components, i.e.
−−→
EM∥ is in the plane of reflection formed

by the vectors
−→
V and

−→
M while the other one, i.e.

−−−→
EM⊥ is

perpendicular to this plane. These two components propagate
within their respective planes with their magnitudes varying
according to a sinusoidal pattern.

Now we formulate the radiance power of each of the two
components above. In the local coordinate system, let D be
the orthogonal projection of C onto the xy plane. Since the
plane passing through A,B and C is perpendicular to the xy
plane and they intersect across the line going through A and
B, D belongs to this line. Therefore, the magnitudes of the
vectors spanned by A, B and D are related as

∥
−−→
AD∥ = ∥

−−→
AB∥+ ∥

−−→
BD∥ = tan θ − r cosϕ

Therefore

−−→
AD =

∥
−−→
AD∥
∥−−→AB∥

−−→
AB

= [0, sin θ − r cos θ cosϕ,− sin θ tan θ + r sin θ cosϕ]

(3)

As a result,
−−→
OD =

−→
OA +

−−→
AD = [0, sin θ −

r cos θ cosϕ, cos θ + r sin θ cosϕ], and
−→
M =

−−→
OC =

[r sinϕ, sin θ − r cos θ cosϕ, cos θ + r sin θ cosϕ].

Let β be the angle between the reflection plane for the
microfacet, i.e. the plane formed by the vectors

−→
V and

−→
M

and the mean plane of reflection formed by the vectors
−→
V and−→

N . As illustrated in Figure 2, it is also the angle between the
positive y-axis and the projection of

−→
M onto the xy-plane,

whose coordinates are [r sinϕ, sin θ − r cos θ cosϕ, 0]. Thus,
we can write

cosβ =
sin θ − r cos θ cosϕ√

r2 sin2 ϕ+ (sin θ − r cos θ cosϕ)2

Similarly, let γ be the reflection angle for the microfacet,
i.e. the angle between

−→
M and

−→
V . This angle is related to the

geometric variables through the expression

cos γ =
cos θ + r sin θ cosϕ√

r2 + 1

We can safely assume that polarisation upon reflection
is mainly contributed by incident light rays lying in the
microfacet plane of reflection, such that the microfacet normal−→
M is the bi-sector of the incident direction and the view
direction

−→
V . Since we can further assume that the incident

light is uniformly distributed in all the incoming directions,
we denote the intensity of the incident light rays as a constant
Ii.

According to the Fresnel reflection theory [14], the intensi-
ties J∥(M) and J⊥(M) of the polarisation components

−−→
EM∥

and
−−−→
EM⊥ are given by

J∥(M) = F∥(γ, η)Ii
J⊥(M) = F⊥(γ, η)Ii

where F∥(γ, η) and F⊥(γ, n) are the Fresnel parallel and
perpendicular reflection coefficients, respectively, and η is the
material refractive index.



To quantify the polarisation effect contributed by the mi-
crofacet, we project the power of the components

−−→
EM∥ and

−−−→
EM⊥ onto the mean plane of reflection (the yz-plane) and the
plane perpendicular to the former one (the xz-plane). Since β
is the angle between

−−→
EM∥ and the mean surface normal

−→
N , the

radiance I∥(M) and I⊥(M) of the parallel and perpendicular
components contributed by the microfacet with respect to the
mean plane of reflection can be derived by Malus’s law [15]
as

I∥(M) = J∥(M) cos2 β + J⊥(M) sin2 β

I⊥(M) = J⊥(M) cos2 β + J∥(M) sin2 β (4)

Lastly, to quantify the overall effect of polarisation con-
tributed by all the microfacets, we integrate the intensities of
the parallel and perpendicular components they induce with
respect plane of reflection subject to the microfacet normal
distribution in Equation 2

I∥ =

∫
I∥(M)P (

−→
M)d

−→
M

= KIi ×
∫ 2π

0

∫ ∞

0

(
(F∥(γ, η) cos

2 β

+F⊥(γ, η) sin
2 β

)
exp

(
− σr2

)
drdϕ (5)

I⊥ =

∫
I⊥(M)P (

−→
M)d

−→
M

= KIi ×
∫ 2π

0

∫ ∞

0

(
F⊥(γ, η) cos

2 β

+F∥(γ, η) sin
2 β

)
exp

(
− σr2

)
drdϕ (6)

In Equations 5 and 6, I∥ and I⊥ are the overall magnitudes
of the polarisation components parallel and perpendicular to
the mean plane of reflection.

III. POLARISATION COMPONENT RECONSTRUCTION

With the polarimetric reflection model above, we aim to
reconstruct the polarisation component at an arbitrary polariser
angle ϑ. Here, we assume that the scene geometry and photo-
metric variables including the material refractive index η and
the surface roughness σ have been recovered at every pixel
and wavelength using an approach akin to those in [16], [17].
Further, suppose that the input unpolarised radiance image
has been decomposed into a diffuse and a specular reflection
components with intensities Id and Is. Such a decomposition
on a single image can be effected by well known methods
using the maximum chromaticity intensity space [18] or partial
differential equations [19]. As light is polarised upon specular
reflection, we observe that the transmitted radiance is maximal
when the polariser orientation is perpendicular to the plane
of reflection and minimal when it is parallel to the plane
of reflection. Based on the principle of linear superposition,
the sum of the magnitudes of the perpendicular and parallel
components of polarisation must be equal to the specular
component. In other words

Is = I⊥ + I∥ (7)

From Equations 5 and 6, we note that the ratio R , I∥
I⊥

is
a function of the reflection angle θ, the surface roughness σ

and the material refractive index η

R =

∫ 2π

0

∫∞
0

(
F∥(γ, η) cos

2 β + F⊥(γ, η) sin
2 β

)
exp

(
−σr2

)
drdϕ∫ 2π

0

∫∞
0

(
F⊥(γ, η) cos2 β + F∥(γ, η) sin

2 β
)
exp (−σr2) drdϕ

(8)

This ratio can be pre-computed by numerical integration
once the above parameters are known through a look-up table.
This permits the recovery of the perpendicular and parallel
components through the expressions

I⊥ =
1

1 +R
Is (9)

I∥ =
R

1 +R
Is (10)

Moreover, the transmitted radiance along the Transmit-
ted Radiance Sinusoid consists of both the unpolarised and
partially polarised components of the reflected light. Using
a similar formulation to that in [13], we reconstruct the
polarimetric components Imax and Imin using the following
relations

Imax =
Id
2

+ I⊥ (11)

Imin =
Id
2

+ I∥ (12)

In Equations 9 and 10, we note that the polarisation effects
are caused by specular reflection. By a similar derivation to
that in [20], the phase angle ψ(u) at a pixel u is related to the
azimuth angle φ(u) of the surface normal at the same location
as ψ(u) = φ(u) or ψ(u) = φ(u) + π. With the polarisation
components Imax, Imin and ψ at hand, we can reconstruct
the polarisation component oriented at an arbitrary angle ϑ
using Equation 1. Since the TRS is a periodical function with
a period of 180 degrees, it is invariant to the choice of the
phase angle ψ(u) between φ(u) and φ(u) + π.

IV. EXPERIMENTS

In this section, we present experiments on the recovery of
the polarimetric components and the simulation of a polarising
filter. To this end, we employ a synthetic dataset and two
datasets of real-world imagery. The use of synthetic data allows
quantitative analysis where the accuracy of the recovered
polarisation component can be compared to the ground-truth.
On the other hand, the use of real-world images serves to
illustrate the utility of our model for the simulation of a virtual
polariser on unpolarised images.

To generate the synthetic dataset, we render these synthetic
surfaces with the refractive index of the 24 plastic and liquid
materials reported in [21], and the empirical measurements of
the surface roughness of carbon, rubber obsidian, olive drab
and rust reported in [22]. The polarisation images were ren-
dered according to the Torrance-Sparrow model [6]. For each
combination, ground truth polarisation images were generated
for five polariser orientations at 0, 30, 45, 60 and 90 degrees
in the anti-clockwise direction with respect to the vertical axis
of the image coordinate system. In Figure 3, we show samples
of the unpolarised synthetic images generated.



Fig. 3. Samples of unpolarised synthetic images.

Fig. 4. Unpolarised imagery for the Indoor (top row) and the Outdoor dataset (bottom row).

Of the real-world imagery, the first dataset comprises
images of diverse objects, i.e. ceramics, fruits and plastic items,
acquired in-house under artificial sun lights. Here, we denote
this as the Indoor dataset. The second real-world dataset, which
we denote the Outdoor dataset, corresponds to outdoor scenes
containing a strong partially polarised component. In Figure 4
we show sample views of each of the objects and outdoor
scenes in our real-world datasets. To acquire our imagery, we
have used a Nikon D80 camera which is able to give high-
resolution images of up to 10 Mega pixels. Each of the images
has been acquired using a linear polariser mounted in front of
the lens. The polariser is multi-coated to minimise internal
reflection and glare within the optics, and is assumed to have
uniform transmission over its surface. To acquire polarisation
imagery, we rotate the polariser such that its transmission axis
orientation is incremented in steps of 30 degrees, to form
angles between 0 and 150 degrees with respect to the vertical
axis in the image plane.

As presented earlier, to evaluate the ratio in Equation 8, we
require the surface normals, the refractive index and the surface
roughness to be recovered at every pixel and wavelength
of the real-world images. To this end, we first estimate the
image reflectance by normalising the input image by the
illumination colour obtained through a method such as Gray
World [23]. Subsequently, we employ the method in [17]
to recover the scene geometry and photometric parameters
simultaneously from a single image. To obtain the diffuse
and specular components for the recovery of Imax and Imin

through Equations 11 and 12, we apply the method of Tan
et al. [18] to the image under consideration. In addition, the
phase angle of polarisation can be deduced from the azimuth
angle of the recovered surface normals. Having obtained these
three polarisation components, the polarisation intensity can
be evaluated at arbitrary polariser angles.

A. Polarisation Component Estimation

We commence by evaluating the errors of the generated
polarimetric components for the synthetic dataset. These errors

Fig. 5. Normalised mean squared error of estimating the polarisation
components from the synthetic dataset. Top panel: The average error across
the dataset with respect to the refractive index. Bottom panel: The average
error across the dataset with respect to the surface roughness.
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Fig. 6. Reconstruction results for a sample from each of the Indoor and Outdoor dataset. Top row: Results for Imax. Bottom row: Results for Imin. Columns
1–3: Results for the Indoor image. Columns 4–6: Results for the Outdoor image. Columns 1 and 4: Ground truth polarimetric components. Columns 2 and 5:
Reconstructed polarimetric component. Columns 3 and 6: The normalised colour difference map.

Imax (∆E) Imax (MSE) Imin (∆E) Imin(MSE)
Indoor Dataset 2.09± 0.64 0.008± 0.0011 1.24± 0.31 0.0040± 0.0011
Outdoor Dataset 4.40± 1.95 0.0716± 0.0473 4.44± 2.26 0.0406± 0.0418

TABLE I. THE ERROR OF THE RECOVERED Imax AND Imin AVERAGED ACROSS IMAGE PIXELS IN THE TWO DATASETS. THE FIRST AND THIRD
COLUMNS REPORT THE COLOUR ERROR IN TERMS OF “JUST NOTICEABLE DIFFERENCE” (JND), WHEREAS THE SECOND AND FOURTH COLUMNS REPORT

THE NORMALISED MEAN SQUARED ERROR (MSE).

were measured as the mean squared error (MSE) difference
between the normalised reconstructed and ground truth polar-
isation components at the orientations of 0, 30, 45, 60 and
90 degrees. In Figure 5, we report the mean and standard
derviation of the MSE error with respect to the material
refractive index in the top panel and the surface roughness
in the bottom panel. Overall, the error only varies slightly
between different material refractive indices between 4×10−3

and 6 × 10−3. Similarly, it does not change significantly
across different surface roughness levels as shown in the
bottom panel of Figure 5. Note that the results shown here
implies that our method can sustain a stable error margin for
various photometric variables including the refractive index
and surface roughness.

Next, we present results on the recovery of the polarimetric
components Imax and Imin. As described above, these compo-
nents are independent of the polariser orientation. To quantify
the error of the estimated components, we have used the
CIE Delta E (∆E) colour distance to measure the difference
between the polarimetric components recovered by our method
and the ground truth images. The ∆E is a perceptual metric
which aims at measuring the “just noticeable difference” (JND)
between colour pairs in the CIELab colour space. Note that,
in the CIE76 standard used here, a unit of JND corresponds
to a ∆E ≈ 2.3 [24].

In Figure 6, we present sample qualitative results of the
Imax and Imin components for an object in the Indoor dataset
and a scene in the Outdoor one. In the first three columns of
the figure, we show the results for the Indoor image whereas
in the last three, we show the results for the Outdoor scene. In
the left-hand columns of the figures, we show the ground truth
polarimetric components of the Indoor image. Our estimates
for the Indoor image are shown in the second columns whereas
the corresponding error maps, where black accounts for no
error and white is given by the maximum absolute difference

between the ground truth and our estimate, are shown in the
right-hand columns. Note that the error map has been scaled
to allow for better visual inspection, such that pure white
corresponds to 10 JND units. In general, the constructed Imax

is brighter than Imin as shown in the figures. In the last
three columns of Figure 6, we note that the reconstructed
Imin component is almost free of specular reflection while the
constructed Imax exhibits a significant amount of specularity,
which resembles the ability of an actual polariser to remove
specularities.

In Table I, we show the average per-pixel ∆E difference
and the normalised mean squared error (MSE) for the two
datasets. For the Indoor dataset, the ∆E difference is well
within the JND, with an average of 2.09 for Imax and 1.24
for Imin. For the Outdoor scenes, it is on average 4.4 for
Imax and 4.44 for Imin, i.e. less than two JND. Note that
this error metric is a distance measure in the Lab color
space and the degree of error shown here is quite small
compared to the range of the Lab coordinates. This implies
that our recovered polarimetric components are, on average,
indistinguishable from the ground truth for the average human
observer. In addition, the mean squared errors after the input
image intensities are normalised to the range [0, 1] are quite
small. For the indoor images, these are 0.008 and 0.004 for
Imax and Imin respectively. The corresponding errors for the
outdoor images are 0.0716 and 0.0406 for Imax and Imin.
Since the MSE and ∆E errors are correlated, the low MSE
for the outdoor and indoor images also implies a low ∆E
error, which renders the colour error indistinguishable to the
human eye.

B. Simulating a Polarising Filter

We now turn our attention to the simulation of a polarising
filter from a single unpolarised image. Note that, in contrast
with the experiments above, in the case of a “virtual” polariser,



0◦ 30◦ 60◦ 90◦

Fig. 7. A simulation of the polarisation components of an indoor
scene. First row: ground-truth polarisation images. Second row:
reconstructed polarisation images corresponding to the polarisation
angles shown. Third row: The normalised colour difference map.

0◦ 30◦ 60◦ 90◦

Fig. 8. A simulation of the polarisation components of an outdoor
scene. First row: ground-truth polarisation images. Second row:
reconstructed polarisation images corresponding to the polarisation
angles shown. Third row: The normalised colour difference map.

the synthesised imagery will be a function of the polariser
orientation angle ϑ as given in Equation 1. As before, here we
measure the difference between the simulated imagery and the
corresponding ground truth images captured with our linear
polariser in terms of the quantity ∆E as a function of ϑ.

In Figures 7 and 8 we show the simulated imagery for
two sample images used for our previous experiments. In
the figures, we show from top-to-bottom, the ground truth,
simulated images and normalised difference map in increasing
polariser orientation angles ϑ = {0◦, 30◦, 60◦, 90◦} from left
to right. Again, the error map has been scaled in the same
manner as for Imin and Imax for visualisation purposes. We
note the shift in specularity in the synthetic images with respect
to the polariser orientation angle.

Finally, we show in Figure 9 the ∆E difference as a
function of the polariser orientation angle ϑ for the two
datasets. Here, the error for the outdoor dataset is higher
than the indoor one due to the geometric complexity in the
outdoor scenes. The errors presented here are, again, consistent
with our previous results, where the ∆E for the polarimetric

Fig. 9. Per-pixel average colour difference (∆E) with respect to the polariser
orientation angle ϑ. Top panel: Results for the Indoor dataset. Bottom panel:
Results for the Outdoor dataset.

components is on average, within the JND for the indoor
dataset and below two JND for the outdoor dataset. In other
words, these numerical errors between the ground truth and the
simulated imagery are barely noticeable to a human observer.

V. CONCLUSIONS

In this paper, we have developed a model for reconstructing
polarisation components from a single unpolarised imagery.
We have shown how the maximal and minimal polarimetric
intensities can be formulated as a function of the refrac-
tive index, the surface roughness and the surface normal.
Combining a model of the microfacet structure of rough
surfaces with the Fresnel reflection theory, we reconstruct the
polarimetric components. This work is not only theoretically
important but also practically useful since it provides a link
between the microfacet structure and polarisation based on the
Fresnel theory. The presented work has potential applications
in simulating a polarising filter on real-world imagery.
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