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Abstract

In recent years many automated methods for detection and tracking of sub cellular
structures in live cell fluorescence microscopy have been proposed. Because dependable
ground truth from real data sets is difficult to obtain, most algorithms are tested on syn-
thetic data where the ground truth is known. Differences between real and synthetic data
sets can lead to imprecise judgement about an algorithm’s performance. In this paper
we present a method for generating realistic synthetic sequences of live cell confocal
microscopy images that simulate the image formation as wellas modelling the motion
of dynamic structures during image acquisition using validdynamic models. Sequences
generated using this framework realistically reproduces the complexities existing in real
confocal microscopy sequences.

1 Introduction

Confocal microscopy is a fluorescence microscopy techniqueused for imaging sub cellular
structures in three dimensions (3D). Its optical sectioning capability gives confocal micro-
scopes a much higher resolution along the axial (z) direction than conventional fluorescence
microscopy, as well as a slightly superior lateral (x-y) resolution [10]. High speed confo-
cal microscopy is particularly well suited for imaging intracellular traffic, such as vesicle
dynamics as part of the endocytic pathway. Such studies involve acquiring large amounts
of 3D data (tens to thousands of images) which typically contain ∼ 10 to∼ 103 dynamic
fluorescent vesicles which appear as spot like features. Analysis of such large amounts of
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data via manual inspection is a painstaking and subjective process which has motivated the
development of automated analysis techniques such as [5, 8]. Because the ground truth of
the trajectories of features in real images is not available, the performance of automated
detection and tracking techniques is quantitatively evaluated using synthetic data. The math-
ematical models for the dynamics of vesicles motion have been fairly well established and
are easily simulated [2, 8]. However, current image simulations used for validation are based
on simplistic assumptions about the imaging system and the sample features. For example,
most simulations use fixed-shape Gaussian distributions torepresent the particles of interest,
use either a constant background or simple background structures, and have a spatially con-
stant signal to noise ratio (SNR). In recent work [7] a frame work for generating synthetic

(a) (b)
Figure 1: (a) Orthogonal views of a single 3D confocal stack showing fluorescently tagged
vesicles. (b) The schematic of a confocal stack array.

sequences of total internal reflection fluorescence (TIRF) microscopy has been presented.
These synthetic TIRF images are very realistic because of the following advances: the im-
age formation process of a TIRF microscope is simulated; valid dynamic models for vesicle
motion are used; shape deformation of vesicles in motion is modelled; and spatio-temporal
varying background extracted from real TIRF image sequences is used. In this paper we
use the same concepts for modelling the image formation process of a confocal microscope.
In particular, the microscope image formation model presented properly incorporates mo-
tion artefacts caused by vesicle motion during image acquisition, which are seen in real
microscopy images and are not accounted for in other simulations.

2 Methods

2.1 Confocal Microscopy

Whereas conventional fluorescence microscopes illuminatethe whole sample at one time,
confocal microscopes use highly focussed laser light to locally illuminate the sample in order
to minimise the illumination volume. Any light emitted fromthe sample and back towards
the objective lens is passed through a pinhole aperture in the back focal plane of the optical
system before falling onto a photosensitive detector [10]. The purpose of the pinhole is to
limit the observation volume to the small region at the focalpoint and thus to prevent light
from out-of-focus planes from reaching the detector. This permits what is known as ‘optical
sectioning’ of a sample. It is this capability that gives confocal microscopes the advantage
over conventional epi-fluorescence microscopes; because both the illumination volume and
the observation volume are confined to the focal point of the objective lens which results in
an overall better resolution, especially in the z-direction.
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2.2 Confocal Measurement Model

The image formation process for confocal microscopy can be described mathematically by a
convolution of a function describing the object being imaged, f , with a function describing
the point spread function (PSF) of the system,h, and then distorting the image with the
appropriate noise model. In 3D live cell confocal microscopy, a 3D space is sampled through
series of parallel 2D rectangular x-y planes, at a set numberof equally spaced intervals in the
z direction. Usually, when describing the image formation of 3D microscopy systems, the
function describing the object,f , is assumed to be a static three-dimensionalf = f (x,y,z)
function with no time component [1, 11]. In this paper where we are modelling dynamic
sub-cellular motion, the image formation model needs to also consider the evolution of the
function during the time that the image is being acquired, hence f = f (x,y,z, t). The point
spread function of the objective lens,hob j(u,v), is modelled using an analytical expression
for the diffraction pattern of light through a circular pupil with a perfect aberration free lens
[3]. The point spread function (PSF) for confocal microscopesis approximately equal to
the point spread function of the objective lens squaredhcon f(u,v) =
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where: u = 2πNA2z/λ ; v = 2πNAr/λ ; r =
√

x2+ y2; P(ρ) is a pupil function with an
aperture radiusR, J0(.) is a first order Bessel function;ρ = r/R; NA is the numerical aperture
of the lens;λ is wavelength excitation light used. This function is isotropic in thex−y plane
and anisotropic in they− z andx− z planes giving it a characteristic ‘bobbin’ shape along
the z-axis. Typically the physical resolution of a confocalmicroscope is,rxy≃ 200nm, andrz

= 0.6 to 2µm, depending on the physical resolution of the diffractive optics of the particular
microscope, as well as the diameter of the pin hole (which canbe varied on most systems)
[10].

Recorded images represent discretized point intensity measurements of the sample space
in digitized array form. A complete data set for a live cell imaging experiment consists of
J, 3D image stacks,I3D(x,y,z) j , j = {1,2, ..,J}. A 3D confocal image stack, consists of a
set of,N, 2D image slicesI2D(x,y)i slices corresponding to different cross sectionalzplanes
through the sample,zi , i = {1,2, ..,N}. A single 2D slice,I2D(x,y)i , is represented by a 2D
digital array of sizen by m pixels. Often, in an attempt to increase the signal to noise ratio
(SNR) of a 2D image slice, several scans of the same cross section of a sample are made
in quick succession and the average of the point intensity measurements are used for pixel
values, this is referred to as ‘slice averaging’.

Because the function,f = f (x,y,z, t), is constantly changing over time, an image of a 2D
slice formally corresponds to the summation of,ns, of four dimensional (4D) convolutions of
the function space centred atzi wherens is the number of complete scans of the laser across
the 2D cross section of the sample. The image formation modeltherefore becomes:

I2D (x,y)i |z=zi =
1
ns

ns

∑
s=1

∫ t+te

t

∫ ∫ ∫

f
(

x′,y′,z′, t
)

·h
(

x−x′,y−y′,zi −z′
)

dx′dy′dz′dt (2)

We also denote the following relevant temporal variables: the instant before the first slice of
stack, j, is acquired asT j

stack; the time taken to complete a laser scan across a 2D x-y slice as
te; the time taken to move the sample along the optical axis between adjacent image slices
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(from zi to zi+1) asts; the time taken to move the sample from thez position of the last slice
of the stack,zN, to the position of the first slice in the next image stackz1, ast f . Therefore
the instant before acquiring, slice,i, in stack j is t j

i = T j
stack+(i −1) · (te ·ns+ ts).

Figure 2: Examples of motion artefacts during image acquisition of a sub resolution vesicle on 3
consecutive time frames of a confocal microscope. For each time point thex− y image shows an
average projection of the images slices in thez-direction. (a) The vesicle of interest stays relatively
stationary during the acquisition of the image stack, therefore its appearance in thex− z, andz− y
views, is the classical ‘bobbin’ shape of the confocal pointspread function. In (b) the same vesicle
moves significantly in the y direction during the acquisition of adjacent image slices; as a result the of
the ‘bobbin’ appearance is sheared in the z-y plane. In (c) the vesicle stays relatively stationary again,
and shows a similar appearance as in (a).

2.3 Dynamic Models

Movement of vesicles within cells is either due to diffusionin the cytosol, or along micro-
tubules via motor proteins. The non-linear stochastic motion of vesicles can be simulated
using a mixture of two linear dynamic models: random walk, nearly constant velocity with
small accelerations [8]. Switching between these models resembles the tethering and dock-
ing, and linear motion of vesicles as they are trafficked within the cell [2]. The state of
particlek is defined by the vectorxk

t = [x,vx,y,vy,z,vz]
T , which describes the particles po-

sition and velocity in each dimension at timet. The particles state changes over time ac-
cording the linear Gaussian model:xk

t = Fxk
t−1 +N (0,Q), where: F = diag[Fi,Fi ,Fi ] is

the dynamic model, andN (0,Q) is a zero mean Gaussian white noise process with covari-
anceQ= diag[Qi,Qi ,Qi ], i = {1,2}, i = 1 for random walk, andi = 2 for constant velocity;
Whereq1 andq2 are constants which control the noise levels.
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2.4 Image Simulation

In order to produce a sequence of simulated images first a set of the trajectories of vesicles
are generated using the two dynamic models defined above. Thetemporal sampling factor is
chosen as the smallest temporal variable of the system,te or ts, as defined above. Since the
typical slice scan speed,te, for high speed confocal microscopes is∼ 10−2 to 10−3 seconds,
and the maximum velocity of vesicles is∼ 1µms−1, we can assume that the that the sample is
approximately stationary during the time a single slice scan is performed, therefore equation
2 changes to:

I2D (x,y)i |z=zi =
1
ns

ns

∑
s=1

∫ ∫ ∫

f
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x′,y′,z′
)

|t=t j
i +(s−1)te

·h
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x−x′,y−y′,zi −z′
)

dx′dy′dz′ (4)
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The vesicles positions are plotted in at the time point of each slice scan in a 3D array
f (x′,y′,z′) |

t=t j
i +(s−1)te

, and then convolved as in equation2.4. f is updated with the new

particles positions for every slice scan. The trajectoriesof the simulated vesicles are confined
to the region defined by an estimated background of a cell, which has been extracted from a
real image sequence. Background structures can be estimated using the MPHD method [6].
This method is based on greyscale image reconstruction frommathematical morphology; it
identifies spot like peaks and ’cuts’ them off at the background level [6]. The result of the
convolution is added the background image to form the final simulated image.

Fluorescence microscopy images are corrupted by a mixture of Poisson and Gaussian
noise. The main source of noise is photon counting noise, andis governed by a Poisson
distributionP(·). An additional source of noise is read noise, which is an additive Gaussian
process,N (µ ,σ2), with meanµ and standard deviationσ . α > 0 is the detector gain. A
noisy image is thus represented as:

I(x,y,z, t)n = αP(I(x,y,z, t))+N (µ,σ2) (5)

3 Results

Figure 3: A simulated mage: (a) Orthogonal views of a single 3D stack ofa simulated image with a
background extracted from a real confocal image. (b) A single 2D slice from the 3D stack. (c) and (d)
demonstrate motion artefacts from 2 consecutive image stacks (x-y views are average z-projections)
(c) The highlighted vesicle is relatively stationary. (d) Shows the next time frame where the simulated
vesicle moving at∼ 1µs−1. The motion artefacts resemble those in Figure2.

A sequence of images was produced using the proposed method with the parameters
based on those from a real sequence acquired using a high-speed resonance scanner con-
focal microscope (see Figure3). The PSF was generated using Equation1 for a lens with
numerical aperture (NA) of 1.49, using an excitation wavelength of 520nm. Vesicles were
simulated as sub resolution 3D ellipses with a diameter of∼ 20nm. The lateral (x-y) and
axial (z) pixel resolution is 0.2µm. The number of z-slices,zN = 20, with ns = 2 scans per
slice. The temporal variables (in seconds):te = 1/60, ts = 1/60 andt f = 1/60. For vesicle
motion dynamics: the temporal sampling factorT = te, q1 = 0.9 andq2 = 0.7. The maxi-
mum possible vesicle velocity was set to∼ 1µs−1. Vesicles were allowed to switch between
dynamics as in [7]. The background used was extracted from a sequence of real images using
the MPHD method as in [6] using 5 frame temporal averaging.

4 Discussion

This paper has presented an accurate model for the image formation process of dynamic
confocal images. Because the state of each particle,xk

t , is known for the duration of any
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sequences, they can be used to determine the detection and tracking accuracy of automated
detection and tracking algorithms. For quantitatively evaluating the performance of a detec-
tion algorithm, metrics such as: true positive rate (TPR), false positive rate (FPR) and others
as presented in [9] can be used. For tracking accuracy the root mean squared (RMS) error
between any tracks produced by a tracking algorithm and those of the known trajectories
of each particle can be calculated. RMS can either be calculated using only the particles
position, or the state vectors directly if tracking is perfromed in state space (like in most
probabilistic algorithms). An additional/alternative similarity measure for detection/tracking
accuracy is the Jaccard similarity index [4].

The resulting simulations provide more realistic ground truth for validation of particle
detection and tracking than has been previously proposed. In future work we intend extend
the framework to model the dynamics of larger structures such as endosomes.
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