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Abstract

This paper proposes a simple “prior-free” method for
solving non-rigid structure-from-motion factorization prob-
lems. Other than using the basic low-rank condition, our
method does not assume any extra prior knowledge about
the nonrigid scene or about the camera motions. Yet, it
runs reliably, produces optimal result, and does not suf-
fer from the inherent basis-ambiguity issue which plagued
many conventional nonrigid factorization techniques.

Our method is easy to implement, which involves solving
no more than an SDP (semi-definite programming) of small
and fixed size, a linear Least-Squares or trace-norm mini-
mization. Extensive experiments have demonstrated that it
outperforms most of the existing linear methods of nonrigid
factorization. This paper offers not only new theoretical in-
sight, but also a practical, everyday solution, to non-rigid
structure-from-motion. 1

1. Introduction
This paper revisits the classical geometric comput-

er vision problem of non-rigid structure-from-motion
(NRSFM). We focus on the factorization framework for
NRSFM, originally proposed by Bregler et al. in [7], as an
important extension to the well-known Tomasi-Kanade fac-
torization from rigid scene to nonrigid scene, assuming that
the nonrigid shape deformation follows a low-order linear
combination model. To date, a large body of researches has
been devoted to this topic, and numerous different method-
s/algorithms have been proposed. However, despite all the
efforts, this problem remains a difficult and still active re-
search topic (see e.g., [5, 11, 25, 21, 3, 14]).

One of the primary causes to such difficulty is due to the
inherent basis ambiguity of the nonrigid problem ([26]). To
overcome this, most existing work rely on introducing var-
ious prior knowledge to the problem at hand. They do so
by assuming various constraints about the nonrigid scene,
about the nonrigid shape bases, about the coefficients, about

1This a post-CVPR version, dated August 2012, with minor issues and
typos fixed, and future research plan addressed.

the deformation, about the shape itself, or about the camer-
a motion etc. For instance, many methods require that the
camera moves smoothly, or the deformation trajectory is s-
low and smooth. However, these additional constraints not
only limit the practical applicability of the methods, but al-
so obscure a clear theoretical understanding to the problem.
We would like to answer: in order to solve the nonrigid fac-
torization effectively, are these additional priors essential ?

In this paper, we propose a novel and simple solution
to non-rigid factorization. Our method does not assume
any extra prior knowledge about the problem other than the
low-rank constraint, hence it is “prior-free”. Nevertheless,
it does not suffer from the basis ambiguity difficulty, but
is able to recover both camera motion and non-rigid shape
accurately and reliably. Experiments on both synthetic and
real benchmark datasets show that: the proposed method,
being prior-free, outperforms most other (often prior-based)
linear factorization methods.

To better present this paper, and also to put our contribu-
tions in context, we briefly review some recent progress in
non-rigid factorization.

1.1. Related work

Ever since Bregler’s seminal work [7] in 2000, re-
searchers have been actively applying the factorization
framework to various nonrigid problems. However, they
soon noticed that, different from its rigid counterpart, the
non-rigid factorization appeared to be much more difficult.
In a 2004 paper, Xiao et al. proved that the problem it-
self is indeed ill-posed or under-constrained, in the sense
that, based on the orthonormality constraint alone, one can-
not recover the non-rigid shape bases and the corresponding
shape coefficients uniquely [26]. There is always a funda-
mental ambiguity between the shape bases and the shape
coefficients.

To resolve this ambiguity, Xiao et al. suggested to ad-
d extraneous “basis constraints” so as to make the system
well-constrained. In the same spirit of adding extra priors
to regularize an otherwise under-constrained problem, Tor-
resani et al. [25] introduced Gaussian prior on the shape



coefficients. Del Bue introduced special shape priors [11].
Akhter et al. proposed to use a fixed set of DCT bases in
the trajectory dual space [3]. Temporally smooth deforma-
tion prior has also been used such as in [5][1]. Gatardo et
al. assumed the time-trajectory of a single point is smooth
[14]. Other priors imposed speciality on the model such
as assuming a quadratic model [13], local-rigidity [24], or
extend to non-linear models [22].

Akhter et al. made an important theoretical progress in
[2] which reveals that: although the ambiguity in shape ba-
sis is inherent, the 3D shape itself can be recovered uniquely
without ambiguity. In a slightly earlier paper, Hartley and
Vidal proved a similar result but under perspective camera
model [16]. Despite the significance of these theoretical re-
sults, neither paper has provided a practical algorithm to the
problem, and our work aims to fill this gap.

2. Problem Statement

2.1. Formulation

The task of nonrigid factorization is to factorize an im-
age measurement matrix W as the product of camera motion
(projection) matrix M and a nonrigid shape matrix S, such
that W = MS. We assume the measurement matrix is already
centralized, therefore the camera matrix reduces to pure ro-
tation [7].

Based on the linear combination model, the non-rigid
shape Si ∈ R3×P can be represented as a linear combina-
tion of K shape bases Bk ∈ R3×P with shape coefficients
cik as: Si =

∑K
k=1 cikBk. Under orthographic camera mod-

el, the coordinates of the 2D image points observed at frame
i are given by: Wi = RiSi, where Ri ∈ R2×3 is the first two
rows of the i-th camera rotation, hence RiRTi = I2. Use this
representation, and stack all the F frames of measurements
and all the P points in a matrix form, we obtain:

W =

 x11 · · · x1F

...
...

xF1 · · · xFP

 =

 R1S1
...

RF SF


=

 c11R1 · · · c1KR1
...

. . .
...

cF1RF · · · cFKRF


 B1

...
BK

 (1)

= R(C⊗ I3)B
.
= ΠB.

In this formula, we call R = blkdiag(R1, · · · , RF ) ∈
R2F×3F the camera motion (rotation) matrix. Since Π ∈
R2F×3K and B ∈ R3K×P , it is easy to see: rank(W) ≤
min(rank(Π), rank(B))≤3K. Additionally, the shape ma-
trix S = (C ⊗ I3)B is low rank too, as rank(S) ≤
min(rank(C⊗ I3), rank(B)) ≤ 3K.

2.2. Orthonormality Constraint

From a measurement matrix W one can compute its rank-
3K decomposition W = Π̂B̂ via SVD. However, this de-
composition is not unique as any nonsingular matrix G ∈
R3K×3K can be inserted between Π̂ and B̂ to obtain a new
valid factorization as W = Π̂B̂ = Π̂GG−1B̂ = ΠB.

A particular matrix G that rectifies Π̂ to be a canonical
Euclidean form is called the Euclidean corrective matrix,
because once such a G is determined, one obtains R(C ⊗
I3) = Π̂G and the true shape bases B = G−1B̂.

Denote the i-th double rows of Π̂ as Π̂2i−1:2i ∈ R2×3K ,
and the k-th column-triplet of G as Gk ∈ R3K×3, we have:

Π̂2i−1:2iGk = cikRi, i = 1, · · · , F, k = 1, · · · ,K. (2)

Orthonormality constraints (i.e. rotation constraints) in
the Π matrix can be imposed to recover a Gram matrix Qk ∈
R3K×3K formed by Qk = GkG

T
k as Π̂2i−1:2iQkΠ̂

T

2i−1:2i =
c2ikI2. Since cik is not known, one can only establish two
linear equations over Qk as:

Π̂2i−1QkΠ̂
T

2i−1 = Π̂2iQkΠ̂
T

2i, Π̂2i−1QkΠ̂
T

2i = 0. (3)

2.3. Inherent Ambiguity

In doing the above non-rigid factorization, Xiao et al.
[26] discovered that, the solutions are however fundamen-
tally ambiguous, in the sense that one cannot expect to find
the shape bases and shape coefficients uniquely. Such an
inherent ambiguity largely explains why nonrigid factoriza-
tion is fundamentally more difficult than its rigid counter-
part. Later, Akhter et al. [2] showed that, quite surprisingly,
the fundamental ambiguity does not necessarily lead to an
ambiguous shape. In addition, they further proved that us-
ing the orthonormality constraints alone is in fact sufficient
to recover a unique (unambiguous) non-rigid shape (pro-
vided that a previously-overlooked rank-3 constraint on Qk
(Eq.-(3)) is accounted for). However, apart from its evi-
dent theoretical value, their paper did not propose any op-
timization algorithm (other than a local search method due
to [6]) to efficiently find the correct Gk. Instead, the au-
thors argued that “the real difficulty of in achieving good
3D reconstructions for nonrigid structures...is not the am-
biguity of the [basis] constraints, but the complexity of the
underlying non-linear optimization”. In this paper we will
challenge this argument, by providing a simple yet efficient
(optimization) solution to Nonrigid SFM Factorization.

3. Main Theory
From now on, let us assume the measurement matrix W

is already truncated to rank 3K (by e.g. SVD), the num-
ber of shape bases K has been estimated, and all the shape
bases are non-degenerate. We start with a known result of
NRSFM factorization.



Theorem 3.1. All the solutions of Qk to linear system Eq.-
(3) form a linear subspace of dimensionality (2K2 −K).

This result is in fact a direct consequence of Xiao et al.’s
Theorem in [26]. It shows that the above linear system is
inherently under-determined (as by (2K2 − K) rank defi-
cient), no matter how many image frames are given.

On the other hand, this result also provides us with the
true dimensionality of the solution space of Qk, and note that
Qk is precisely what we are after. However, in their paper,
this practical implication had not been explicitly exploited.

In the following, we will show how one can take ad-
vantage of this result, and derive a practical algorithm that
directly leads to a parametrization of this solution space.
More precisely, we will prove that the solution space of Qk
is actually the null-space of a certain matrix A which can
be directly obtained from the input image data. Practical
usefulness of this representation is obvious.

3.1. Null-space Representation

First, denote vec() as the vectorization operator, and
qk = vec(Qk). Using vec(AXBT ) = (B ⊗ A)vec(X), we
rewrite the linear system Eq.-(3) as:[

(Π̂i ⊗ Π̂i)(1, :)− (Π̂i ⊗ Π̂i)(4, :)
(Π̂i ⊗ Π̂i)(2, :).

]
qk

.
= Aiqk = 0,

(4)
where (Π̂i ⊗ Π̂i)(j, :) denotes the j-th row of (Π̂i ⊗ Π̂i).

Stacking all such equations from all frames (i =
1, . . . , F ), we then have

Avec(Qk) = Aqk = 0, (5)

where A = [AT1 , A
T
2 , · · · , ATF ]T . This is a linear system of

equations over the unknown 9K2-vector qk.
Note that the 9K2-vector qk has (3K)(3K + 1)/2 inde-

pendent entries. It may appear that, given enough frames,
i.e. when 2F ≥ (3K)(3K + 1)/2, qk should be able to
be solved via linear least squares. However, this is not the
case, because all valid solutions reside in a 2K2−K dimen-
sional space as shown in Theorem 3.1. Moreover, Eq.-(5)
shows, the solution space is nothing but the null-space of A.
In addition, it is easy to verify that the minimum required
number of frames for computing the null-space linearly is
F ≥ (5K2 + 5K)/4.

3.2. The Intersection Theorem

Combining all the proceeding results, we now arrive at
the central theorem of this paper:

Theorem 3.2 (Intersection Theorem). Under non-
degenerate and noise-free conditions, any correct solution
of Qk (i.e. the Gram matrix of a column-triplet of the true
Euclidean corrective matrix Gk) must lie in the intersection

of the (2K2−K)-dimensional null-space of A and a rank-3
positive semi-definite matrix cone, i.e., Qk belongs to

{A vec(Qk) = 0} ∩ {Qk � 0} ∩ {rank(Qk) = 3} . (6)

Proof. Denote Gk as column triplet of a correct rectifying
transform, and Qk = GkG

T
k , then rank(Qk) = rank(Gk) =

3, Qk � 0. Additionally, vec(Qk) lies in the null space of A
as vec(Qk) gives correct rectification with zero error. Thus
Gk is a solution to the equation system which means that
the equation system is well-defined. Denote G̃k as solution
to the equation system Eq.-(6), then rank(Q̃k) = 3, Q̃k � 0
and vec(Q̃k) lies in the null space of the system of linear
constraints on the elements Q̃k. Thus all the solutions to
the equation system Eq.-(6) satisfy the condition for correct
rectifying transforms. There is no difference between these
solutions. ut

4. Algorithm Solution
Armed with the above results (in particular Theo-

rem 3.2), we are now ready to present our simple algorithm
to the non-rigid factorization problem.

Recall that the goal is to recover the true motion matrix R
and the true non-rigid shape matrix S from image measure-
ment W, such that W = RS = R(C⊗I3)B. Note that due to the
inherent basis ambiguity, it is hopeless to recover a unique
B or C. While in previous work many researchers chose to
use a pre-selected special shape bases B (or enforce arbitrary
priors on the shape bases or shape coefficients) to pin down
the undetermined degrees-of-freedom, in this work we will
show how one can directly estimate the S without fixing B

or C.
Our algorithm consists of three steps to be applied in se-

quel: (1) Estimate the (Gram of) corrective matrix Gk, (2)
Estimate camera rotations R and (3) Estimate the nonrigid
shape S. We now explain the three steps in order.

4.1. Step-1: Estimate Gk by Trace-Minimization

Our main intersection theorem (Theorem-3.2) naturally
leads to an easy algorithm to solve for Gk, that is: to find the
intersection of the aforementioned null-space and a rank-3
positive semi-definite matrix cone.

Because the rank-function itself is not very numerically-
stably, measurements noise will increase the numerical rank
of Qk dramatically, we slightly relax the rank(Qk) = 3 con-
dition to a rank-minimization problem, i.e. min rank(Qk).
Note that however, rank-minimization is an NP-hard prob-
lem in general, and is very difficult to solve exactly. We
therefore further relax it to a nuclear-norm minimization
form, i.e., min ‖Qk‖∗. Moreover in our case, since Qk is
a symmetric positive definite matrix, the nuclear norm is
simply its trace [23][4]. Thus we have ‖Qk‖∗ = trace(Qk).



Then we arrive at the following trace-minimization to
solve for the corrective matrix (Qk). 2

min trace (Qk) , such that,
Qk � 0,
A vec(Qk) = 0.

(7)

To avoid a trivial solution at Qk = 0, we express vec(Qk) in
the explicit form of the null-space representation, with prop-
er scaling to exclude the case of having all-zero weights.3

Easy to see that the above trace-minimization problem
is a standard semi-definite programming (SDP). Also
note that this SDP is actually of small and fixed size
(of 2K2 − K) which is independent of the size of the
measurement matrix. Thus this SDP can be solved easily
and very efficiently by off-the-shelf SDP solvers. Once
Qk is found, we use SVD to extract an (exact) rank-3 Gk.
This solved Gk can be directly used to find R and then
S. Alternatively, if higher accuracy is desired, one can
further improve the numerical accuracy of Gk by feeding
it as an initial point to a non-linear refinement procedure,
such as via the following unconstrained minimization:

minGk
∑F
i=1

[
(1− Π̂2iGkG

T
k Π̂

T
2i

Π̂2i−1GkG
T
k Π̂

T
2i−1

)2 + (2
Π̂2i−1GkG

T
k Π̂

T
2i

Π̂2i−1GkG
T
k Π̂

T
2i−1

)2
]
,

where the objective function is nothing but the orthonor-
mality condition.

4.2. Step-2: Compute Rotation Matrix R

Conventionally, once Gk ∈ R3K×3 is solved (w.l.o.g.,
let’s denote it as G1), which is merely a single column-triplet
in the full corrective matrix G ∈ R3K×3K , the commonly-
used next step is to solve for the otherK−1 of independent
column-triplets [G2, . . . , GK ], and use them to populate the
entire matrix G. Brand [6] proposed a linear method to solve
for the big G (for affine case). Because these Gks always
have rotation ambiguity, in order to align them, Procrustes
method must be employed subsequently (c.f. [26][2]). Once
the big G is obtained, one then is allowed to compute the
camera motion R, the shape coefficients C and the shape
bases B, and then reconstruct the non-rigid shape S. Howev-
er, the above approach is not only rather involved, but also
not numerically stable. More importantly, it is not neces-
sary, as shown in [3].

In this work, we adopt a simpler approach that directly
computes the camera motion R from a single column-triplet

2In future work, we need to discuss the uniqueness or multiplicity of
the solution(s) for the original rank-minimization problem, as well as the
gap caused by the nuclear-norm relaxation. The latter is one of the research
topics in low-rank approximation and in compressive sense, which shows
that under certain RIP-type conditions the approximation is tight, though
we are not sure if we have such a luxury in our particular problem context
of NRSFM in computer vision.

3We explicitly express the solution as a linear combination of 2K2−K
basis vectors of the null space, then use sum-to-one constraint to fix the
scale freedom, i.e.

∑
αi = 1, where αi are coefficients.

Gk, without the need to fill in a big and full G matrix. The
method goes as follows. Once Gk is solved, the rotation at
every frame i = 1, · · · , F can be solved by using:

Π̂2i−1:2iGk = cikRi, i = 1, · · · , F. (8)

Note that we do not need to care about the unknown value
of cik, though its sign ambiguity must be taken care of (c.f.
[2]). Finally, the full motion matrix R is formed as R =
blkdiag([R1, R2, . . . , RF ]).

4.3. Step-3: Estimate S by Rank-Minimization

Now we show how to solve the non-rigid shape matrix S.
Most conventional methods do this indirectly, in the sense
that they often start from solving the big G matrix firstly,
and then use pre-selected special shape bases B (such as the
first K frame [26], or DCT bases in the dual space [3], or
assume the the shape coefficients are also DCT-expandable
[14]), then the corresponding coefficient matrix C can be
determined, and also the shape matrix S = (C⊗ I3)B.

In the next two sub-sections, we will provide two sim-
pler, more direct methods for solving S.

4.3.1 Pseudo Inverse Method

Recall that our goal is to solve S through the equation of
W = RS given W and R. This equation is under-determined
because R is a short matrix of size 2F×3F . There should be
no unique but an infinite family of solutions to S. However,
we also notice that: the low-order linear model, i.e. S =
(C⊗ I3)B immediately suggests that rank(S) ≤ 3K.

Taking into account of both of the above arguments, we
reach: a valid solution to the shape matrix S must lie in
the intersection of low-rank matrix set of {rank(S) ≤ 3K}
and the solution space of equation W = RS. As usual we
relax the low-rank condition to rank minimization. Now
the shape matrix S must be a solution to the following rank
minimization problem:

min rank(S), such that,
W = RS.

(9)

Remarks. We now make two important remarks: (1)
the above rank-minimization problem (in the context of
NRSFM) accepts the ground-truth shape matrix S as a solu-
tion; (2) Computationally, the above solution may be found
by the (unique) Moore-Penrose pseudo-inverse solution, i.e.
S = R†W = (RT (RRT )−1)W.

Remark-1 is simply the main conclusion of [2], which
states that: once R is fixed, there is no ambiguity in finding
a low rank shape matrix S (condition upon sufficient non-
degeneracy assumption).



Remark-2 was a bit surprising to the authors, as it seem-
s to suggest a simple, linear, and closed-form (though ap-
proximate) solution to our rank-minimization problem of
(9)–which is NP-hard to solve in general.

Fortunately, recent progress in Compressive Sensing has
confirmed the correctness of our Remark-2. In particular,
we use the following result due to [19] that: the Moore-
Penrose pseudo-inverse solution S = R†W is a unique min-
imizer that achieves nuclear-norm minimization. For a de-
tailed proof the reader is referred to [19]. From this result,
we see that the pseudo-inverse solution is indeed a possible
solution that satisfies two necessary conditions (i.e., satis-
fying both the imaging equation and low rank condition-
s), though care must be given when discussion the qual-
ity of the approximation (i.e., relaxation gap) as well as
the existence and uniqueness (multiplicity) issues associat-
ed with both the original min-rank problem and the relaxed
min-nuclear-norm problem. For now, we settle for numer-
ical/empirical evaluation of the proposed pseudo-inverse
method.

We have numerically tested the pseudo-inverse method
on both synthetic data and real data. Judging only from
the numerics in terms of normalized 3D shape-recovery ac-
curacy, the pseudo-inverse solution appears to outperfor-
m Xiao et al.’s K-basis method by a large margin, and
achieves comparable performance with more recent Metric-
Projection [21] and the classic EM-PPCA [25]. The reader
is referred to the second last column of Table-1. This is al-
ready encouraging, as our method does not use any priors
except for the low-rank condition. Note that however, our
method is slightly inferior to the more recent DCT trajectory
basis method [3] or the CSF method [14] (, both methods re-
ly on strong smoothness prior)–which prompts us to think:
can we do any better, without using any prior ? This inferi-
ority also prompted the authors to think further: perhaps the
rank-3K condition enforced upon S is not strong enough or
sufficient? pondering this question has led us to the follow-
ing method –the block matrix method– which gives more
favorable performance.

4.3.2 Block Matrix Method

In the above pseudo-inverse method, we mainly make use of
the rank-3K condition that is rank(S) ≤ 3K. This (3F ×P )
matrix S is simply a stack of P 3D points [Xi, Yi, Zi]

T over
F frames.

However, we realize that, since in reality there are in fact
only K shape bases (rather than 3K), the shape matrix S

is not a fully-generic rank-3K matrix, but has its special
block structure. Ignoring this special structure will add spu-
rious degrees-of-freedom (hence ambiguities) to the prob-
lem. Next we will show how to get a stronger (yet meaning-
ful) rank-minimization formulation, considering the nature
of the NRSFM factorization.

In particular, we re-arrange the rows of S that correspond
to X,Y ,and Z coordinate separately, in an F × 3P block
matrix form, denoted by S] in below4:

S
] =

 X11 .. X1P Y11 .. Y1P Z11 .. Z1P

...
...

...
...

...
...

XF1 .. XFP YF1 .. YFP ZF1 .. ZFP

 .

Then we must have: rank(S]) ≤ K. Note that this rank-K
condition (on S]) is stronger than the above rank-3K con-
dition (on S), and the former captures the essence of the
K-order linear combination model.

Now, to solve for this re-arranged shape matrix S], we
use, again, a rank-minimization formulation:

min rank(S]), such that,
W = RS,
S] = [PX PY PZ ](I3 ⊗ S).

(10)

The last matrix equality condition is a compact (shorthand)
representation of the re-arrangement relationship between
S] and S, where PX , PY , PZ ∈ RF×3F are some properly
defined 0-1-valued “row-selection” matrices (similar to the
“permutation matrix”).
Fast numerical implementation. We relax the above
rank-minimization to nuclear-norm (i.e. trace-norm) min-
imization, i.e. min ‖S]‖∗. In principle, this nuclear-norm
minimization may be solved by a standard SDP solver.
However, unlike the case of Eq.-7 where the resulted SD-
P has small and fixed size, here this SDP is of size F × 3P ,
which renders the SDP technique very inefficient when ei-
ther P or F is large.

Below, we give an efficient numerical implementation,
based on fixed point continuation [20]. First, we re-cast the
above minimization Eq.-(10) in Lagrangian form as:

minµ‖S]‖∗ +
1

2
‖W− RS‖2F, such that,

S] = [PX PY PZ ](I3 ⊗ S),
(11)

where µ is the continuation (homotopy) parameter which
diminishes as the algorithm iterates. Next, the gradient of
1
2‖W− RS‖2F with respect to S] is obtained as:

g(S]) =
∂ 1

2‖W− RS‖2F
∂S]

= [PX PY PZ ](I3⊗(RT (RS−W))).
(12)

Then, we solve the minimization of Eq.-(11) via the follow-
ing two-line iteration update (cf. [20]):{

Y(t) = S](t) − τg(S](t)),
S](t+1) = Sτµ(Y(t)),

(13)

where τ is the step size of gradient descent, and Sv(·) is
the matrix shrinkage operator (cf. [20]). Once the iteration

4An identical rearrangement was used in [3] but with different motiva-
tion and for different purpose.



converges, we first project the solved S] to the nearest rank-
K matrix (note: not 3K), then rearrange it to S. 5

5. Experiments

5.1. Setup

We compare our methods against the state-of-the-art
methods, which include (1) Xiao et al.’s shape basis method
(XCK) [26];(2) Torresani et al.’s EM-PPCA [25]; (3) Met-
ric projection [21]; (4) Trajectory basis method [3]; and (5)
Column space fitting (CSF) [14]. 6

To facilitate the comparison, we use the same error met-
rics as reported in [3] and [14], that is: eR measures the
mean error in rotation estimation and eR = 1

F

∑F
i=1 ‖Ri −

R̃i‖F, where Ri is the ground truth rotation at frame i and
R̃i the recovered rotation; e3D measures the normalized
mean 3D error in the reconstructed 3D points and e3D =

1
σFP

∑F
i=1

∑P
p=1 eip, σ = 1

3F

∑F
i=1(σix + σiy + σiz),

where σix, σiy and σiz are the standard deviations in X,Y
and Z coordinates of the original shape at frame i.

Extensive experiments are conduced to test the perfor-
mance of the proposed methods, on both randomly syn-
thetic data and on real motion capture data. The random
synthetic data, which satisfy the low-rank nonrigid model
perfectly, are used only for the purpose of algorithm val-
idation, for which our methods have obtained nearly per-
fect result (with zero error) as we expect; the results are
therefore omitted. Instead, only results on real sequences
are reported below. The real sequences we have tested
include the standard sequences of Drink (1102/41), Pick-
up (357/41), Yoga (307/41), Stretch (370/41), and Dance
(264/75) used in [3], and Face (316/40), Shark (240/91)
and Walking (260/55) in [25], where (F/P ) denotes the
number of frames (F ) and points (P ).

5.2. Cumulative histograms of errors

Our first experiment is aimed to give a statistical com-
parison between the performance of our method and several
existing methods. For this purpose we use a real motion
capture sequence, here e.g. the Stretch sequence. From the
ground-truth 3D point clouds of the sequence as well the
true camera matrices, we re-synthesize F frames of image
measurements with Gaussian random noise added in, where

5This block matrix method achieves significantly better results than al-
most all competing methods, including those of state of the art. However,
we are fully aware of that important theoretical discussions are omitted
here, due to space reason. In future work, we plan to discuss, e.g. Is the
rank minimization problem, in it most general form, has a unique solution
only– (it is so at least in our context of NRSFM, as [2] proved), or have
multiple solutions ? Will the nuclear norm relaxation find the unique solu-
tion, or only one of them–if there are multiple? How big, or how small, is
the relaxation gap? Is there some condition similar to RIP, in the context
of NRSFM, that can guarantee the gap is zero?

6We did not use the CSF variant of [15] as they are very similar.

noise ratio is defined as ‖Noise‖Fro/‖W‖Fro. Use the ob-
tained data, we test our methods, as well as several other ex-
isting methods. We repeat the random test 100 times. Then,
we plot the cumulative histograms of the rotation estimation
errors, and the 3D reconstruction errors, as shown in Fig. 1.
This figure clearly reveals that: our block-matrix method
outperforms most of the other methods, and our pseudo-
inverse method also achieves better results compared with
EM-PPCA and XCK.
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Figure 1. Cumulative histograms of errors tested on the “Stretch”
sequence. The most left curve gives the best performance. Left:
the rotation error; Right: the 3D reconstruction error. Our Block-
Matrix method outperforms most of the other existing methods.

5.3. Noise performance

To analyze the behavior of our new methods under noise,
we repeat the (above) first experiment at different noise ra-
tios. Example results on the Stretch sequence are given in
Fig. 2 which plots the estimation errors as a function of the
noise ratio.

It is seen, our block matrix method achieves the best per-
formance in terms of the accuracy for rotation estimation
and for shape recovery, compared favorably with almost all
the other state-of-the-art competitors. Note that our pseudo-
inverse method also achieves better performance than EM-
PPCA, Metric Projection and XCK.
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Figure 2. Noise performance. (a) Rotation estimation error. (b)
Normalized mean 3D error.

5.4. Compare all methods on all real sequences

In this subsection, we provide experimental results of al-
l the 5 methods we are benchmarking, on all the real se-



quences at hand. Table-1 summarizes our main results,
where both the shape reconstruction error (mean 3D error)
and the camera rotation error are provided (whenever the
ground truth are available). Fig.-3 shows the comparison.

Clearly, our block matrix method achieves the best per-
formance in shape recovery, on almost all of the benchmark
sequences (the Shark sequence is an exception, but that pos-
sibly due to the fact that this Shark sequence is in fact de-
generate [25]).

Drink Pickup Yoga Stretch
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
ot

at
io

n 
E

st
im

at
io

n 
E

rr
or

 

 

EM−PPCA
Metric Projection
Trajectory Basis
Column Space Fitting
Our Block Matrix Method

(a)

Drink Pickup Yoga Stretch
0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
or

m
al

iz
ed

 M
ea

n 
3D

 E
rr

or

 

 

EM−PPCA
Metric Projection
Trajectory Basis
Column Space Fitting
Our Blcok Matrix Method

(b)

Figure 3. Motion capture data experimental results. Left: Rotation
estimation error; Right: 3D reconstruction error.

5.5. Test on frame-reshuffled data

A highlight of this work is that our method does not as-
sume any prior knowledge about the problem. For instance,
we do not assume the trajectories are smooth across frames,
while many other method do make this assumption, either
explicitly or implicitly. So, we expect (predict) that our
method is immune to random frame-order reshuffle (per-
mutation).

To verify this point, we redo the experiments but on
frame-reshuffled data, and obtain the following results in
Fig.-4. It is seen that both the trajectory basis method and
the CSF method perform very badly on the reshuffled se-
quence, while our method remains unaffected.

Fig.-5 gives a close inspection. The top row compares
the trajectories recovered by using the original sequence,
and using a frame-reshuffled sequence, while the bottom
row shows the normalized mean 3D error for both se-
quences. From this figure, the trajectory basis method fail-
s to output acceptable results on the frame-permutated se-
quence, but our method leads to identical results on both
cases. This is not surprising as permutating a matrix will
not change its rank, and our methods does not assume any
frame order or temporal smoothness.

5.6. Sample shape reconstruction results

For visual evaluation, we give result comparison be-
tween our block matrix method and the trajectory basis
method on a more complex sequence, Dance, see Fig.-6.

We also test the Talking Face video7, using 500 frames
and 68 feature tracks. Fig.-7 shows 3 frames of the original

7http://www-prima.inrialpes.fr/FGnet/data/01-TalkingFace/
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Figure 4. Performance on frame order reshuffled sequences. (a)
Rotation error. (b) Normalized mean 3D error. (Better viewed in
color).
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Figure 5. Comparison of our block matrix method versus the tra-
jectory basis method, on an original input video sequence, as well
as on a frame-reshuffled version. (a) Recovered trajectory of one
point in the X coordinate by both methods on the original se-
quence. (b) Recovered trajectory of one point in the X coordinate
by both methods on the frame-reshuffled sequence. (c) Normal-
ized mean 3D error for both methods on the original sequence.
(d) Normalized mean 3D error for both methods on the frame-
reshuffled sequence.

images and the resulted 3D points, where the reprojection
error is 0.9222 pixels.
6. Closing remarks

This paper advocates a novel prior-free approach to non-
rigid factorization. Our method is purely convex, very easy
to implement, and is guaranteed to converge to an optimal
solution (at least approximately up to certain relaxation). It
shows that, contrary to common belief, the NRSFM factor-
ization problem can be solved unambiguously, efficiently
and accurately, without using extra priors. This said, how-
ever, from a practical point of view, we do not against the
use of available prior, as long as the prior is sensible and



Table 1. Quantitative comparison of our proposed methods versus the state-of-the-art methods on benchmark video sequences. e3D(P) and
e3D(B) denote the 3D errors of our Pseudo-inverse method and Block matrix method respectively.

Dataset XCK EM-PPCA Metric Projection Trajectory Basis Column Space Fitting Proposed Methods
eR e3D eR e3D eR e3D eR e3D(K) eR e3D(K) eR e3D(P) e3D(B)

Drink 0.336 3.519 0.291 0.339 0.286 0.460 0.006 0.025(13) 0.006 0.022(6) 0.011 0.451(4) 0.019(4)
Pick-up 0.469 3.372 0.428 0.582 0.251 0.433 0.155 0.237(12) 0.155 0.230(6) 0.087 0.580(7) 0.138(7)

Yoga 1.201 7.494 0.809 0.810 0.871 0.804 0.106 0.162(11) 0.102 0.147(7) 0.091 0.659(9) 0.125(9)
Stretch 0.949 4.242 0.759 1.111 0.817 0.855 0.055 0.109(12) 0.049 0.071(8) 0.052 0.468(8) 0.069(8)
Dance - 2.996 - 0.984 - 0.264 - 0.296(5) - 0.271(2) - 0.575(10) 0.171(10)
Face - - - 0.033 - 0.036 - 0.044(5) - 0.036(3) - 0.485(7) 0.030(7)

Walking - - - 0.492 - 0.561 - 0.395(2) - 0.186(2) - 0.471(6) 0.132(6)
Shark - - - 0.050 - 0.157 - 0.180(9) - 0.008(3) - 0.902(3) 0.242(3)

(a) (b) (c)

(d) (e) (f)

Figure 6. Comparison of the 3D reconstruction results on the
Dance sequence. The blue dots are the ground truth 3D points,
and the red circles show the reconstructed points. Top row: re-
sults by the trajectory basis method [3], where the 3D errors are
0.3011, 0.2827, 0.2814 for the 3 frames. Bottom row: our re-
sult by the block matrix method, where the 3D errors are 0.2228,
0.0355, 0.1389 for the 3 frames.

Figure 7. Example 3D deformable shape reconstruction results.
Top row: sample frames of the input Face sequence. Bottom row:
recovered 3D face shapes by using our block matrix method.

reflects the physical nature of the problem at hand. It is
expected that, using good prior will further improve our so-
lution, and make our method more applicable to complex
scenarios.

In the present paper, we have concentrated on com-

plete measurement case under orthographic camera mod-
el. Thanks to recent progress in SFM and Compressive
Sensing, the proposed method can be easily adapted to han-
dling missing-data case (e.g. [8, 10, 12]), outlier case (e.g.
[9, 18, 4]), multibody motion case [17], as well as perspec-
tive camera case [10].
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