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Abstract It is attractive to formulate problems in
computer vision and related fields in term of probabilis-
tic estimation where the probability models are defined
over graphs, such as grammars. The graphical struc-
tures, and the state variables defined over them, give
a rich knowledge representation which can describe the
complex structures of objects and images. The proba-
bility distributions defined over the graphs capture the
statistical variability of these structures. These proba-
bility models can be learnt from training data with lim-
ited amounts of supervision. But learning these models
suffers from the difficulty of evaluating the normaliza-
tion constant, or partition function, of the probability
distributions which can be extremely computationally
demanding. This paper shows that by placing bounds
on the normalization constant we can obtain compu-
tationally tractable approximations. Surprisingly, for
certain choices of loss functions, we obtain many of the
standard max-margin criteria used in support vector
machines (SVMs) and hence we reduce the learning
to standard machine learning methods. We show that
many machine learning methods can be obtained in
this way as approximations to probabilistic methods
including multi-class max-margin, ordinal regression,
max-margin Markov networks and parsers, multiple-
instance learning, and latent SVM. We illustrate this
work by computer vision applications including image
labeling, object detection and localization, and motion
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estimation. We speculate that better results can be ob-
tained by using better bounds and approximations.
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1 Introduction

There has recently been major progress in the devel-
opment of probability models defined over structured
representations including graphs and grammars [1–7].
This interdisciplinary enterprize combines computer sci-
ence expertise on representations with statistical mod-
eling of probabilities. For example, natural language re-
searchers have defined stochastic context free grammars
(SCFGs) by putting probability distributions over con-
text free grammars which encode the hierarchy of nouns,
nouns phrases, and so on. The same approaches can be
extended to more powerful grammars [2,7]. But the rep-
resentational advantages of these models are balanced
by their computational requirements and, in particular,
whether they admit efficient learning algorithms.

In particular, it is attractive to formulate vision as
probabilistic inference on structured probability repre-
sentations. This seems both a natural way in which to
deal with the complexities and ambiguities of image pat-
terns [8,9] and also fits into a more unified framework
for cognition and artificial intelligence [10]. But vision is
a particularly challenging problem to formulate in this
manner. The complexity of vision requires distributions
defined over very complicated structures and requires
principles such as compositionality and the use of graph-
ical models with variable topology [11] and stochastic
grammars [5]. We will give a brief review of probabilistic
models of vision in Section 2. But these complex prob-
ability models also require significant computational re-
quirements both to perform inference and for learning.

By contrast, machine learning techniques are often de-
signed to be computationally tractable [12,13] although
they are not as well-principled as probabilistic methods
for dealing with complex tasks [14]. But how can we take
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advantage of the representational power of probabilistic
models and the computational tractability of machine
learning algorithms? There have been attempts to show
relations between them, briefly reviewed in Section 2.
There has been success in relating AdaBoost to proba-
bilistic learning [15–18] but despite some interesting re-
sults [14,19–22]. The attempts to show connections be-
tween max-margin methods [13] and probabilities have
not as yet made a big impact on the community.

In this paper, our starting point is a series of works
published in the last few years [23–27], which formu-
lated complex vision problems, such as the detection
and parsing of objects, the labeling of image pixels, and
the estimation of motion, in terms of probability models
based on compositional principles. These models then
used approximations which enabled the models to be
learnt by machine learning techniques based on max-
margin criteria. In this paper we clarify the nature of
the approximations and show that they can be derived
rigorously as bounds on the probabilistic criteria. For
certain probabilistic criteria, involving appropriate loss
functions, this obtains many standard max-margin crite-
ria with or without hidden variables. This yields interest-
ing relationships between probabilistic and margin learn-
ing concepts. For example, machine learning attempts to
maximize the margin in order to improve generalization
to novel data while probabilistic methods attempt to
maximize the variance of the distribution in order to ob-
tain a similar effect (i.e., prevents over-fitting the data),
see Fig. 1. The notion of support vectors, i.e., the results
that the learnt solution depends only on a subset of the
training data, arises only from the approximations made
to the partition function. We note that some results of
this type are known in the natural language community
[7].

Our approach has several advantages. We can relate
probabilistic models to existing machine learning meth-
ods. We can formulate models of more complex phenom-
ena using the well-principled probabilistic approach and
then obtain novel machine learning methods. We can im-
prove machine learning methods, and get better bounds
for probability models, by making better approximations
and bounds.

The structure of this paper is as follows. We first
briefly mention some relevant probabilistic models from
the computer vision literature and then sketch work
which relates machine learning and probabilistic meth-
ods, see Section 2. Next we describe probabilistic mod-
els in Section 3 and introduce the types of models we
will illustrate in the computer vision section. Then we
describe the learning criteria used in probabilistic meth-
ods and machine learning and the relationships between
them, see Section 4. Next in Section 5 we introduce
our approach of deriving bounds for probabilistic models
by considering models without hidden/latent variables.

Then in Section 6 we extend our approach to other ex-
amples where hidden/latent variables are present. Then
we illustrate this work on examples from our previous
work in computer vision which originally motivated the
bounds in this paper, see Section 7.

Fig. 1 Max-margin methods try to maximize the margin to en-
courage generalization preferring large margins (a) to smaller mar-
gins (b). For the probability distributions the corresponding intu-
ition is that we will favors models with large covariance (c) over
models with smaller covariance (d) in order to discourage over-
fitting the data.

2 Background

2.1 Probabilistic models

There has been a long history in computer vision of mod-
eling objects by deformable templates defined in terms of
energies [28–30]. More recent models formulate objects
and images in terms of probabilistic models defined over
structured representations. There is an enormous litera-
ture on these topics and only mention here a small sam-
ple of some of the most closely related work.

One stream of research follows the inspiration of
Grenander’s pattern theory [8,9] leading to generative
models build using compositionality [11] or stochas-
tic grammars [5]. These generative approaches are
computationally demanding despite the exploitation of
discriminative models to perform inference by data
driven Markov Chain Monte Carlo [31]. Another stream
of research leads to discriminative models as exemplified
by conditional random fields [32,33]. These have moti-
vated a whole series of works on hierarchical models [34–
36]. A particularly important example are latent support
vector machine (SVM)’s [37], which we will mention in
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Section 5. Other classes of grammatical models includes
stochastic grammatical models for text [38] and hierar-
chical models of objects by Ahuja and Todorovic [39,40].
Yet another related strand of research are deep belief
networks [41] and the models by Amit and his colleagues
[42].

In this paper we will concern ourselves with a class of
models of objects and images [23–27], which are built
using the concepts of compositionality and stochastic
grammars [5,11]. But these models are learnt discrim-
inatively using the techniques described in this paper.
Space did not enable us to also describe the closely re-
lated work by Kokkinos and Yuille [43,44], which makes
use of multiple instance learning, see Subsection 6.2.

2.2 Machine learning and its relationship to
probabilistic modeling

We briefly summarize previous work which addresses the
relationship between probabilistic modeling and related
methods developed by the machine learning community.
In particular, there have been several studies showing
that AdaBoost is very similar to sigmoid regression. For
example, Hastie et al. [15] showed that AdaBoost con-
verges to a conditional distribution in the limit of large
amounts of data. Subsequent work [16–18] showed more
detailed relations between the two methods, in particu-
lar when an l1-norm regularizer is imposed on the weight
parameters in AdaBoost.

This paper is concerned with max-margin tech-
niques. The relationship between regularization and
max-margin criteria have long been known and are
briefly discussed in Ref. [21] which also mentions how
regularization can be re-interpreted as Bayesian estima-
tion. Earlier related research on this topic includes the
seminar work of Wahba [19]. Seeger [20] gives a thor-
ough discussion of these issues and, in particular, how
kernel methods can relate to Gaussian processors (e.g.,
covariance matrix over finite sets of points can be used
to obtain either Gaussian process models or kernels for
SVMs). Alternative work [45] is also closely related to
Gaussian processes and provides probabilistic classifica-
tion using an expectation-maximization (EM) training
algorithm. Zhu and Xing [22] uses a maximum entropy
discrimination framework for learning probabilistic mod-
els. More recently, Franc et al. [14] studied the binary-
classification case and showed that exact equivalence
could be obtained between SVMs and probabilistic lean-
ing for exponential models if certain model parameters,
such as the modulus of the weight vector, were treated
as hyper-parameters and were estimated differently than
the other model parameters. In Ref. [46], Pletscher et
al. also suggested a unified view of log-loss and max-
margin loss for structured model by introducing an ex-

tra temperature hyper-parameter, but did not establish
a bounding relations between the different criteria.

In all this work, however, the loss functions are com-
bined into the probability distributions while this pa-
per keeps them separate which give greater flexibility
for practical applications. Neither do the studies above
address the types of complex models used for our com-
puter vision applications.

3 Probabilistic models

We consider probability models formulated over graphs
G = (V , E) where V denotes the vertices and E denotes
edges. State variables yμ are defined at the nodes μ ∈ V .
The variable y = {yμ : μ ∈ V} describes the state of
the entire graph. The edges E in the graph specify which
nodes are directly connected and define the cliques Cl,
i.e., for all μ1, μ2 ∈ Cl then (μ1, μ2) ∈ E . We index Cl by
α and let yα represent the state of all variable in clique α.
The computer vision models we consider in this paper
has been built from elementary AND and OR cliques,
see Fig. 2(a), which can be combined into larger models
by composition, see Fig. 2(b). For example, the head of
the baseball player in Fig. 3(b) can either be upright or
oriented, while the object can be modeled by AND-ing
the legs, the torso and the head. The specific models are
given in Refs. [23–27] and will be given as illustrations
in Section 7.

Potential functions φα(yα, x) and parameters wα are
defined over the cliques α ∈ Cl (note that these poten-
tials allow direct input from the data x). AND and OR
nodes will have different types of potential functions. We
also define potentials which depend on the states of indi-
vidual graph nodes and are dependent only on the input
x.

Examples of the probability models are given in Fig. 3.
The nodes μ ∈ V represent subparts of the object where
states yμ specify whether the part is present/absent and,
if it is present, its position and other attributes (e.g.,
orientation and size). For our computer vision applica-
tions the graphs are typically organized in layers where
a node at one layer is connected to a subset of nodes
at the lower level forming a clique. These cliques are of
two types: (i) AND-cliques where the upper node repre-
sent the position/attributes of a part which is composed
from subparts represented by the lower nodes, and (ii)
OR-cliques where the upper node takes the same state
as one of the lower nodes, i.e., it chooses between them.

We specify a conditional distribution:

P (y|x; w) =
1

Z[w, x]
× exp{

∑

μ∈V
wμ · φ(yμ, x)

+
∑

α∈Cl

wα · φα(yα, x)}. (1)
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Fig. 2 The basic components of the probability graphs are AND
and OR cliques (a). In an AND cliques the parent state yp rep-
resents a part which is composed of elementary parts represented
by y1, y2, y3. For OR cliques, the state of the parent node yp must
select one of the child nodes y1 or y2. Probability models are con-
structed by treating AND and OR cliques are elementary compo-
nents which can be combined to build arbitrarily complex models
(b).

These models also involve a loss function l(y, yT) which
is the cost of making decision y if the true state of the
graph should be yT. Hence inference requires estimat-
ing ŷ = argminy

∑
z l(y, z)P (z|x : w). Depending on

the applications we use dynamic programming, junction
trees, or approximate algorithms (e.g., belief propaga-
tion) to compute ŷ. For example, the probabilistic model
shown in Fig. 2(b) contains closed loops of limited size

and hence inference can be performed by the junction
trees algorithm.

During training/learning, we are given training ex-
amples which specify the states of the input {xi :
i = 1, 2, . . . , N} and a set/subset of the state variables
{yi : i = 1, 2, . . . , N}. It is convenient to divide this into
two cases. The first case is when all the {yi} are speci-
fied. In the second, by a slight abuse of notation, we di-
vide the states variables into {(yi, hi) : i = 1, 2, . . . , N}
where the states {yi} are specified during learning and
the states {hi} are not.

In both cases we end up with exponential models of
respective form:

P (y|x, w) =
exp{w · φ(x, y)}

Z[x, w]
, (2)

P (y, h|x, w) =
exp{w · φ(x, y, h)}

Z[x, w]
, (3)

where w and φ(·) are vectors representing all the pa-
rameters and potentials described above. In addition we
have loss functions l(y, yT) and l(y, h, yT) respectively.

However, learning the parameters of the models in
Eqs. (2) and (3) is computationally demanding due to
complex forms of the normalization terms, or partition
functions, Z[x, w]. This motivates the need for approxi-
mate methods which simplify the computation in order
to perform learning.

4 Max-margin criteria and probabilistic
learning criteria

In this section we consider the max-margin criteria and
variants of probabilistic criteria used for learning. The
input is a dataset of examples. D = {(xi, yi) : i =
1, 2, . . . , N}. Here x is the input, e.g., an image, and
y is the output which can either be multi-class, e.g.,
y ∈ {1, 2, . . . , M} for some M , or a vector y = (y1,

y2, . . . , yM ), whose components are multi-valued (as
were used for learning Markov models [47], learning

Fig. 3 AND/OR tree graphical models are capable of representing 100 different poses of a baseball player using a compact
representation which exploits part sharing (a), and are efficient in representing different appearances of an object (b) [24].
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grammars for natural language [48], and in some our
computer vision where, for example, yν represents the
position and attribute of the object part represented by
node ν).

The max-machine criteria are designed to seek a deci-
sion rule ŷ(xi; w) of form ŷ(x; w) = arg maxy w·φ(x, y)
which minimizes a convex bound of the empirical risk ob-
tained by summing a loss function l(y, yT) over the data
examples:

Remp(ŷ) = C

N∑

i=1

l(ŷ(xi; w), yi), (4)

combined with a penalty term, e.g., (1/2)|w|2, which
regularizes the solution by encouraging a large margin
1/|w|.

A standard bound is of form [49]:

FML(w) =
1
2
|w|2 + C

N∑

i=1

max
y

{l(y, yi)

+ w · φ(xi, y) − w · φ(xi, yi)}. (5)

This can be obtained from the empirical risk
(4) by applying the identities maxy{l(y, yi) + w ·
φ(xi, y)} � l(ŷ(xi; w), yi) + w · φ(xi, ŷ(xi; w)) and
w ·φ(xi, ŷ(xi; w)) [49]. The criterion in Eq. (5) reduces
to the hinge loss criterion for binary classification [13] re-
placing y by y ∈ {−1, +1}, expressing the loss function
as l(y, yT) = 1 − δy,yT , and setting φ(x, y) = 1

2yφ(x),
where φ(x) is a potential in the data x only. The crite-
rion reduces to 1

2 |w|2 +
∑N

i=1 max{0, 1− yiw ·xi}, with
solution, after training, given by ŷ(x, w) = argmaxy w ·
φ(x).

The SVM criterion can be extended to problems
where there are hidden/latent variables h (i.e., vari-
ables that are not specified by ground-truth during
learning). These problems are formulated by introduc-
ing potential φ(x, y, h) and expressing the solution as
(ŷ(x; w), ĥ(x, w)) = argmaxy,h w · φ(x, y, h). The pa-
rameters w are learnt by minimizing the latent SVM
criterion [37,50]:

L(w) =
1
2
|w|2 +

N∑

i=1

{max
y,h

{l(y, h, yi) + w · φ(xi, y, hi)}

−max
h

w · φ(xi, yi, hi)}. (6)

This criterion is non-convex since the last term∑N
i=1 maxh w ·φ(xi, yi, hi) is concave, while the remain-

ing terms are convex. We note that the latent SVM used
in Ref. [37] is equivalent to the MI-SVM formulation
of Multiple Instance Learning with SVM [51]. A similar
learning criteria was also proposed by Xu et al. [52] for
unsupervised learning problems which maximizes over
missing outputs in SVM.

How do the two criteria given in Eqs. (5) and (6) re-
late to learning probabilistic models? The forms of Eqs.
(5) and (6) are suggestive of the exponential models de-
scribed in Section 3. There are other similarities, e.g.,
the inference algorithms used for latent SVMs are anal-
ogous to the EM algorithm for probability models, as
described in Subsection 6.1.

Learning probability models can be formu-
lated as MAP estimation, i.e., seek ŵ =
argmaxP (w)

∏N
i=1 P (yi|xi; w), where P (·|·; ·) is spec-

ified by Eq. (2) and P (w) is a prior on the model
parameters w. This corresponds to minimizing the log
posterior:

RMAP(w) = − log P (w) −
N∑

i=1

log P (yi|xi; w). (7)

An alternative, which we employ in this paper,
involves introducing a loss function l(y, yi) to take
into account the penalties that are paid for mak-
ing an error in y during estimation. This yields the
expected loss learning criteria REL which replaces
− logP (yi|xi; w) in Eq. (7) by the log of the expected
loss log

∑
y l(y, ŷ(x))P (y|x, w) which yields:

REL(w) = − logP (w) +
N∑

i=1

log
∑

y

l(y, yi)P (y|xi; w).

(8)
To understand the motivation for this change, observe
that after learning we estimate y from input x by
minimizing the expected loss to obtain ŷ(x : w) =
argmin

∑
y l(y, ŷ(x))P (y|x, w). This reduces to MAP

estimation of y in the special case that the loss function
l(y, yT) = 1 − δy,yT .

Observe that the probabilistic learning criteria, Eqs.
(7) and (8), involve the entire probability distribution
while the empirical risk and the max-margin criteria,
Eqs. (4) and (5), only involve functions ŷ(x; w) and
(ŷ(x; w), ĥ(x, w)). There are, however, similarities be-
tween the two formulations.

Firstly, note that ŷ(x; w) and (ŷ(x; w), ĥ(x, w)) are
both maximum likelihood (ML) estimates of y and y

from the respective probability models P (y|x; w) and
P (y, h|x; w) given in Eqs. (1) and (3). In the limit as
the magnitude |w| of the parameters gets large then
the probability distributions become strongly peaked
about their ML values — argmaxy w · φ(x, y) and
argmaxy,h w · φ(x, y, h). So in this limit there is little
difference between using the full distributions and the
decision rules ŷ(x; w) and (ŷ(x; w), ĥ(x, w)).

Secondly, we can make a relationship be-
tween the criteria using Jensen’s inequality.
This yields

∑N
i=1 log

∑
y l(y, yi)P (y|xi; w) �

∑N
i=1

∑
y{log l(y, yi)}P (y|xi; w) which will become

equal to the empirical Bayes risk in the large |w| limit
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but with a different loss function (i.e., replacing l(y, yT)
by log l(y, yT)).

Hence we can find some relationships between these
max-margin and probabilistic criteria in the large |w|
limit. But recall that |w| is the inverse of the margin
and so large |w| corresponds to the small margin limit
which is bad for generalization and which the regularizer
is designed to avoid. From the probabilistic perspective,
however, large |w| corresponds to small covariance (or
low temperature in statistical physics). This is the limit
where the probability distribution is most peaked about
its maximum value which we will exploit in the next sec-
tion. As we will see, there will be a tension between the
requirements to make |w| large to encourage good gen-
eralization and the need to make |w| small to enable the
approximations/bounds to be tight.

5 Exponential models, bounds and max-
margin criteria

In this section we describe our basic result (which will
be extended in the following section). We consider ex-
ponential models P (y|x, w) for generating y in terms of
input x, with parameters w, and a prior P (w):

P (y|x, w) =
exp{w · φ(x, y)}

Z[x, w]
,

P (w) =
exp{−E(w)}

Z
, (9)

where Z[x, w] =
∑

y exp{w · φ(x, y)}.
We use the EL REL(w) which we re-express by setting

l(y, yT) = exp l(y, yT):

LogREL(w) = − logP (w)

+
N∑

i=1

log
∑

y

exp{l(y, yi)}P (y|xi, w)

= − logP (w) +
N∑

i=1

{− logZ[xi, w]

+ log
∑

y

exp{l(y, yi) + w · φ(xi, y)}}.

(10)

We relate this to the structure SVM criterion
by bounding the terms of the right-hand side of
Eq. (10). This requires bounding log Z[xi, w] and
log

∑
y exp{l(y, yi) + w · φ(xi, y)}. In both cases,

this is equivalent to bounding expressions of form
log

∑M
a=1 exp{na} for a set of numbers {na : a =

1, 2, . . . , M}. We use two methods to bound expressions
of this type: (i) We can obtain upper and lower bounds
of form nmax � log

∑M
a=1 exp{na} � Mnmax, where

nmax = maxa na. (ii) We can obtain a weaker lower-

bound for this expression by nb �
∑M

a=1 exp{na} when
nb is any element of the set {na : a = 1, 2, . . . , M}.

Using these bounding methods, we can now obtain
two bounds for the log-risk of form:

LogREL(w) ∼ E(w)

+
N∑

i=1

max
y

{l(y, yi) + w · φ(xi, y)}

−
N∑

i=1

max
y

w · φ(xi, y), (11)

LogREL(w) � E(w)

+
N∑

i=1

max
y

{l(y, yi) + w · φ(xi, y)}

−
N∑

i=1

w · φ(xi, yi) + K. (12)

The first bound, Eq. (11), is obtained by using the first
bounding method for both the log Z and log

∑
y terms.

It gives upper and lower bounds for LogR(w), indicated
by ∼. The second bound, Eq. (12), uses the first bound-
ing method for the log

∑
y term and the second bounding

method for log Z (K is a constant).
We see that the second bounds, Eq. (12), are iden-

tical to the structure SVM criterion provided we set
E(w) = |w|2 (i.e., assume a Gaussian prior). The first
method, Eq. (11), provides a tighter upper bound, as
well as a lower bound. But it has the disadvantage that
the bound is not convex, since the final term is concave,
and so it is harder to minimize.

The tightness of these bounds depends on the size of
|w|. In the large |w| limit the upper bound of bounding
method (I) becomes exact because the largest term in
the summation dominates. But this is the limit where
the margin is very small and so generalization is poor.

These results enable us to relate probabilistic mod-
els to existing machine learning methods, which enables
us to exploit the efficient learning algorithms such as
structured perceptron [53] and structure max-margin al-
gorithms [47–49]. Observing from this perspective, the
regularizer term which attempts to make a large mar-
gin corresponds to a prior on the parameter w which
tries to make the covariance as large as possible, hence
yielding good generalization. Observe that support vec-
tor arise in this approximation although they do not oc-
cur in the original probability model — instead they
result from replacing the partition functions by its dom-
inant term which concentrates attention on those dat-
apoints with high probability which hence are near the
decision boundary. It is also possible to follow the logic
of this approach and obtain better bounds by making
better approximation to the partition function perhaps
by using structured variational methods [54].
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6 Further examples

This section describes how the bounding methods can
be applied to obtain other max-margin criteria. This in-
cludes methods with hidden/latent variables, such as la-
tent SVM and multiple instance learning (MIL), and or-
dinal regression. If hidden variables are present then we
bound the summations over them in a similar manner.

6.1 Hidden variables and latent SVM

We now extend our analysis to deal with models with
hidden/latent variables h, which are un-specified in the
training data. We extend the probabilistic model to

P (y, h|x, w) =
exp{w · φ(x, y, h)}

Z[x, w]
,

Z[x, w] =
∑

y,h

exp{w · φ(x, y, h)}. (13)

We define an exponential loss function l(y, h, yT) =
exp{l(y, h, yT)} and modify the log-risk, Eq. (10), to be

LogREL(w)

= − log P (w)

+
N∑

i=1

log
∑

y,h

exp l(y, h, yi)P (y, h|xi, w)

= − log P (w)

+
N∑

i=1

log
∑

y,h

exp{l(y, h, yi) + w · φ(xi, y, h)}

− log Z[x, w]. (14)

Using our bounding methods, we can obtain two
bounds for the log-risk:

LogREL(w) ∼ E(w)

+
N∑

i=1

max
y,h

{l(y, h, yi) + w · φ(xi, y, h)}

−
N∑

i=1

max
y,h

w · φ(xi, y, h), (15)

LogREL(w) � E(w)

+
N∑

i=1

max
y,h

{l(y, h, yi) + w · φ(xi, y, h)}

−
N∑

i=1

max
h

w · φ(xi, yi, h). (16)

The first bound, Eq. (15), is obtained by using the first
bounding method for both variables y, h in the log Z

and log
∑

y,h terms. It gives upper and lower bounds
for LogREL(w), indicated by ∼. The second bound, Eq.

(16), uses the first bounding method for the log
∑

y term,
and bounds the log Z by using the first bounding method
for h and the second bounding method for y (i.e., replace
it by yi).

We see that the second bounds, Eq. (16), are identi-
cal to the latent structure SVM criterion provided we
set E(w) = |w|2. The first method, Eq. (15), provides
a tighter upper bound, as well as a lower bound. Both
bounds are non-convex, so the first bound may be pre-
ferred because it is tighter.

There are also parallels between the algorithms used
to deal with hidden variables in probability models and
those used by latent SVMs. For example, a standard
algorithm for learning a latent SVM [50] proceeds by
decomposing Eq. (16) into concave (the last term) and
convex parts (everything else) and using a CCCP algo-
rithm [55]. This yields an iterative two-step algorithm
which estimates the parameters w keeping the hidden
variables h fixed, corresponding to treating the h as ob-
served variables and minimizing Eq. (5), and then esti-
mating the h variables by maximum a posteriori treat-
ing the w are known. This iterative two-step algorithm
is reminiscent of the EM algorithm [56] which instead
would update the parameters w assuming a known dis-
tribution q(h) for the hidden variables and then update
q(h) with w fixed. Hence, the main difference is that
EM updates a probability distribution q(h) while latent
SVM updates the variable h directly. Note that would
be exact in the large |w| limit.

6.2 Multiple instance learning (MIL)

In this section, we first show that the MI-SVM formula-
tion of MIL can also be viewed as minimizing an upper
bound of log-risk of a corresponding probabilistic model.
This connection allows us to extend our framework to
other types of MIL objective functions such as MI-SVM
[51].

We can express the MI-SVM criterion as follows [51]:

1
2
|w|2 + C

∑

i∈I
max{0, 1 − yi max

a∈i
w · xa

i }, (17)

where I is the set of ‘bags’, i ∈ I is the bag index, and
a ∈ i is an instance in the bag. If a bag is ‘positive’ then
it has a single ‘active’ element, but it has no ‘active’
elements if it is ‘negative’.

We derive the MI-SVM criterion in Eq. (17) by formu-
lating it in terms of a probabilistic model with hidden
variables and then adapting the arguments used for la-
tent SVM in the last section. First, we introduce hidden
variables {ha

i} associated to the instances xa
i of all bags,

such that ha
i = 1 if the instance is ‘active’ and ha

i = 0
if it is not ‘active’. We have constraints that either: (i)∑

a∈i ha
i = 1 if the bag i is positive, and (ii)

∑
a∈i ha

i = 0
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if the bag is negative.
Next we define a joint probability distribution over the

output y and hidden variables hi:

P (y, hi|xi) =
1

Zi(w, xi)
δ(

y

2
+

1
2
,
∑

a∈i

ha
i )

· exp{
∑

a∈i

ha
i w · xa

i}, (18)

where Zi(w, xi) = 1 +
∑

a∈i exp{w ·xa
i }. We first check

that the MAP estimate from the probability model,
Eq. (18), is equivalent to ŷ(xi, w) = sgnmaxa∈i w · xa

i

which is the MI-SVM decision-rule. Denoting (ŷ, ĥi) =
arg max log P (y, hi|xi), we see that the equivalence holds
since MAP compares log P (ŷ = 1, ĥi|xi) = maxa∈i w ·
xa

i − log Zi(w, xi) to log P (ŷ, ĥi|xi) = − log Zi(w, xi).
To see the equivalence of learning criteria, we ap-

ply the result for latent SVMs from the previous sec-
tion, with loss function l(y, h, yi) = 1 if y �= yi, and
= 0 otherwise. We set w̃ = (w, 1) and φ(xi, yi, hi) =
(
∑

a∈i haxa
i , log δ(y

2 + 1
2 ,

∑
a∈i ha

i )). It can be checked
that: (i) maxh w · φ(xi, yi, hi) = yi+1

2 maxa w ·
xa

i , and (ii) maxy,h{l(y, h, yi) + w̃ · φ(xi, yi, hi)} =
max{ yi+1

2 maxa w · xa
i , 1 + 1−yi

2 maxa w · xa
i }. The re-

sult follows.
We can extend the above analysis to MI-SVM [51],

which is a variant of MIL that allows multiple ‘active’
elements in a positive bag. We modify the probability
distribution in Eq. (18) by relaxing the constraint that∑

a∈i ha
i = 1, and replace it with

∑
a∈i ha

i > 0 if the
bag i is positive. In other words, the joint distribution
is defined as

P (y, hi|xi) =
1

Zi(w, xi)
δ(

y

2
+

1
2
, H(

∑

a∈i

ha
i ))

· exp{
∑

a∈i

ha
i w · xa

i }, (19)

where H(z) = 1 if z � 1, H(z) = 0 otherwise,
and Zi(w, xi) is the partition function. Let (ŷ, ĥi) =
arg max log P (y, hi|xi). It follows that: (i) ŷ = 0 and
ha

i = 0, ∀a provided w · xa
i � 0, ∀a; and (ii) ŷ = 1

and ha
i = 1, ∀a such that w · xa

i > 0. So MAP esti-
mate selects ŷ = 1 provided

∑
a∈i:w·xa

i >0 w · xa
i > 0.

This is equivalent to the MI-SVM decision criterion
ŷ = 1 provided

∑
a∈i

sgn(w·xa
i )+1

2 > 0. We then de-
rive the bound by using Eq. (19) and the same argu-
ment as for MI-SVM. This requires checking the follow-
ing results: (i) maxh w · φ(xi, yi, hi) =

∑
a∈i

ya
i +1
2 w ·

xa
i , and (ii) maxy,h{l(y, h, yi) + w̃ · φ(xi, yi, hi)} =

max{∑a∈i
ya

i +1
2 w · xa

i , 1 +
∑

a∈i
−ya

i +1
2 w · xa

i }, where
ya

i = sgn(w · xa
i ) if yi = 1, and ya

i = −1 if yi = −1.

6.3 Ordinal regression with SVM (rank-SVM)

We can also apply our analysis to SVM based ordi-

nal regression problems, or rank-SVMs (e.g., [57]). Let
{(xi, yi)N

i=1} be a training set, and yi denotes the rank
of data instance xi and takes value from {1, 2, . . . , R}.
We want to learn a prediction function h(x) = wTx,
such that yi > yj ⇐⇒ h(xi) > h(xj). Let P = {(i, j) :
yi > yj}, and m = |P|. The original rank-SVM training
is formulated as the following optimization problem:

min
w,ξij�0

1
2
||w||2 +

C

m

∑

(i,j)∈P
ξij ,

s.t. ∀(i, j) ∈ P : wTxi � wTxj + 1 − ξij . (20)

Let zij = 1 if yi > yj and zij = −1 if yi < yj , we can see
the rank-SVM uses the following learning cost function:

L(w) =
1
2
||w||2

+
C

2m

∑

i,j

max{0, 1 − zijw
T(xi − xj)}, (21)

which essentially an binary classification problem with
(xi, xj) as input and zij as its binary label. The predic-
tion function has a form of H(xi, xj) = wT(xi−xj). As
in Section 5, we can build a connection with the prob-
abilistic model in Eq. (9) by defining φ(xi, xj, zij) =
1
2zij(xi − xj) and using 0-1 loss.

7 Illustrations

Max-margin based learning criteria have been success-
fully applied to a range of problems including learning
Markov models [47], learning grammars for natural lan-
guage [48]. An important example in computer vision is
the application of latent structure SVM to object de-
tection [37]. In this section, we report several exam-
ples from computer vision for a range of tasks includ-
ing image labeling, object detection and motion estima-
tion, which yield close to or at the state-of-the-art on
Microsoft Research Cambridge (MSRC) and PASCAL
VOC databases [23–27].

This models are of the type described in Section 3 and
later previous sections. The input to the models is the
image intensity and so we set x = I. The graph states
y can either be all observed variables or a combination
of observed and hidden variables y and h, depending on
the application. A loss function is also specified depend-
ing on the application.

An inference algorithm is required to compute the
MAP estimate of the probability. For the applications
in which the graph structure is a tree, exact inference
can be performed by dynamic programming or its vari-
ants in the y variables. In most cases the graphical mod-
els will have a large number of small closed loops, e.g.,
see Fig. 2(b), and so junction trees will converge to the
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global optimum. For other applications, approximate in-
ference algorithms such as belief propagation or graph
cuts can be used. The learning can be done by making
the approximations described in the previous sections.
For applications without hidden variables we can use the
structure SVM criterion described in Section 5, while for
applications with hidden units we use the latent SVM
techniques described in Subsection 6.1.

Our first example is image labeling, where the task
is to assign a label s ∈ S to every pixel in the image. For
example, the MSRC dataset [58] has 21 different labels
in S. We consider a hierarchical model with a quadtree
structure in Refs. [23,25], illustrated in Fig. 4(a). The
state variable yμ of a node μ ∈ V gives a description of
the image region underneath it in terms of a partition
into different subregions with a label assigned to each
subregion. Formally, the state variables are written as
yμ = (cμ, sμ), where cμ ∈ C is a segmentation-template,
which partitions the image region into subregions, and
sμ assigns labels to each subregion. The state variables
at higher-levels of the graph give crude ‘executive sum-
maries’ descriptions of image regions which are refined
at lower-levels, see Fig. 4(c).

Fig. 4 (a) The graph structure of the recursive compositional
model used for image labeling in Ref. [23]. The state variable
at each graph node describes an image region by a labeled
segmentation-template. (b) Thirty segmentation-templates. (c)
The states at higher-levels of the graph give crude descriptions
of image regions which are refined at lower-levels. (d) Examples
on the MSRC dataset (image, groundtruth, model output).

Each node μ ∈ V has a data potential φD(yμ, I) which
links its state yμ to the input data I. These potentials
are based on filterbanks of image features. There are
also clique potential terms wα ·φα(yα, I) which impose
compatibility between state variables at different levels
of the hierarchy and priors on the frequency of different
segmentation-templates, the labels, and the spatial re-
lations between labels (e.g., whether a cow is likely to
be adjacent to a car or to the sky). These potentials are
specified in advance and the learning task is to estimate
their parameters w, hence to select which potentials to
use and assign weights to them.

The inference can be performed by pruned dynamic
programming exploiting the tree-like structure of the
graph. The state space of the variables is big so prun-
ing is performed to remove states with low energy. The
learning is performed using the training dataset D =
{(yμ, xμ) : μ = 1, 2, . . . , N}. The groundtruth is only
specified at the pixels, but a simple automatic meth-
ods can be used to estimate the groundtruth for the
state variables of the graph. In this work, the loss func-
tion penalizes all errors equally. The probabilistic crite-
rion for learning the parameters w and its upper bound
can be expressed in the form described in Section 5. For
this application, the authors choose to solve the problem
by minimizing the upper bound in the primal space us-
ing the structure perceptron algorithm [53]. The perfor-
mance of this method was among the start-of-the-art on
the MSRC dataset. The labeling performance was 74.4%
for class-average accuracy and 81.4 % for pixel-average
accuracy, using the same set up and criteria reported in
Ref. [58], which were significant improvements (by 7.3%
and 5.5%) over alternative methods at time of submis-
sion.

Object detection and pose estimation. An-
other example is to detect articulated objects which have
multiple poses, such as people and horses, see Fig. 3
[24]. The object is represented by an AND/OR graph
[5]. Essentially the object is constructed by composition
which involves AND-ing and OR-ing elementary parts
together to form the object. The OR-ing operation al-
lows the model to deal with different poses of the ob-
ject. This is formulated as probability defined on a graph
with state variables yμ = (pμ, tμ), where pμ represents
the pose (i.e., position, orientation, and scale) of an ob-
ject part, and tμ is a binary variable which indicates
if the part is selected or not. The layers of the graph
alternate between AND nodes, for which the part is a
composition of the sub-parts of its child nodes (see Fig.
3), and OR nodes which requires a node to select one
of its child nodes (i.e., a ‘head’ must be ‘head-up’ or
‘head-down’). The t variables perform the selection for
the OR nodes, similar to switch variables [5]. The graph
structure has different topology due to the state of the
t variables (i.e., the selections made at the OR nodes).
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This means that a graph containing only 40 nodes can
have 100 different topologies, which correspond to 100
different poses. An alternative strategy would be to have
100 different models — one for each pose of the object —
and perform pose estimation by selection between these
different models. The AND/OR graph is more compact
and efficient, because it is able to share parts (i.e., the
most elementary components) between different poses.
The potentials φα(yα) impose spatial relations on the
relative positions of parts, their composition from more
elementary parts, and the selection choices made at OR
nodes. The data potentials φD(yμ, I) relate the node at
level l = 1 to the image (e.g., by encouraging the bound-
aries of parts to correspond to edge-type features in the
image).

The graph structure for this model contains some
closed loops because of the graph edges connecting sib-
lings (e.g., the spatial representations between parts at
the same scale). However, the number of closed loops is
small enough that we can perform inference using dy-
namic programming with the junction trees algorithm.
The size of the state space, however, is very large be-
cause there are many possible values for the pose pμ of
each part. Therefore, we perform pruning based on the
energy and by surround suppression (penalizing states
which are too similar to each other). We emphasize that
we are performing inference over the state variables in-
cluding the topology (i.e., the tμ’s), which means that
we do inference over 100 different models efficiently be
exploiting the re-use of the elementary parts.

The loss function l(y, yT) penalizes configurations
where the estimated pose pμ of a node μ ∈ V differs
from an image Ii differs from the correct (ground-truth)
pose pmu,i by more than a threshold. The groundtruth
for the baseball database is specified only for the nodes
at level l = 1, but we can estimate it for the higher
level nodes also. Learning can be approximated by the
SVM criterion without hidden variables, as described in
Section 5. For this application, we choose to perform
learning in the dual space using structured max-margin
algorithms [47–49].

Our next example is an extension of the latent SVM
model successfully applied to object detection and
localization [26]. Each object model is a mixture of
six different hierarchical graphs, shown in Fig. 5(a). The
nodes have variables pμ which indicate the positions of
the parts, and there is a variable V which specifies which
of the six graphs is selected (corresponding to different
views/poses). There is also a variable y which specifies
if the object is detected. In the object model, there are
potentials wα · φα(yα) which impose spatial relations
on the relative positions of the object parts. There are
also data potentials φD(yμ, I), which relate the position
of each part to the image I, based on HOG and SIFT
features.

The inference requires estimating the best state of the
six possible hierarchies which can be done by dynamic
programming over each hierarchy, followed by exhaus-
tive search over the six possibilities. The learning in-
volves hidden variables since the training data is of form
D = {(Ii, yi) : i = 1, 2, . . . , N}, and only says whether
an object is present or not in the image (i.e., it does not
specify the mixture component V or the positions {pμ}
of the object parts). With a ‘0-1’ loss function, the learn-
ing criterion can be expressed in the form given in Sub-
section 6.1. Again, we can view the learning objective as
an upper bound, which was optimized by a variant of Yu
and Joachims’s procedure [50]. The performance of this
approach achieves the state-of-the-art and has recently
obtained second prize in the PASCAL object detection
challenge in 2010.

The third task is motion estimation, which aims
at estimating the motion flow between two images. The
model used as our example [27] is defined on a hierarchi-
cal graph with closed loops (see Fig. 5(c)). The nodes of
the graph represent the motion at different scales, so it
defines motion priors and contextual effects at a range of
scales. The potential functions of this model contain data
terms which require the corresponding points in the two
images have similar intensity properties and a hierar-
chical prior which encourages smoothness and slowness
of the velocity field. The overall distribution of motion
given image pair has the same form as Eq. (1).

The inference is done by a variant of loops belief prop-
agation with adaptive quantization of velocity space. For
learning algorithm, the same loss function as in image
labeling is employed (after quantization), and the up-
per bound is minimized by structure perceptron based
on the groundtruth from the Middlesbury dataset [59].
This model is shown to be able to handle both short-
range and long-range motion, and adequately account
for human performance in psychophysical experiments
[27].

8 Summary

The purpose of this paper is to draw relationships be-
tween probabilistic methods and machine learning ap-
proaches which use max-margin criteria. We show that
several standard max-margin criteria, with and without
hidden/latent variables, can be obtained as upper or
lower bounds to the probabilistic criteria. This perspec-
tive suggests that machine learning approaches can be
applied to problems that can be formulated as proba-
bilistic inference over structured representations (e.g.,
graphs and grammars), and hence can be applied to
a range of computer vision problems as approxima-
tions. These relationships also suggest alternative ma-
chine learning criteria which may be more effective in
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Fig. 5 (a) A hierarchical model of parts, which are used as mixture components to model different poses of objects [26].
(b) These models can detect objects from different viewpoints, with changes in geometry (spatial warps) and even partial
occlusion. They are trained by latent SVM techniques where the groundtruth only specifies that an object is present or not.
(c) A hierarchical model of motion in one dimension [27]. Each node represents motion at different locations and scales. A
child node can have multiple parents, and the prior constraints on motion are expressed by parent-child interactions.

some cases than the standard ones (e.g., by using tighter
upper bounds).

What are the trade-offs, from a probabilistic perspec-
tive, to using these types of bounds? There are clearly
cases where making these bounds could cause serious
problems, e.g., replacing the sum over hidden variables
in the EM algorithm by their maximum value. However,
on the other hand, it is possible that the bounds (i.e.,
the max-margin criterion) may be more robust than the
probabilistic methods. The argument, original due to
Vapnik [12], is that learning algorithms should pay most
attention to regions near the decision boundaries rather
than wasting resources trying to fit the parameters of
the models away from the boundaries. In particular, if
our probability model for the data is wrong, or non-
robust, then attempting to fit the data perfectly by the
probability models may cause errors as well as be com-
putationally demanding. We note, however, that these
bounds become exact in the large |w| limit, where the
margin tends to zero, which is the situations where poor
generalization is expected.
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