
Lines and Points in Three Views and the

Trifocal Tensor

Richard I. Hartley

G.E. CRD, Schenectady, NY, 12301.

Abstract

This paper discusses the basic role of the trifocal tensor in scene reconstruction from
three views. This 3 × 3 × 3 tensor plays a role in the analysis of scenes from three
views analogous to the role played by the fundamental matrix in the two-view case. In
particular, the trifocal tensor may be computed by a linear algorithm from a set of 13
line correspondences in three views. It is further shown in this paper, that the trifocal
tensor is essentially identical to a set of coefficients introduced by Shashua to effect point
transfer in the three view case. This observation means that the 13-line algorithm may
be extended to allow for the computation of the trifocal tensor given any mixture of
sufficiently many line and point correspondences. From the trifocal tensor the camera
matrices of the images may be computed, and the scene may be reconstructed. For
unrelated uncalibrated cameras, this reconstruction will be unique up to projectivity.
Thus, projective reconstruction of a set of lines and points may be carried out linearly
from three views.

1 Introduction

This paper gives an effective algorithm for the projective reconstruction of a scene con-
sisting of lines and points in space as seen in three views with uncalibrated cameras. The
placement of the cameras with respect to the scene is also determined. This algorithm
is unique in the literature in that it gives a unified linear approach that can deal with
a mixture of points and lines in the uncalibrated case, though Spetsakis and Aloimonos
([25, 23]) described a method for calibrated cameras. Most previous algorithms have
been specific to points ([18, 16, 17]) or lines ([24, 29]), but could not handle both. True,
one could always use pairs of matching points to determine line matches, which can then
be used in an algorithm for reconstruction from lines. This strategem, however, achieves
a unified approach for lines and points at considerable expense, since a pair of point
matches contains much more information than a single line match (as will be made clear
quantitively in this paper). The restraint of using only points or lines forces one to ignore
important information available in most images, particularly of man-made objects, since
typically, one can find both distinguished points and lines in matching images.

Points are important in that they give much more information than lines. For instance
although one can do projective reconstruction from only two views of a set of points
([18]), for lines at least three views are necessary ([29]), since no information whatever
about camera placements may be derived from any number of line-to-line correspondences
in fewer than three views. On the other hand, lines have several advantages. Firstly,
they can normally be determined more accurately than points, often with an accuracy

of better than a tenth of a pixel. Secondly, line matches may be used in cases where
occlusions occur. Often end points of lines are not visible in the images. For instance,
in Fig 1, the left hand slanting roof edge of the rear house may be matched in the three
images, although its end point is occluded behind the front house.

Outline. The trifocal tensor arises as a relationship between corresponding lines in
three images. This tensor may be computed linearly from a set of line correspondences
in three images, and as shown previously in [8, 11], leads to an algorithm for projective
reconstruction from line correspondences in three views. A key observation of this paper
is the connection (see equation (7)) between this tensor and Shashua’s 3-view trilinearity
relationships ([20]). In effect, the trifocal tensor, is the same as the set of trilinearity
coefficients introduced by Shashua. In [20] Shashua outlined an algorithm for computa-
tion of these coefficients from seven point correspondences in three views. It immediately
follows from this key observation that one can amalgamate the line and point algorithms
into one. This means that one can non-iteratively carry out projective reconstruction
from three views of seven points, or 13 lines or anything in between (so to speak). Pro-
jective reconstruction from three views of seven points was not considered by Shashua in
([20]). The previous algorithm published in [11] for retrieving the camera matrices, and
hence projective structure, from the trifocal tensor was not very stable numerically. In
this paper I present a numerically superior algorithm based on techniques of numerical
linear algebra. This new algorithm is evaluated experimentally and gives good results,
especially when combined with an iterative algorithm to refine the computed structure.

In order to derive the connection between the trifocal tensor and Shashua’s trilinearity
relationships, I reexamine Shashua’s results and place them in the standard context of
projection using camera matrices. My hope is that this rederivation has the merit of
throwing further light on the meaning of those relationships.

1.1 The Trifocal Tensor

A basic tool in the analysis of this paper is an entity called, here, the trifocal tensor. Since
this entity has appeared previously in the literature in different guises, it is appropriate to
discuss its history. With hindsight, we may atribute the discovery of the trifocal tensor
to Spetsakis and Aloimonos ([24]) and Weng, Huang and Ahuja ([29]), where it was
used for scene reconstruction from lines in the case of calibrated cameras. Spetsakis and
Aloimonos ([25, 23]) also applied it to reconstruction from point and line matches in the
calibrated case. It was later shown by the present author in [8, 11] to be equally applicable
to projective scene reconstruction from 13 lines in the uncalibrated case. Those papers
form the basis for part of this article. In all of the above papers, the entity referred to
here as the trifocal tensor was not considered as a tensor, but rather as a set of three
3× 3 matrices. Perhaps the first author to refer to it as a tensor was Vieville ([28]) who
continued the work on scene reconstruction from lines.

Meanwhile in independent work, Shashua introduced a set of 27 coefficients for a set of
four independent trilinearity conditions relating the coordinates of corresponding points
in three views with uncalibrated cameras ([20]). Subsequently ([21]) Shashua gave a
linear method for computation of the coefficients from only seven point matches in three
views.

A key result of this paper is that the set of coefficients introduced by Shashua ([20])

2

are exactly the same as the entries of the three 3 × 3 matrices of ([29, 8]), except for a
change of sign1 and rearrangement of the indices. The importance of this result is that
it allows an amalgamation of the linear algorithms for points ([21]) and for lines ([11]).
This results in an algorithm of significantly greater applicability and power than either
of the line or point algorithms alone.

Whereas the line papers [29, 8, 11] consider three 3×3 matrices, Shashua’s paper defines
his coefficients as the entries of nine 3-vectors. In fact, essentially, we are dealing with
a triply indexed 3 × 3 × 3 array of values, which it is natural to treat as a tensor, as
suggested by Vieville. Therefore, in this paper, we refer to this three-dimensional array
as a tensor, and make use of tensor notation, in particular the standard summation
convention for repeated indices. In recent work ([22]) Shashua has also considered his
set of coefficients as a tensor. As for the name, I suggest the words trifocal tensor in
an attempt to establish a standard terminology. Despite the potentially fundamental
role played by this tensor in three-view stereo, I believe that the word fundamental is
too often used for us to adopt the term fundamental tensor. The alternative expression
trilinear tensor seems redundant, since a tensor is intrinsically a linear object.

Since the appearance of the original conference versions of this paper, and the preparation
of the original journal version many important new papers have appeared dealing with
the trifocal tensor. Due to the speed with which this area has been developing, it was
impossible to take into account all the latest work in preparing a final version of the
paper. However, it is appropriate to mention here some of the recent papers. The
trifocal tensor has been considered in detail by Triggs ([27, 26]). It is from this work
that I have taken the idea of distinguishing between covariant and contravariant indices.
Triggs’s papers and also the paper of Faugeras and Mourrain ([5]) give enlightening new
derivations of the trifocal tensor equations and consider the the trifocal tensor in the
context of general linear constraints involving multiple views. For correspondences in
four views, quadrilinear constraints and their associated tensor have been described in
several papers ([27, 26, 5, 30, 15, 13]). Heyden ([15, 13]) uses the four-view tensor to
derive a reconstruction algorithm that works with six or more point correspondences in
four views. Heyden ([14, 15, 13]) also introduces the concept of a “reduced” trifocal tensor
(and reduced fundamental matrix), which results from the trifocal tensor by expressing
image points with respect to a canonic affine basis. Finally Armstrong et al. ([1]) use the
trifocal tensor in self calibration – that is, derivation of Euclidean structure from three
views.

1.2 Notation and Basics

Vectors, sometimes denoted by bold lower-case letters such as u are singly-indexed en-
sembles of real numbers. The vector u (and in the same way other vectors) will more
often be denoted as ui, where i is an index running over the appropriate range (usually
1, . . . , 3 or 1, . . . , 4). In a similar manner, a notation such as aij denotes a doubly indexed
quantity, namely a matrix. We will also be concerned with triply indexed quantities,
such as T jki . We adopt the usual summation convention for tensors :

Any index repeated as subscript and superscript in a term involving vectors,
matrices and tensors implies a summation over the range of index values.

1In order to avoid the sign discrepancy, Shashua’s coefficients will be defined with opposite sign in
this paper

3

Any formula involving indices is intended to hold for any choice of values of
the free indices (which means those indices that are not repeated).

The placement of an index as subscript or superscript indicates whether it transforms
covariantly or contravariantly with respect to a change of basis. This point is explained
in Appendix A. Readers willing to accept on faith, or not worry about the position of the
indices need not read this appendix. They will find throughout the paper that repeated
indices implying summation do turn up, somewhat magically, in matching contravariant
and covariant positions.

The three-dimensional space containing the scene will be considered to be the 3-di-
mensional projective space P3 and points in space will be represented by homogeneous
4-vectors x. Similarly, image space will be regarded as the 2-dimensional projective space
P2 and points in an image will be represented by homogeneous 3-vectors u. Homoge-
neous quantities (vectors, matrices or tensors) that differ by a non-zero scale factor are
considered to be equal. In this paper, we use the symbol ≈ to indicate equality up to
a constant non-zero scale. This is necessary, since we want to keep clear the distinction
between quantites that are equal and those that are equal up to a constant factor.

The 3D-to-2D mapping induced by a projective camera may be represented by a 3 × 4
matrix M = [mi

j] of rank 3, such that if x and u are corresponding object and image
points then u ≈ Mx, or in tensor notation, ui ≈ mi

jx
j . Such a matrix will be called

a camera matrix. One special camera matrix is denoted by [I | 0], made up of a 3 × 3
identity matrix I and a final zero column.

Just as points in image space P2 are represented by homogeneous vectors so are lines in
P2. Bold greek letters such as λ represent lines. The point u lies on the line λ if and
only if λiui = 0. If u = (u1, u2, 1)� then the perpendicular distance from the line to the
point is given by

d(λ,u) =
λiu

i

(λ2
1 + λ

2
2)1/2

(1)

Normal Form for Camera Matrices. Consider a set of lines and points in space
viewed by several cameras. We use the word feature to represent either a line or a point.
We suppose that the image coordinates of each feature as seen in each image are given,
but the actual positions of the features in space are unknown. The task of projective
reconstruction is to find a set of camera matrices and 3D-lines and points so that each
such 3D feature is indeed mapped to the given image feature in each of the images.
If the camera matrices are allowed to be arbitrary, then ([7, 4]) the scene can not be
reconstructed more precisely than up to an arbitrary 3D projective transformation.

Consider now a reconstruction from three views, and let the three camera matrices be
M , M ′ and M ′′. We make the assumption that no two of the cameras are located at the
same point in space. Let H be formed by adding one extra row to M to make a non-
singular 4 × 4 matrix. Then since HH−1 = I4×4, it follows that MH−1 = [I|0]. Since
M may be transformed to [I | 0], by applying transformation H to the reconstruction
we may assume without loss of generality that M = [I | 0].
To save the reader the trouble of having to count primes, we denote the entries of the
camera matricesM ′ andM ′′ by aij and b

i
j respectively, instead of by m′ij and m′′ij . Thus,

the three camera matrices M , M ′ and M ′′ may be written in the form M = [I | 0],
M ′ = [aij] and M

′′ = [bij].

4

2 Transferring lines

In this section we investigate the relationship between the images of a line as taken by
three separate cameras.

Given a general camera matrix and a line in the image, the projection of the line from
the camera centre forms a plane in space consisting of all points in space that will map
onto the given image line. We need to derive a formula for that plane. The simple answer
is as follow.

Proposition2.1. The plane in space consisting of all points that are mapped to a line
λi by a camera with matrix [mi

j] is given by πj = mi
jλi.

Proof. By definition, a point xj is on the plane πj if and only if the projected point mi
jx
j

lies on the line λi. This latter condition can be expressed as λimi
jx
j = 0. On the other

hand, xj lies on πj if and only if πjxj = 0. Hence, we see that πjxj = 0 if and only if
λim

i
jx
j = 0, and from this we deduce that πj = λimi

j as required. ��

In standard matrix notation, we may write this plane as π =M�λ.

Now, given three cameras with matricesM = [I | 0],M ′ = [aji] andM
′′ = [bji], and three

lines λj , λ′j and λ
′′
j in the three images, we seek a relationship between the coordinates

of the three lines. Since the three image lines are derived from a single line in space, it
follows that the planes corresponding to the three image lines must meet at this line in
space. In particular, the three planes M�λ, M ′�λ′ and M ′′�λ′′ meet in a line. Writing
the coordinate vectors of these three planes as the rows of a matrix we obtain


 λ1 λ2 λ3 0
aj1λ
′
j aj2λ

′
j aj3λ

′
j aj4λ

′
j

bk1λ
′′
k bk2λ

′′
k bk3λ

′′
k bk4λ

′′
k


 . (2)

In writing this matrix, we have taken particular note of the simple form of the matrix
M = [I | 0]. Since the three planes meet in space, there is a linear dependency between
the rows of this matrix (2). In particular, there exist constants α and β such that for
i = 1, . . . , 3 we have

λi = α(a
j
iλ
′
j) + β(b

k
i λ
′′
k)

Furthermore, because of the zero entry in the top row, 0 = α(aj4λ
′
j)+β(b

k
4λ
′′
k). We deduce

that α ≈ (bk4λ′′k) and β ≈ −(a
j
4λ
′
j). Therefore

λi ≈ (bk4λ
′′
k)(a

j
iλ
′
j)− (aj4λ

′
j)(b

k
i λ
′′
k)

= λ′jλ
′′
k(a

j
i b
k
4 − a

j
4b
k
i)

Now, we define a 3× 3× 3 tensor T jki by the expression

T jki = ajib
k
4 − a

j
4b
k
i . (3)

Then we have the following formula.

λi ≈ λ′jλ′′kT
jk
i . (4)

5

The tensor T jki is the trifocal tensor, which is the basic entity investigated in this paper.
Formula (4) has been derived previously in [29, 24] for the special case of calibrated
cameras. The above derivation shows how generalization to the case of uncalibrated
cameras leads to a simplification of the derivation. It should be remarked that the
trifocal tensor defined by (3) treats the first image with camera matrix [I | 0] differently
from the others. This is shown most clearly in (4) in which the lines in the first image
are handled differently. The index i in T jki appears in the covariant position, whereas
the other two indices are contravariant. There are in fact two other related but distinct
trifocal tensors in which indices corresponding to the two other images are covariant. We
continue to speak of a single trifocal tensor, however, implicitly assuming that one of the
images is singled out in this way.

It is worthwhile noting at this stage that the vectors aj4 and bk4 appearing in (3) have a
geometric meaning. They are the epipoles in the second and third images corresponding
to the centre of projection of the first camera, namely the point (0, 0, 0, 1)�. If these
epipoles are known then the entries of the trifocal tensor are linear expressions in the
remaining camera matrix entries. This point will be taken up again in section 5.

Given T jki and the coordinates λ′j and λ
′′
k of matching lines, expression (3) may be used

to compute the line in the other image. The application of this process, know as line
transfer will not be investigated in this paper, however.

We describe now a first method for determining the trifocal tensor. If at least 13 line
matches λ↔ λ′ ↔ λ′′ are known, it is possible to solve for the entries of the tensor T jki ,
since each line match provides two linear equations in the 27 unknown tensor entries. In
particular, if the line λ is presented by specifying the two points on the line, then each
such point u = (u1, u2, u3)� gives rise to an equation

uiλ′jλ
′′
kT

jk
i = 0 (5)

To normalize these equations, the lines λ′ and λ′′ should be scaled to be unit vectors.
Each end point u should be scaled so that u3 = 1.

3 Transferring Points.

In this section we will investigate the relationship of the trifocal tensor with point-transfer
methods, and in particular with the trilinearity relationships of Shashua.

Suppose that a point x in space is seen in three images, and that as usual the three
cameras are given in the normalized form M = [I | 0], M ′ = [aij] and M

′′ = [bij].

We suppose that the point x is seen at positions u, u′ and u′′ in the three images, where
u (and similarly u′ and u′′) is a 3-vector u = (u1, u2, u3)�, the representation of the
point in homogeneous coordinates. The coordinates (u1/u3, u2/u3) are the coordinates
actually seen in the image. We wish to find a relationship between the coordinates of
the points u, u′ and u′′. At any point in the following derivation, we may set u3, u′3 or
u′′3 to 1 to obtain equations relating to measured image coordinates.

Because of the form of the matrix M = [I | 0], it is extremely simple to give a formula
for the position of the point in space. In particular, since [I | 0]x ≈ u, we may write

x =
(

u
t

)
for some t, yet to be determined. It may be verified that t is the same as the

6

“relative affine invariant”, k, considered by Shashua ([20]). Now, projecting this point
into the second image by the usual formula u′i ≈ aijxj gives

u′i ≈ aikuk + ai4t

The notation ≈ denotes equality up to an unknown scale factor. We may eliminate this
scale factor to obtain equations

u′i(ajku
k + aj4t) = u

′j(aiku
k + ai4t)

where each choice of the free indices i and j gives a separate equation. Of the three re-
sulting equations, only two are independent. From each of these equations independently,
one may compute the value of t. We obtain three separate estimates for t.

t = uk(u′iajk − u′jaik)/(u′jai4 − u′ia
j
4) (6)

Substituting the value of t from (6) we see that the point x may be written as

x =
(

u
uk(u′iajk − u′jaik)/(u′jai4 − u′ia

j
4)

)

≈
(

(u′jai4 − u′ia
j
4)u

uk(u′iajk − u′jaik)

)

Now, projecting this point via the third camera, u′′l ≈ blkxk we find that

u′′l ≈ blku
k(u′jai4 − u′ia

j
4) + b

l
4u
k(u′iajk − u

′jaik)

≈ uku′i(ajkb
l
4 − a

j
4b
l
k)− uku′j(aikbl4 − ai4blk)

Now, referring to (3), we recognize the tensor coefficients T jki in this expression :

u′′l ≈ uk(u′iT jlk − u′jT ilk) (7)

As before we may eliminate the unknown scale factor implied by the ≈ sign to get (after
some slight rearranging) the equations

uk(u′iu′′mT jlk − u′ju′′mT ilk − u′iu′′lT
jm
k + u′ju′′lT imk) = 0ijlm . (8)

These are the trilinearity relationships of Shashua ([20]). In these equations, the indices
i, j, l and m are free variables, and there is one equation for each choice of indices with
i 	= j and l 	= m. Since we get the same relation by interchanging i and l, or l and m, we
may assume that i < j and l < m. There are therefore nine different equations defined
by this expression. However, only two of the three choices of pair (i, j) given independent
equations, and the same is true for pairs (l,m). Hence, there are 4 linearly independent
equations.

Equation (8) may seem a little complex, however, it is easily remembered if one notices
its special form. Consider the first term uku′iu′′mT jlk . One considers indices i and j as

7

being paired, and also indices l and m are paired. Now the other terms are obtained by
swapping the paired indices i and j, and similarly swapping l and m, leading to a total
of four terms. Each swap of a pair of indices causes a change of sign. Equation (8) may
be written compactly by defining a tensor εpqr, which is equal to zero unless p, q and r
are all distinct, and otherwise equals +1 or −1 according to whether (pqr) is an even or
odd permutation of the indices (123). Using this notation, (8) becomes simply

uk(u′iεijp)(u′′lεlmq)T
jm
k = 0pq (9)

where each choice of p and q gives a different equation. In a similar manner, (4) may be
written as

εipqλiλ
′
jλ
′′
kT

jk
p = 0q . (10)

The form (9) of the trilinear point relation, shows a similarity to (5). In particular, con-
sider the meaning of the expression u′iεijp for different values of the free variable p. For
p = 1, 2, 3 vector u′iεijp is equal to (0,−u′3, u′2)�, (u3, 0,−u1)� and (−u2, u1, 0)� respec-
tively. The first two of these vectors represent lines through the point u′i parallel with
the horizontal (first) and vertical (second) coordinate axes. The third vector represents
a line through the point ui and the coordinate origin (0, 0, 1)�. Thus (9) is equivalent to
a set of equations ukλ′jλ

′′
mT

jm
k where the lines λ′j and λ

′′
m may be chosen independently

to be lines through the respective points u′i and u′′l parallel to the coordinate axes or
through the coordinate origin. Geometrically this is stating that the line in space that
projects to (for instance) horizontal lines through points u′i and u′′l in two of the images
will project in the other image to a line through the point uk. Thus, the trilinear point
relations (9) may be considered simply as special cases of the line transfer equations (4)
or (5). A similar geometric interpretation of the trilinear point relations has been given
in [5].

One choice of the four independent equations from (8) is obtained by setting j = m = 3,
and letting i and l range freely. As stated previously, we may set u3, u′3 and u′′3 to 1 to
obtain a relationship between observed image coordinates. Equation (8) then becomes

uk(u′iu′′lT 33
k − u′′lT i3k − u′iT 3l

k + T ilk) = 0 . (11)

The four different choices of i, l = 1, 2 give four different equations in terms of the
observed image coordinates.

Given seven point correspondences, we have 28 equations, which is enough to solve for
the tensor entries T jki . Shashua states that better results are obtained by including six
equations for each point match. The experiments reported in a later section use all nine
equations. This seems to be a good idea to improve stability, but it is not clear how
much advantage (if any) this gives. The effect on run-time of choosing nine rather than
four equations per point is considered in the next section, however.

4 Solving for the Trifocal Tensor

We have seen that the entries of the trifocal tensor, T occur in equations involving both
points (11) and lines (5). This has the significant implication that we may amalgamate
the line and point algorithms into one algorithm. In particular, each line correspondence
λ↔ λ′ ↔ λ′′ gives two linear equations in the entries T jki , whereas each point correspon-
dence gives four linear equations. Therefore, provided that 2#lines+4#points ≥ 26 we

8

have sufficiently many matches to solve for the T jki . The tensor entries T jki are found
up to a common scale, and we find a solution such that sum of squares of the entries is
one. In the case where there are more than 26 equations, we find a least-squares solution
satisfying this constraint.

Normalization. Before setting out to write and solve the equations, it is a very good
idea to normalize the data by scaling and translating the points. The algorithm does not
do well if all points are of the form (u1, u2, 1)� in homogeneous coordinates with u1 and
u2 very much larger than 1. A heuristic that works well is to translate the points in each
image so that the centroid of all measured points is at the origin of the image coordinates,
and then scaling so that the average distance of a point from the origin is

√
2 units. In

this way the average point will be something like (1, 1, 1)� in homogeneous coordinates,
and each of the homogeneous coordinates will be approximately of equal weight. This
transformation improves the condition of the matrix of equations, and leads to a much
better solution. Despite the seemingly harmless nature of this transformation, this is an
essential step in the algorithm.

This normalization step has also been shown ([9]) to be effective in the two-camera case
for determining the fundamental matrix.

Line Equations. The chosen method of expressing line equations is as follows. Each
line is assumed to be defined by two points. For the second and third images the lines
λ′ and λ′′ are computed from their end points. The end points defining the lines are
subject to the same scaling and translation as the point correspondences, described in
the previous paragraph, and are normalized to be unit vectors. Corresponding to each of
the two points defining the line λ in the first images, an equation uiλ′jλ

′′
kT

jk
i is written.

In forming this equation, the point ui is normalized so that its third coordinate is unity.
When the set of equations is solved, such an equation will not be satisfied exactly. Instead
there will be an error, denoted by ε such that uiλ′jλ

′′
kT

jk
i = ε. The sum of squares of

these errors ε is minimized by solving the set of equations. Note that ε is related to the
Euclidean distance of the end point ui from the transferred line λ̂i = λ′jλ

′′
kT

jk
i . In fact,

according to (1) we have ε = (λ̂2
1 + λ̂2

2)
1/2d(λ̂,u). Ideally, we would like to minimize

the geometric distance d(λ̂,u) instead. This suggests an iterative weighting scheme. At
the first iteration, the weight of the equation is unity. At subsequent iterations, the line
equation (5) are weighted by (λ̂2

1 + λ̂2
2)−1/2. One proceeds in this way for a small number

of iterations or until the value of (λ̂2
1 + λ̂2

2)
1/2 converges to 1. In this latter case, the

value of ε represents the residual geometric distance. A similar iterative method has
been used in [3] for computation of the fundamental matrix. A preliminary application
of this iterative method to the present problem was tried with good results, but more
research is needed to determine if it makes a significant difference. In general, ways of
weighting the line equations and the point equations to give equal importance to each
is a possible subject of further research. The results reported in section 7 do not use an
iterative weighting scheme.

Typical feature extractors used in computer vision applications extract lines by finding
many points along the line. It is shown in Appendix C that in such cases, the data
representing such lines may be reduced to a single pair of points.

9

Solution of the Equations. The set of equations we construct are of the form,
At = 0, where A is the equation matrix and t is a vector containing the elements of T jki to
be found. We are not interested in the solution t = 0, and to avoid ambiguity, we impose
the constraint ||t|| = 1. Since we do not expect an exact solution, our task is to minimize
the quantity ||At|| subject to this constraint. The solution to this problem is easily seen
(using Langrange multipliers, for instance) to be the unit eigenvector corresponding to
the least eigenvalue of A�A. Being symmetric and positive definite, A�A has only real
positive eigenvalues. A good way to find this eigenvector is by using the Singular Value
Decomposition ([19]). If one writes A = UDV �, where U and V are orthogonal, and D
is diagonal, then the smallest singular value (diagonal element of D) is the square-root of
the smallest eigenvalue of A�A and the required eigenvector is the corresponding column
of V .

We now briefly consider the time complexity of this algorithm. Computation of the
Singular Value Decomposition (SVD) is the most time-intensive part of the algorithm
for computing T jki , since all other parts take linear of constant time. Approximate
numbers of floating-point operations (flops) required to compute the SVD of an m × n
matrix are given in [6]. To find matrices U , V and D, a total of 4m2n+8mn2+9n3 flops
are needed. However, if only the matrices V and D are required, as is the case here, then
only 4mn2 + 8n3 flops are required. This is an important distinction, since this latter
expression does not contain any term in m2. Table 1 gives the total number of flops for
carrying out the SVD for seven (the minimum number) or 100 point correspondences
and either four or nine equations per point.

points # equations # equations # operations # operations
per point (m) not computing U computing U

7 4 28 239,112 425,115
9 63 341,172 973,215

100 4 400 1,323,864 19,789,947
9 900 2,781,864 92,905,947

Table 1: Comparison of the number of flops required to compute the SVD of a matrix of
size m× n, for varying values of m and for n = 27.

It may be seen from the second-last column of the table that if U is not required (as
is the case in solving for T jki) then the difference between numbers of operations is not
very significant whether four or nine equations per point are used. The difference is
no more than a factor of 9/4 in the limit, and is substantially less for small problems.
If however the matrix U is computed, then the number of flops is increased greatly –
by more than 30 times when solving for 100 points. Thus, if speed is an issue, it is
very important to use a version of the SVD that does not compute the matrix U . The
SVD implementation in [19] is therefore not suitable as stands, though it may be easily
modified. The recommended procedure, therefore, is to include all nine equations for
each point, so as to get an expected increase in stability. However an implementation of
the SVD should be used that does not compute the unneeded matrix U .

An alternative to using the SVD is to find the eigenvector of A�A directly using the
method of Jacobi ([19]). This method is theoretically inferior, since forming the product
A�A adversely affects the conditioning of the problem. However, my belief is that this

10

does not make a significant difference, since the limiting factor is not the numerical
stability of the algorithm, but the deleterious effect of measurement error.

5 Retrieving the Camera Matrices

Formula (3) gives a formula for the trifocal tensor T jki in terms of the camera matrices.
It is possible to go the other way and retrieve the camera matrices, M ′ and M ′′ from
the tensor T jki , assuming as ever that the first camera has matrix M = [I | 0]. This is
done in two stages. In the first stage, one finds the vectors ai4 and bi4 (that is, the last
columns of M ′ and M ′′). In the second stage, one finds the remaining entries.

We consider the first step first. For i, j = 1, . . . 3 we denote by eij the epipole in the
i-th image corresponding to the centre of the j-th camera. If the first camera has matrix
M = [I | 0], then as remarked previously, the epipoles e21 and e31 are the last columns
ai4 and bi4 of the two camera matrices M ′ = [aij] and M

′′ = [bij] respectively. These
two epipoles may easily be computed from the tensor T jki according to the following
proposition.

Proposition5.2. For each i = 1, . . . , 3, the matrix T ··i is singular. Furthermore, the
generators of the three left null-spaces have a common perpendicular, the epipole e21.
Similarly epipole e31 is the common perpendicular of the right nullspaces of the three
matrices T ··i .

This proposition is proven in Appendix C. Also in Appendix C, a closed form solution
is given for determining the camera matrices in terms of the trifocal tensor. This closed
form method of determining M ′ and M ′′ was evaluated in [11]. By carefully examining
the results of that method, it has subsequently been found that using these formulae to
determineM ′ andM ′′ is unstable in the presence of noise, and hence is not recommended
for actual computation. Therefore, we consider two other techniques for retrieving the
camera matrices.

5.1 The direct method

If ai4 and bi4 and T jki are all known, the equations (3) form a redundant set of linear
equations in the remaining entries of the matrices M ′ and M ′′. We may solve these
equations using linear least-squares methods ([19, 2]) to find M ′ = [aij] and M

′′ = [bij].
Unfortunately, this method does not seem to give markedly better results than the closed
form solution. It is also not recommended. To see why this is so, we examine this method
more closely.

The set of equations (3) may be written in the form t = Hy where y is the set of
camera matrix entries that we are seeking to determine, and t is a vector consisting of
the entries of the tensor T jki . In the presence of noise, this set of equations does not have
an exact solution, and one finds the least-squares solution instead. This can be done
by using the Singular Value Decomposition ([19]) or by solving the normal equations
H�Hy = H�t. The result of this method is to find a vector y that minimizes the
squared error (t− t̂)�(t− t̂), where t̂ = Hy.

11

The reason that this method gives poor results is that errors in the entries of t are con-
sidered as being independent and of equal importance. A better method is to weight the
errors in the entries of t according to their inverse covariance matrix. More specifically,
assuming that the coordinates of the point and line correspondences used to compute T jki
are independent gaussian random variables with equal variance, the estimated values of
the entries of t have an induced inverse covariance matrix given by A�A where At = 0
is the set of equations used to compute t. One seeks a solution y minimizing the value of
(t− t̂)�(A�A)(t− t̂), where as before t̂ = Hy. This can be done by solving the normal
equations H�(A�A)Hy = H�(A�A)t.

Solving this least-squares problem weighted by A�A to find y (the entries of the camera
matrices) could be expected to give substantially better results that the unweighted
method. I did not try it, however, since the next method to be described uses the
covariance matrix in a slightly different, but theoretically preferable manner.

5.2 The recomputation method

The method just described gave a way of extracting the camera matrices from the trifocal
tensor. The method described next goes back to the original image measurements in
order to compute the camera matrices. These are the same measurements that we used
to compute the trifocal tensor. The difference is that now we assume that the the last
columns ai4 of M ′ and bi4 of M ′′ are known. The camera matrices may now be computed
in a single step.

The tensor T jki is found by solving a system of equations At = 0 where t is a vector
comprising the desired elements of T jki . Furthermore, as in the direct computation
method we may write t = Hy where y is the vector of the entries aij and bij that
we are seeking, and H is the linear relationship expressed by (3). Putting these two
equations together, one can find a solution for y directly by solving AHy = At = 0.
More exactly, one minimizes ||AHy|| subject to the constraint ||y|| = 1. The solution
is the eigenvector corresponding to the least eigenvalue of H�A�AH . Writing t̂ = Hy
where y is the solution vector, we see that t̂ minimizes ||At̂||. Hence t̂ is the best possible
solution to the equations At̂ = 0 subject to the condition that t̂ = Hy for some y.

Compare this with the original solution for T jki , found by solving the equations At = 0.
That original method finds a solution for the trifocal tensor, that in the presence of noise
will not correspond exactly to a set of camera matrices. The method described in the last
paragraph, however, finds a solution to the equations At̂ = 0 that is exactly realizable as
a set of camera matrices. Furthermore, this method finds the optimal solution in terms
of minimizing the algebraic distance to the observed data. The requirement of course is
that one must know the epipoles ai4 and bi4 to be able to apply this method.

There is one small problem, which has the potential to cause an instability in this method
as just described. In particular, since T jki is unchanged by a projective transformation of
the cameras, it may be verified that the values of aij and b

i
j are not uniquely determined

by T jki . In particular, if aij is replaced by aij + αja
i
4 for any vector αj , and similarly bij

is replaced by bij + αjb
i
4 for the same αj , then the value of T jki defined by equation (3)

is unchanged. This means that the matrix H described above is not of full rank, and
consequently the matrix H�A�AH will have a multidimensional eigenspace correspond-
ing to the eigenvalue 0. This means that the solution found will be unstable. This may
not be a significant problem, since any solution found by this method will be a valid

12

solution, giving one solution for the camera matrices and all such solutions correspond
to the same adjusted trifocal tensor T̂ jki . Nevertheless, I prefer to constrain the solution
by adding constraints on the entries aij and b

i
j so as to ensure a stable solution.

One method of constraining aij is by specifying that
∑

i a
i
ja
i
4 = 0. This gives three

constraints, one for each value of j = 1, . . . , 3, which may be interpreted as meaning
that 4-th column of M ′ = [aij] is orthogonal to all the other columns. One may verify
that this condition is achieved by a suitable choice of the vector αj in the last paragraph
(in particular, setting αj = −

∑
i a
i
ja
i
4). The condition

∑
i a
i
ja
i
4 = 0 gives a set of three

linear constraints.

The task of solving for aij and b
i
j is therefore a constrained minimization problem of the

form: minimize ||AHy|| subject to ||y|| = 1 and Cy = 0, where C is a matrix of linear
constraints. This problem may be solved as follows. Let C = UDV � be the Singular
Value Decomposition of C, whereD is a diagonal matrix with r non-zero diagonal entries.
In this case, r = 3. We ensure that the non-zero diagonal entries of D precede the zero
entries. Writing ŷ = V �y, the problem may be written : minimize ||AHV ŷ|| subject to
||V ŷ|| = 1 and UDŷ = 0. This last constraint is equivalent to Dŷ = 0, and is satisfied
only if ŷ has r leading zeros. In this case, we may write y = V ŷ = V ′y′, where y′

is the vector formed from ŷ by omitting the leading r zeros, and V ′ is formed from V
by omitting the first r columns. The minimization problem then becomes : minimize
||AHV ′y′|| subject to ||V ′y′|| = 1. Since V is orthogonal, the condition ||V ′y′|| = 1 is
equivalent to ||y′|| = 1. Thus, the problem has been reduced to our usual minimization
problem for which the solution y′ is the eigenvector corresponding to the minimum
eigenvalue of V ′�H�A�AHV ′. Finally, y is computed as y = V ′y′. We summarize now
the algorithm for computing the camera matrices.

Algorithm for computing camera-matrices.

1. Compute the trifocal tensor T jki by solving a set of equations At = 0 where t is
the vector containing the entries of T jki . Retain the matrix A.

2. Find ai4 and bi4 as the common normal to the left (respectively, right) null spaces
of the three matrices T ··1 , T

··
2 and T ··3 .

3. Compute the set of equations t = Hy from (3), where y is the vector of still
unknown entries of aij and b

i
j .

4. Compute the matrix C such thatCy = 0 expresses the three constraints
∑3
i=1 a

i
ja
i
4 =

0.

5. Compute the Singular Value Decomposition C = UDV � where diagonal entries of
D are sorted with non-zero ones first. Let V ′ be the matrix obtained from V by
eliminating the first three columns.

6. Find the eigenvector y′ corresponding to the smallest eigenvalue of V ′�H�A�AHV ′

either directly by using Jacobi’s method ([19]) or by computing the Singular Value
Decomposition of AHV ′.

7. The required set of 18 values aij and b
i
j are contained in the vector y = V ′y′.

13

Since this algorithm is more complicated than either of the two previous algorithms
(closed-form solution, and direct linear solution) it is comforting to verify that it performs
very much better (in terms of measured errors) than they do. Therefore, the two earlier
algorithms should not be used to compute the camera matrices.

6 Algorithm Outline

To tie together all the threads of the reconstruction algorithm, an outline will now be
given. As input to this algorithm, we assume as set of point-to-point image correspon-
dences, each one of the form u↔ u′ ↔ u′′, and a set of line correspondences of the form
λ↔ λ′ ↔ λ′′, where # lines +2∗# points ≥ 13. The lines are assumed to be specified
by giving the two end points of each line. The steps of the algorithm are as follows.

1. Coordinate scaling and translation. For each image separately, translate and
scale the coordinates of the points such that the centroid of all given coordinates
is at the origin, and the average distance of a point from the origin is

√
2.

2. Computing and normalizing the lines. Each line λ′ and λ′′ is computed
from its endpoints, and normalized.

3. Construct the equations. For each line correspondence, construct a pair of
equations of the form (5) in the entries of the tensor T jki . Similarly, for each point
correspondence, construct nine equations of the form (8) also in the entries of tensor
T jki .

4. Computation of the Camera Matrices. Compute the camera matrices using
the algorithm of section 5.2.

5. Reconstruction. Given the camera matrices, the points may be reconstructed
using the triangulation methods of [12]. The lines may be reconstructed by com-
puting the intersection of the planes in space defined by the image lines.

6. Unscaling The effect of the initial scaling and translation of the images may be
undone by replacing the image coordinates by their original values, and making a
corresponding adjustment to the computed camera matrices.

7 Experimental Evaluation of the Algorithm

This algorithm has been tested with synthetic and real data. First I describe the tests
with synthetic data. A program was written to generate synthetic data, approximating
the sort of data that would be taken with a 35mm camera with a standard 50mm lens.
The images measured about 600×600 pixels. Between 0 and 10 pixels of noise was added
to all three images.

The findings of the experiments will be given in the captions of the following graphs. The
error is given in terms of residual 2D error, that is the root-mean-squared (RMS) distance
between the original points and the projection of the points obtained by reconstruction.
Although this gives only an indirect measurement of the quality of the reconstruction, if
the error is of the same order as the injected noise, then this is a good indication that

14

the reconstruction is very good. The graphs all show injected noise on the horizontal
axis, and residual error on the vertical axis.

In order to help to judge the quality of the results obtained using the linear algorithm,
the outputs of the linear algorithm were used to initialize a full-scale iterative least-
squares minimization routine based on Levenberg-Marquardt minimization ([19]). In this
iterative estimation step, the camera matrices M ′ and M ′′ were allowed to vary as were
the 3D locations of the reconstructed points and lines. The error term being minimized
was a sum of contributions from all three images. In each image, the error associated
with each point was the square of the distance of each measured image point from the
reprojected space point. The error associated with each line was the sum of squares of
perpendicular distances of the reprojected line from the two points used to define that
line. Apart from the possibility of converging to a local minimum, this algorithm should
give optimal results, and hence may be used as a yardstick to judge the performance
of the linear algorithm. As will be seen in the examples to follow, the linear algorithm
performs very favourably compared with the iterative algorithm.

Graph 1 : Residual error for 10 points. This algorithm shows the results of re-
construction with ten points in three views. Residual error is plotted as a function of
injected noise. The upper curve is the linear algorithm, and the lower curve is the iter-
ative refinement. The residual errors are substantially smaller than the injected noise.
The algorithm works well with as much as 10 pixels noise in each axial direction.

15

Graph 2 : 7 points and 10 lines. The curves show the results both of the iterative
algorithm and those obtained after iterative refinement of the results, using a Levenberg-
Marquardt iterative least-squares algorithm. The graphs from the bottom are iterative
algorithm line errors, iterative algorithm point errors and then linear algorithm line errors
and point errors overlapping. The results after refinement are excellent, with the residual
error being substantially less than the injected noise. The linear algorithm does not do
quite so well, but the results are acceptable, especially for noise levels less than four pixels.

7.1 Real Images.

Next, we consider data obtained from a set of three images of a pair of wooden houses,
shown in Fig 1. The dimension of the images was 640×480 pixels. The points and edges
were extracted automatically and then matched between the images by hand. There
were a set of 15 lines and 13 points identifiable in the two images. Since ground truth
was not available for the real data, the errors reported below are for the residual error
after reprojection of the constructed model into the images. The values reported are the
average over all points and lines in three images.

1. For the linear algorithm : 1.05 pixels error for points, and 1.06 pixels for lines.

2. For the iterative refinement : 0.87 pixels for points, and 0.67 pixels for lines.

Thus, at least expressed in terms of residual error, we have achieved a very good recon-
struction using the linear-algoritm, which was improved by about 25% using the iterative
least-squares method.

In order to find whether these residual errors correspond to realistic levels of noise in the
extraction of images features, a further experiment was run in which various levels of
noise are injected into the real image data. The coordinates of the image features were
first corrected so that the match corresponded precisely with the projection model. This
was so that noise could subsequently be injected in a controlled manner. The result of
these experiments showed that the actual residual errors found for the real uncorrected
data correspond approximately to a a noise level of about 1 pixel in the coordinates of the

16

Figure 1: Three photos of houses

extracted features. This noise level is well below the break-down point of the algorithms,
which performed well with up to 8 pixels of noise.

Graph 3 : Synthetic house data - linear. This shows the residual error resulting
from injection of data into the image measurements. The bottom curve shows the line
error and the top curve, the point error. For the case of 8 pixels noise, the algorithm
evidently hiccuped.

17

Graph 4 : Synthetic house data - iterative This shows the results obtained af-
ter refining the linear result using Levenberg-Marquardt. Once more, the bottom curve
represents the errors for lines. The results are very good, and the glitch is removed.

Graph 5 : Synthetic house data - comparison This compares the point error for
the iterative (lower) and linear methods. Except for the case of 8 pixels, where the linear
algorithm deviated slightly, there is very little difference. This indicates that the linear
algorithm is very nearly as good as the optimum least-squares solution.

8 Conclusions

The algorithm described in this paper is unique in that no other linear method is known
for handling both lines and points in a single non-iterative approach. The results obtained
show indicate that this algorithm behaves very well in the presence of realistic amounts of
noise. This algorithm has two advantages over algorithms (such as the 8-point algorithm
of Longuet-Higgins) that use two views. Firstly, the presence of a third image can be
expected to stabilize the solution (as remarked also in [22]), and secondly, the algorithm
works for lines as well as points. Lines in images may often be computed with great
precision. On the other hand, the algorithm benefits from the presence of points in
the input data. The results obtained using this algorithm are much better than those
I obtained previously with just lines. This is due to the use of mixed point and line
data, and also to the improved algorithm for extracting the camera matrices, reported
in section 5.

There are a few points that merit further investigation regarding this algorithm. The
method for extracting the epipoles is probably the weak point of the algorithm, in that
one must solve three consecutive linear equation sets in a row in order to find the epipoles :
compute T jki ; compute the null-space of each T ··i ; compute the normal to the null-spaces.
This is probably susceptible to noise degradation. Possibly better methods of finding the
epipoles given three views may be found. Shashua ([22]) gives a method for extracting
the epipoles that may give better results, thought this has not been determined.

A second point regards the relative weighting of the line and point equations. The method
of normalization of the data give some degree of standardization here, but since the two
types of equations are derived separately, there is no obvious way to weight them so as to

18

give equal emphasis to each sort of equation. At present, the algorithm seems to favour
the lines, since residual line errors typically are smaller. Strategies for weighting the line
and points equations are a subject of possible future research.

The trifocal tensor seems to be a basic object in the analysis of the three-view situation.
Apart from the use here described in projective scene reconstruction, it has also been
used for point transfer, object recognition ([20]) and Euclidean reconstruction ([1]). It is
also suitable for line transfer as indicated in this paper. Just as the fundamental matrix
neatly encapsulates the geometry of the two-view case, the trifocal tensor serves a similar
purpose for three views.

Finally, the perception of T jki as a tensor (properly due to Vieville [28] and Shashua)
though perhaps only a notational device, eases the formalism involved in the analysis.

Appendix A : Covariant and Contravariant Tensors

Since tensor notation is not commonly used in computer vision, it seems appropriate to
give a brief introduction to its use. For more details, the reader is referred to [26, 27].
For simplicity, these concepts will be explained here in the context of low-dimensional
projective spaces, rather than in a general context. However, the ideas apply in arbitrary
dimensional vector spaces.

Consider a set of basis vectors ei; i = 1, . . . , 3 for a 2-dimensional projective space P2.
For reasons to become clear, we will write the indices as subscripts. With respect to this
basis, a point in P2is represented by a set of coordinates ui, which represents the point∑3

i=1 u
iei. We write the coordinates with an upper index, as shown. Let u represent

the triple of coordinates, u = (u1, u2, u3)�.

Now, consider a change of coordinate axes in which the basis vectors ei are replaced by
a new basis set êj , where êj =

∑
iH

i
jei, and H is the basis transformation matrix with

entries Hi
j . If û = (û1, û2, û3)� are the coordinates of the vector with respect to the new

basis, then we may verify that û = H−1u. Thus, if the basis vectors transform according
to H the coordinates of points transform according to the inverse transform H−1.

Next, consider a line in P2represented by coordinates λ with respect to the original basis.
With respect to the new basis, it may be verified that the line is represented by a new
set of coordinates λ̂ = H�λ. Thus coordinates of the line transform according to H�.

As a further example, let P be a matrix representing a mapping between projective (or
vector) spaces. If G and H represent basis-transformations in the domain and range
spaces, then with respect to the new bases, the mapping is represented by a new matrx
P̂ = H−1PG. Note in these examples, that sometimes the matrix H or H� is used in
the transformation, and sometimes H−1.

These three examples of coordinate transformations may be written compactly as follows.

ûi = (H−1)iju
j ; λ̂i = H

j
i λj ; P̂ ij = (H−1)ikG

l
jP

k
l ,

where we use the tensor summation convention that an index repeated in upper and
lower positions in a product represents summation over the range of the index. Note that
those indices that are written as superscripts transform according to H−1, whereas those
that are written as subscripts transform as H (or G). Note that there is no distinction
between indices that are transformed by H , and those that are transformed by H� using

19

this tensor notation. In general, tensor indices will transform either by H or H−1 – in
fact this is the characteristic of a tensor. Those indices that transform according to H are
known as covariant indices and are written as subscripts. Those indices that transform
according to H−1 are known as contravariant indices, and are written as superscripts.

In this paper we introduced the trifocal tensor T jki . Note that this tensor has one
covariant and two contravariant indices. This implies a transformation rule :

T̂ jki = F ri (G
−1)js(H

−1)kt T
st
r (12)

with respect to changes of basis in the three images. This transformation rule is easily
deduced from (4). It is worth-while pointing out one possible source of confusion here.
The transformation rule (12) shows how the tensor is transformed in terms of basis trans-
formations in the three images. Often, we are concerned instead with point coordinate
transformations. Thus, if F ′, G′ and H ′ represent coordinate transformations in the
images, in the sense that ûj = F ′ji u

i, and G′ and H ′ are similarly defined for the other
images, then the transformation rule may be written as T̂ jki = (F ′−1)riG

′j
s H
′k
t T

st
r .

Note that for vectors and matrices, such as ui, λi and P ij , it is possible to write the
transfomation rules using standard linear algebra notation, as was done above. For
tensors with three or more indices, this can not conveniently be done. This is an argument
for the use of the tensor notation when dealing with the trifocal tensor.

Appendix B : Closed Form Expression for the Camera

Matrices.

Formula (3) gives a formula for the tensor T jki in terms of the camera matrices. We
show in this appendix that conversely, it is possible to express the camera matrices Mi

as a closed-form expression in terms of the tensor T jki . We will also derive closed-form
expressions for fundamental matrices in terms of the trifocal tensor. It will be assumed
in this discussion that the rank of each of the matrices T ··i is at least 2, which will be the
case except in certain special camera configurations. There are methods of proceeding
in case one or more of the T ··i has rank one, but we omit any further consideration of
these cases. See [29] for the a discussion of methods applying to calibrated cameras. For
general camera configurations all T ··i have rank 2.

In this section, it is convenient to use standard vector notation. Accordingly, we write Ti
to mean the matrix T ··i . The camera matrices M ′ = [aij] and M

′′ = [bij] will be written
as M ′ = [A | a4] and M ′′ = [B | b4], where a4 and b4 are the fourth columns of the
respective matrices. For i = 1, . . . , 3, vectors ai and bi are the i-th columns of the camera
matrices. Camera matrix M is assumed as ever to be of the form M = [I | 0].
Equation (3) may be written using this notation, as follows.

Ti = aib4
� − a4bi� . (13)

Let F12 and F13 represent the fundamental matrices corresponding to camera pairs
(M,M ′) and (M,M ′′) respectively. These fundamental matrices have a very simple
expression in terms of the camera matrices, as follows ([10]) :

F12 = a4 ×A ; F13 = b4 ×B (14)

20

where notation such as a4×A means the matrix made up by forming the vector product
of a4 with each of the columns of A separately. We now prove Proposition 5.2.

Proof. Referring to (13), we note that (a4×ai)�Ti = 0 since (a4×ai)�ai = (a4×ai)�a4 =
0. It follows that we can compute a4 × ai up to an unknown multiplicative factor
by finding the null-space of Ti for each i = 1, . . . , 3. However, by (14) we see that
a4 ×A = (a4 × a1,a4 × a2,a4 × a3) is the fundamental matrix for cameras 0 and 1, and
hence has rank 2. It follows that a4 (or −a4) may be computed as the unique unit vector
normal to all of a4 × ai for i = 1, . . . , 3. The vector b4 is found in a similar manner. ��

Once we have computed a4 and b4, the computation of the fundamental matrices is easy,
according to the following formulae :

F12 = (a4 × a1,a4 × a2,a4 × a3) = (a4 × T1b4, a4 × T2b4, a4 × T3b4)
F13 = (b4 × b1,b4 × b2,b4 × b3) = −(b4 × T1

�a4,b4 × T2
�a4,b4 × T3

�a4) .
(15)

Next, we derive formulae for the camera matrices M ′ and M ′′. To do this, we make use
of the assumption also used in section 5.2 that camera matrix M ′ is normalized such
that a4

�ai = 0 for each i = 1, . . . , 3. We also assume that M ′ and M ′′ are scaled such
that a4

�a4 = b4
�b4 = 1. This is a valid assumption if we assume that neither or the

cameras M ′ and M ′′ is located at the same point as the first camera, namely the origin.
With these assumption one verifies that a4

�Ti = −bi�. This means that M ′′ = (B |
b4) = (−T1

�a4,−T2
�a4,−T3

�a4 | b4). Furthermore, substituting bi� = −a4
�Ti into

the formula Ti = aib4
� − a4bi� and multiplying by b4 gives Tib4 = ai + a4a4

�Tib4,
from which one derives ai = (I − a4a4

�)Tib4. This gives the following formulae for the
camera matrices.

M ′ = (A | a4) = ((I − a4a4
�)T1b4, (I − a4a4

�)T2b4, (I − a4a4
�)T3b4 | a4)

M ′′ = (B | b4) = (−T1
�a4,−T2

�a4,−T3
�a4 | b4)

(16)

The correctness of this formula relies on the fact that Ti is of the form Ti = aib4
�−a4bi�.

In other words, if one computesM ′ and M ′′ from the Ti using (16) and then recomputes
Ti using (3) then one does not retrieve the same values of Ti unless Ti is of the correct
form.

Appendix C : Lines specified by several points

In describing the reconstruction algorithm from lines, we have considered the case where
lines are specified by their two end-points. Another common way that lines may be
specified in an image is as the best line fit to several points. It will be shown now how
that case may easily be reduced to the case of a line defined by two end points. Consider
a set of points ui in an image, normalized to have third component equal to 1. Let
λ = (λ1, λ2, λ3)� be a line, which we suppose is normalized such that λ2

1 + λ2
2 = 1. In

this case, according to (1) the distance from a point ui to the line λ is equal to ui�λ.
The squared distance may be written as d2 = λ�uiui�λ, and the sum-of-squares of all
distances is ∑

i

λ�uiui�λ = λ�(
∑
i

uiui�)λ .

The matrix E = (
∑

i uiui
�) is positive-definite and symmetric.

21

Lemma. Matrix (E − ξ0J) is positive semi-definite, where J is the matrix diag(1, 1, 0)
and ξ0 is the smallest solution to the equation det(E − ξJ) = 0.

Proof. We start by computing the vector x = (x1, x2, x3)� that minimizes x�Ex subject
to the condition x2

1+x
2
2 = 1. Using the method of Lagrange multipliers, this comes down

to minimizing x�Ex− ξ(x2
1 + x

2
2), where ξ denotes the Lagrange coefficient. Taking the

derivative with respect to x and setting it to zero, we find that 2Ex−ξ(2x1, 2x2, 0)� = 0 .
This may be written as (E − ξJ)x = 0. It follows that ξ is a root of the equation
det(E − ξJ) = 0 and x is the generator of the null space of E − ξJ . Since x�Ex =
ξx�Jx = ξ(x2

1 + x
2
2) = ξ, it follows that to minimize x�Ex one must choose ξ to be the

minimum root ξ0 of the equation det(E− ξJ) = 0. In this case one has x0
�Ex0− ξ0 = 0

for the minimizing vector x0. For any other vector x, not necessarily the minimizing
vector, one has x�Ex− ξ0 ≥ 0. Then, x�(E − ξ0J)x = x�Ex− ξ0 ≥ 0, and so E − ξ0J
is positive semi-definite. ��

Since the matrix E − ξ0J is symmetric it may be written in the form E − ξ0J =
V diag(r, s, 0)V � where V is an orthogonal matrix and r and s are positive. It follows
that

E − ξ0J = V diag(r, 0, 0)V � + V diag(0, s, 0)V �

= rv1v1
� + sv2v2

�

where vi is the i-th column of V . Therefore E = ξ0J + rv1v1
� + sv2v2

�. Then for any
line λ satisfying λ2

1 + λ2
2 = 1 we have

∑
i

(ui�λ)2 = λ�Eλ

= ξ0 + r(v1
�λ)2 + s(v2

�λ)2 .

Thus, we have replaced the sum-of-squares of several points by a constant value ξ0, which
is not capable of being minimized, plus the weighted sum-of-squares of the distances to
two points v1 and v2.

References

[1] Martin Armstrong, Andrew Zisserman, and Richard I. Hartley. Self-calibration from
image triplets. In Computer Vision - ECCV ’96, Volume I, LNCS-Series Vol. 1064,
Springer-Verlag, pages 3 – 16, 1996.

[2] K.E. Atkinson. An Introduction to Numerical Analysis, 2nd Edition. John Wiley
and Sons, New York, 1989.

[3] P. A. Beardsley, A. Zisserman, and D. W. Murray. Sequential update of projective
and affine structure from motion. Report OUEL 2012/94, Oxford University, 1994.
To appear in IJCV.

[4] O. D. Faugeras. What can be seen in three dimensions with an uncalibrated stereo
rig? In Computer Vision - ECCV ’92, LNCS-Series Vol. 588, Springer-Verlag,
pages 563 – 578, 1992.

22

[5] Olivier Faugeras and Bernard Mourrain. On the geometry and algebra of the point
and line correspondences between N images. In Proc. International Conference on
Computer Vision, pages 951 – 956, 1995.

[6] Gene H. Golub and Charles F. Van Loan. Matrix Computations, Second edition.
The Johns Hopkins University Press, Baltimore, London, 1989.

[7] R. Hartley, R. Gupta, and T. Chang. Stereo from uncalibrated cameras. In Proc.
IEEE Conf. on Computer Vision and Pattern Recognition, pages 761–764, 1992.

[8] R. I. Hartley. Camera calibration using line correspondences. In Proc. DARPA
Image Understanding Workshop, pages 361–366, 1993.

[9] R. I. Hartley. In defence of the 8-point algorithm. In Proc. International Conference
on Computer Vision, pages 1064 – 1070, 1995.

[10] Richard I. Hartley. Projective reconstruction and invariants from multiple images.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 16:1036–1041, October
1994.

[11] Richard I. Hartley. Projective reconstruction from line correspondences. In Proc.
IEEE Conf. on Computer Vision and Pattern Recognition, pages 903–907, 1994.

[12] Richard I. Hartley and Peter Sturm. Triangulation. In Proc. ARPA Image Under-
standing Workshop, pages 957–966, 1994.

[13] Anders Heyden. Geometry and Algebra of Multiple Projective Transformations. PhD
thesis, Department of Mathematics, Lund University, Sweden, December 1995.

[14] Anders Heyden. Reconstruction from image sequences by means of relative depth.
In Proc. International Conference on Computer Vision, pages 1058 – 1063, 1995.

[15] Anders Heyden. Reconstruction from multiple images using kinetic depths. Techni-
cal Report ISRN LUFTD2/TFMA-95/7003-SE, Department of Mathematics, Lund
University, 1995.

[16] B. K. P. Horn. Relative orientation. International Journal of Computer Vision, 4:59
– 78, 1990.

[17] B. K. P. Horn. Relative orientation revisited. Journal of the Optical Society of
America, A, Vol. 8, No. 10:1630 – 1638, 1991.

[18] H.C. Longuet-Higgins. A computer algorithm for reconstructing a scene from two
projections. Nature, 293:133–135, Sept 1981.

[19] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling.
Numerical Recipes in C: The Art of Scientific Computing. Cambridge University
Press, 1988.

[20] Amnon Shashua. Trilinearity in visual recognition by alignment. In Computer
Vision - ECCV ’94, Volume I, LNCS-Series Vol. 800, Springer-Verlag, pages 479–
484, 1994.

[21] Amnon Shashua. Algebraic functions for recognition. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 17(8):779–789, August 1995.

23

[22] Amnon Shashua and Michael Werman. Trilinearity of three perspective views and
its associated tensor. In Proc. International Conference on Computer Vision, pages
920 – 925, 1995.

[23] Minas E. Spetsakis. A linear algorithm for point and line-based structure from
motion. CVGIP: Image Understanding, Vol. 56, No. 2:230– 241, September, 1992.

[24] Minas E. Spetsakis and John Aloimonos. Structure from motion using line corre-
spondences. International Journal of Computer Vision, 4:3:171–183, 1990.

[25] Minas E. Spetsakis and John Aloimonos. A unified theory of structure from motion.
In DARPA IU Proceedings, pages 271 – 283, 1990.

[26] Bill Triggs. The geometry of projective reconstruction I: Matching constraints and
the joint image. unpublished report, 1995.

[27] Bill Triggs. Matching constraints and the joint image. In Proc. International Con-
ference on Computer Vision, pages 338 – 343, 1995.

[28] T. Viéville and Q.T. Luong. Motion of points and lines in the uncalibrated case.
Report RR-2054, INRIA, 1993.

[29] J. Weng, T.S. Huang, and N. Ahuja. Motion and structure from line correspon-
dences: Closed-form solution, uniqueness and optimization. IEEE Trans. on Pattern
Analysis and Machine Intelligence, Vol. 14, No. 3:318–336, March, 1992.

[30] Michael Werman and Amnon Shashua. The study of 3D-from-2D using elimination.
In Proc. International Conference on Computer Vision, pages 473 – 479, 1995.

24

