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1 Introduction

An invariant of a geometric configuration is a function of the configuration whose value is un-
changed by a particular transformation. For example, the separation of two points is unchanged
by a Euclidean transformation (translation and rotation), but not by similarity (translation, ro-
tation and isotropic scaling). Distance is an Euclidean invariant, angle a similarity invariant.

Within the context of vision we are interested in determining invariants under perspective
projection of an object into an image. For example, for a planar object the perspective projection
between object and image planes is a projective transformation. Properties such as intersection,
collinearity and tangency are unaffected by a projective transformation, however, invariant values
can also be computed.

More formally, under a linear transformation of coordinates, X′ = TX, the invariant I(X)
transforms as

I(X′) = |T|wI(X)

and is called a relative invariant of weight w. If w = 0, the invariant is unchanged under trans-
formations and is called a scalar invariant. We will only be interested in scalar invariants in the
following.

In general we seek invariance to projective transformations, so T is a general non-singular
square matrix acting on homogeneous coordinates. For planar configurations it is 3× 3, and for
3D configurations 4 × 4. The goal is to measure the invariants from a perspective image of the
configuration. We write P for the projection matrix that covers a 3D Euclidean transformation
of the object followed by perspective projection onto the image. Affine and similarity invariants
(scaled Euclidean) are also important in vision applications, but are not covered here.

1.1 Overview

In order to develop invariants systematically, it is important first to model the transformations
and projections that occur in imaging. Having established these transformations, and the circum-
stances under which they apply, we are in a position to derive their invariants.

Part I Describes camera models for projecting from 3D to 2D images, with special cases and
decompositions. For planar objects the original and image spaces are the same dimension
and P is simply a projective transformation represented by a 3 × 3 matrix. A description
is given of projective transformations and special cases, including Euclidean, similarity, and
affine.

For two views of the scene, the fundamental matrix encapsulates the projective properties
of the camera pair. The relation between projective cameras and the fundamental matrix is
derived. etc.

Part II Examples are given of plane projective invariants, and an an application of these to
model based recognition. For 3D objects, the original and image spaces are no longer of
the same dimension and P is a 3× 4 matrix mapping 3D homogeneous coordinates onto the
image plane. Projective invariants of special 3D structures can be obtained from a single
perspective image. A number of examples are given.

Part II
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These notes are an introduction only. They are not comprehensive or conventionally referenced.
Further reading is included at the end of each section.

Acknowledgements

These notes are drawn from many sources, in particular from the introduction and appendix
in [5], written with Joe Mundy. As ever we are very grateful for discussions with Joe Mundy,
David Forsyth, Charlie Rothwell, Paul Beardsley and ???. Charlie Rothwell provided most of the
images and implementation. Financial support was provided by Esprit Project 6448 ‘VIVA’ and
...

4



(x, y, z)T

Focal
plane

Camera
centre

 f Principal axis
Z

(u, v)T

Principal
point

Figure 1: Pinhole camera geometry

Part I

Transformations and Projections

2 Camera Models

The basic pinhole model We discuss here the pinhole or central projection camera model.
We consider the central projection of points in space onto a plane. Let the centre of projection
be the origin of a Euclidean coordinate system, and consider the plane z = f , henceforth called
the focal plane. Under the pinhole camera model, a point in space with coordinates x = [x, y, z]�

mapped to the point in the focal plane where a line joining the point x to the centre of projection
meets the focal plane. This is shown in Fig 2. By similar triangles, one quickly computes that
the point [x, y, z]� is mapped to the point [fx/z, fy/z, f ]� on the focal plane. Ignoring the final
coordinate, we see that

[x, y, z]� �→ [fx/z, fy/z]� (1)

describes the central projection mapping. This is a mapping from Euclidean space R3 to R2.
The centre of projection is often called the camera centre. The line from the camera centre

perpendicular to the focal plane is called the principal axis of the camera, and the point where
the principal axis meets the focal plane is called the principal point.

Homogeneous Coordinates It is convenient to express points in space and points in the
image plane in homogeneous coordinates. A point in 3-space R3 is expressed in homogeneous
coordinates by a 4-vector. Specifically, the homogeneous vector [x, y, z, t]� with t �= 0 represents
the point [x/t, y/t, z/t]� of R3 in non-homogeneous coordinates. Similarly, a homogeneous vector
[u, v, w]� represents the point [u/w, v/w]� in R2. One sees immediately that two homogeneous
vectors that differ by a constant non-zero factor represent the same point. Consequently, two
homogeneous vectors differing by a non-zero constant factor are considered to be equivalent. We
may write x ≈ x′ to express this equivalence of homogeneous vectors. However, this notation
quickly becomes tedious, and so usually the equivalence of two homogeneous vectors is expressed
using an equality sign. Thus we write x = x′ to mean that the two vectors are equal up to a
multiplicative factor.
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The plane at infinity It was seen in the previous paragraph that a homogeneous vector x =
[x, y, z, t]� represents a point in R3 if and only if t �= 0. The set of all non-zero homogeneous 4-
vectors form the projective 3-space P 3. The set of points x = [x, y, z, 0]� form a plane consisting
of points not in R3. This is referred to as the plane at infinity. Thus, projective 3-space P 3 is made
up of R3 plus the plane at infinity. A point in R3 may be conveniently expressed in homogeneous
coordinates as [x, y, z, 1]�.

In the same way, projective 2-space P 2 is made up of R2 plus a line at infinity, consisting of
points [u, v, w]� in homogeneous coordinates with w = 0.

Projective geometry is the study of the projective space P n. In projective geometry it is usual
not to distinguish the plane (or line) at infinity from any other plane. Thus, all points, whether
infinite of finite are created equal. In the area of computer vision dealing with points in space and
projections of these points by pinhole cameras, we also deal with homogeneous vectors. However,
in computer vision it is often appropriate to distinguish the plane at infinity and treat it differently
from other planes. For instance, no person ever managed to photograph a point at infinity, nor
did anyone ever manage to place a camera on the plane at infinity. Certain concepts such as front
and back of the camera and affine and Euclidean reconstruction and invariants make no sense
without considering the plane at infinity to be distinguished.

Central projection using homogeneous coordinates The purpose of expressing points in
homogeneous coordinates is that central projection is very simply expressed as a linear mapping
in homogeneous coordinates. In particular, the expression (1) may be written in terms of matrix
multiplication as

[x, y, z, 1]� �→ [fx, fy, z]� =


 f 0

f 0
1 0





x
y
z
1


 (2)

The matrix in this expression may be written as diag(f, f, 1)[I | 0] where diag(f, f, 1) is a
diagonal matrix and [I | 0]� represents a matrix divided up into a 3 × 3 block (the identity
matrix) plus a column vector, here the zero vector. If the image of a point x under central
projection is u then we see that

u = diag(f, f, 1)[I | 0] .

Principal point offset The expression (1) assumed that the origin of coordinates in the image
plane is at the principal point. In practice, the principal point may not be accurately known. In
general, therefore, we will have a mapping

[x, y, z]� �→ [fx/z + pu, fy/z + pv]
�

where (pu, pv)
� are the coordinates of the principal point, otherwise known as the principal point

offset. This equation may be expressed conveniently in homogeneous coordinates as



x
y
z
1


 �→



fx+ pu
fy + pv
z


 =



f pu 0
f pv 0

1 0





x
y
z
1


 (3)
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Camera Rotation and Translation So far, it has been assumed that the camera is located
at the origin of a Euclidean coordinate system with the principal axis of the camera pointing
straight down the z-axis. Such a coordinate system may be called the camera coordinate frame.
In general, however, points in space will be expressed in terms of a different Euclidean coordinate
frame, known as the world coordinate frame. The two coordinate frames are related via a rotation
and a translation. If x is a non-homogeneous vector representing the coordinates of a point in the
world coordinate frame, and x′ represents the same point in the camera coordinate frame, then
we may write x′ = R(x− c) where c represents the coordinates of the camera centre in the world
coordinate frame, and R is a 3 × 3 rotation matrix representing the orientation of the camera
coordinate frame. This equation may be written in homogeneous coordinates as



x′

y′

z′

1


 =

[
R −Rc
0 1

]
x
y
z
1




Putting this together with the equation 2 leads to the formula



x
y
z
1


 �→


 f pu

f pv
1


R[I | −c]



x
y
z
1


 (4)

where

• f is the focal length of the camera.

• (pu, pv)
� are the image coordinates of the principal point.

• R is the rotation of the camera.

• c is the location of the camera centre.

Writing

K =



f pu
f pv

1


 (5)

we see that image of a point x under a pinhole camera mapping is

u = KR[I | −c]x (6)

This is the general mapping given by a pinhole camera. One sees that a general pinhole camera
has 9 degrees of freedom.
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CCD cameras The pinhole camera model just derived assumes that both object coordinates
(that is the 3D world coordinates) and image coordinates are Euclidean coordinates having equal
scales in all axial directions. In the case of CCD cameras, there is the additional possibility of
having unsquare pixels. If image coordinates are measured in pixels, then this has the extra effect
of introducing unequal scale factors in each direction. In particular if the number of pixels per
unit distance in image coordinates are mu and mv in the u and v directions, then the cameras
transformation from world coordinates to pixel coordinates is obtained by multiplying (5) on the
left by an extra factor diag(m1, m2, 1). Thus, the general form of the calibration matrix of a CCD
camera is

K =



ku pu

kv pv
1


 (7)

where ku = fmu and kv = fmv represent the focal length of the camera in terms of pixel
dimensions in the u and v direction respectively. Similarly, (pu, pv) are the pixel coordinates of
the principal point. A CCD camera thus has 10 degrees of freedom.

General Projective Camera For simplicity and added generality, we can consider a calibration
matrix of the form

K =



ku s pu

kv pv
1


 . (8)

The added parameter s is referred to as the skew parameter. The skew parameter will be zero
for most normal cameras. However, in certain unusual instances it can take non-zero values. In a
CCD camera if the pixel elements in the CCD array are skewed so that the u and v axes are not
perpendicular, then skewing of the image can result. This is admittedly very unlikely to happen.
The CCD camera model assumes that the image has been stretched by different amounts in the
two axial directions. If on the other hand the image is stretched in a non-axial direction, then
skewing results. To see this, consider what happens to a pair of axes if the image is stretched in
a diagonal direction : the axes do not remain perpendicular. Skewing may occur if images taken
by a pinhole camera (such as an ordinary film camera) is subsequently magnified. If the axis of
the magnifying lens is not perpendicular to the film plane or the new image plane, then the image
will be skewed. In all of these cases, the effect of skew will be small, so generally the parameter s
will be very small compared with ku.

A camera with camera matrix P = KR[I | −c] for which the calibration matrix K is of the
form (8) will be called a projective camera. A projective camera has 11 degrees of freedom. This
is the same number of degrees of freedom as a 3× 4 matrix, defined up to an arbitrary scale. Any
general 3× 3 matrix M may be decomposed as a product M = KR where K is upper triangular
and R is a rotation matrix. Thus, the class of projective cameras with camera centre at a finite
point corresponds to the class of matrices of the form P = [M | −Mc]. This is a general 3 × 4
matrix with the sole restriction that the left-hand 3 × 3 block is non-singular. We may further
extend the class of camera matrices to include cameras at infinity. A general projective camera is
one which is represented by an arbitrary 3× 4 matrix of rank 3.

In summary, we may distinguish the following hierarchy of camera models.
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General Projective Camera. The general projective camera is one for which the object-space
to image-space transformation is represented by the mapping u = Px in homogeneous
coordinates, where P is an arbitrary 3× 4 matrix of rank 3. Matrix P is defined only up to
a non-zero multiplicative factor:


 uv
w


 =


 p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34





x
y
z
1


 (9)

Finite Projective Camera. This terminology may be used to describe a projective camera for
which the camera centre is not at infinity. The camera matrix P may be written in the
form P = [M | −Mc] where c is the camera centre and M is non-singular. Using the QR
decomposition M can be decomposed as M = KR, where R is a rotation and K is an upper
triangular matrix with positive diagonal entries, called the calibration matrix.

Zero-skew camera This is a finite projective camera with zero skew, such as a CCD camera.
Hence the calibration matrix has the form (7).

Pinhole camera A finite projective camera with calibration matrix of the form (4) having zero
skew and equal magnification in each direction.

Calibrated Camera. A camera with matrix of the form P = [R | −Rc]. In other words,
the calibration matrix in assumed to be the identity. It is not implied, of course that the
calibration matrix really is the identity matrix, but rather that the effect of the calibration
matrix K, once it is known, may be removed, and that one may without loss of generality
assume that K = I. Accordingly, the term calibrated camera will be used in these notes to
mean that K = I.

All these different camera models have been considered in the literature. The terminology
proposed here is certainly not standardized. For instance, the term pinhole camera has been used
to denote more general camera models, even the general projective camera model. For the most
part, in these notes we will consider either general or finite projective cameras. When we talk of
camera calibration, or cameras with specific calibration, however, it is implicit that we are talking
of finite projective cameras, since there is no natural way to define the calibration matrix of a
camera at infinity.

Cameras with centres at infinity form a different hierarchy, which shall not be discussed further
in these notes.

3 Plane to plane transformations

In the case that the 3D points x lie on a plane, then without loss of generality, the z coordinate of
x can be chosen as zero. The general projection between world and image, camera (9), reduces to
a 3× 3 matrix. This is a plane projective transformation (projectivity or collineation) and covers
the composed effects of a Euclidean transformation and perspective projection. See figure 2.
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Figure 2: A perspective transformation between two planes: a world plane, Π, and an image
plane, π, with optical center O. The projection is modelled as a linear transformation, X′ = TX,
on homogeneous point coordinates.

Euclidean

Similarity

Affine

Projective

Figure 3: THIS FIGURE WILL BE INCLUDED IN THE TABLE. The hierarchy of plane to
plane transformations. These range from Euclidean, where only translations and rotations occur,
to projective where the square can be transformed to any arbitrary quadrilateral (provided no
three points are collinear). Typical invariants to these transformations are given in table 1.

3.1 Plane projectivities

A plane projectivity is a linear transformation of homogeneous 3-vectors represented by a 3 × 3
matrix, X′ = TX,



X ′1
X ′2
X ′3


 =



t11 t12 t13

t21 t22 t23

t31 t32 t33





X
Y
1




where

X ′ = X ′1/X
′
3 Y ′ = X ′2/X

′
3

Eight parameters are required to define the 2D projective transformation matrix, T, up to an
arbitrary scale factor. Special cases of projective transformations are illustrated in figure 3 and
their form given in table 1.
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Group DOF Matrix Invariant properties

projective 8



t11 t12 t13

t21 t22 t23

t31 t32 t33




concurrency and collinearity, order of contact:
intersection (1 pt contact); tangency (2 pt contact);
inflections (3 pt contact with line);
tangent discontinuities and cusps.
cross-ratio (ratio of ratio of lengths).

affine 6


 a11 a12 t13

a21 a22 t23

0 0 1


 parallelism, ratio of areas, ratio of lengths on

collinear or parallel lines (e.g. midpoints)
linear combinations of vectors

similarity 4 s


 r11 r12 tx
r21 r22 ty
0 0 1


 ratio of lengths, angle

Euclidean 3



r11 r12 tx
r21 r22 ty
0 0 1


 length, area

Table 1: Geometric properties invariant to commonly occurring plane transformations. Transfor-
mations lower in the table inherit the invariants of those above, but the converse is not true. The
matrix A = [aij ] is an invertible 2× 2 matrix, R = [rij ] is a 2D rotation matrix, and (tx, ty) a 2D
translation.

3.2 Homogeneous line representation

The equation of a line in homogeneous coordinates is given by

L1X1 + L2X2 + L3X3 = 0 (10)

or L.X = 0 where L = (L1, L2, L3)
�. Thus a line is represented in homogeneous form by three

numbers (L1, L2, L3). Note that, as in the representation of a point, only the ratio of these numbers
is relevant, since multiplying equation (10) by a scalar λ has no effect on the line.

Under the point transformation X′ = TX a line transforms as L′ = T−tL. Thus, lines in the
projective plane transform linearly, just as points, but the corresponding transformation matrix
is the transpose of the inverse of the matrix defining the point transformation.

3.3 Duality

Points and lines have a symmetric role in the projective geometry of the plane. For example, it
can be shown that the line, l, through two points p,q is given by the vector product of the points
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l = p×q, and the point, p, at which two lines l,m intersect is given by the vector product of the
lines p = l×m. This is an example of the “Principle of Duality”, which says that any statement
or theorem involving points or lines still holds with the word point replaced by line and vice-versa.

3.4 Projective transformations of conics

The equation of a conic in non-homogeneous coordinates is

AX2 +BXY + CY 2 +DX + EY + F = 0

“Homogenising” this gives:

AX1
2 +BX1X2 + CX2

2 +DX1X3 + EX2X3 + FX3
2 = 0

or in matrix form X�CX = 0 The conic coefficient matrix C is given by

C =


 A B/2 D/2
B/2 C E/2
D/2 E/2 F


 .

As in the case of points and lines only the ratio of the matrix elements are important, since multi-
plying C by a non-zero scalar does not affect the above equations. Under the point transformation
X′ = TX, a conic transforms as C′ = T−�CT−1 where X�CX = 0 is transformed to X

′�C′X′ = 0.

4 The Fundamental Matrix

In 1982, Longuet-Higgins ([19]) gave a solution to the relative placement problem (computation
of relative camera placement from image correspondences) by introducing what became known as
the essential matrix, denoted Q. He showed that for a pair of calibrated cameras with matrices
P = [I | 0] and P ′ = [R | −Rc] there exists a matrix Q with the following property. If u ↔ u′

are a pair of corresponding points in the two images, then u′�Qu = 0.
To consider this further, we need a new terminology. Let t be a 3-vector and M be a 3 × 3

matrix. We denote by t×M the matrix formed by taking the cross-product of t with the columns
of M separately. Similarly, M × t is the matrix formed by taking the cross product of each rows
of M with t separately. If t = [tx, ty, tz], then we define a matrix

[t]× =


 0 −tx ty
tx 0 −tz
−ty tz 0


 . (11)

One quickly verifies that
t×M = [t]×M

and
M × t =M [t]× .

Longuet-Higgins showed (effectively) that the essential matrix Q corresponding to a pair of
camera matrices [I | 0] and [R | −Rc] = [R | t] is the matrix

Q = t× R .
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Longuet-Higgins idea is to use sufficiently many point matches ui ↔ u′i to determine Q using
the relation u′�Qu = 0. With at least 8 point matches, Q may be determined using linear
techniques. Subsequently, the matrix Q may be factored as Q = t × R to find the two camera
matrices.

4.1 Generalization to Projective Cameras

Much of the work of Longuet-Higgins may be generalized to projective cameras. To conform with
current terminology, we will define a matrix, called the fundamental matrix, denoted F , which is
associated with a pair of camera matrices. In the case where the camera matrices correspond to
calibrated cameras, F will be identical with the essential matrix Q of Longuet-Higgins.

Summary of Properties of the Fundamental Matrix. We list some of the properties of
the Fundamental matrix.

Proposition 4.1.

1. F is a 3× 3 matrix of rank 2.

2. If u↔ u′ are a pair of matching points, then u′�Fu = 0

3. If F is the fundamental matrix for a pair of cameras (J, J ′) then F� is the fundamental
matrix for the pair (J ′, J).

4. If p and p′ are the two epipoles, then p′�F = Fp = 0.

5. Fu is the epipolar line in the second image corresponding to point u in the first image.

6. F factors as a product F = p′� ×M , where M is non-singular.

Formulas for the Fundamental Matrix The Fundamental matrix is uniquely determined by
a pair of camera matrices. Thus, suppose that P and P ′ are a pair of camera matrices with the
sole restriction that they do not have the same centre.

Proposition 4.2.

1. F is the unique non-zero matrix such that P ′�FP is skew-symmetric.

2. If P = [M | −Mc] and P ′ = [M ′ | −M ′c′] then

F = [M ′(c′ − c)]×(M ′M−1)

= M ′−�[c′ − c]×M−1

= (M ′M−1)−�[M(c′ − c)]×

3. If P = [I | 0] and P ′ = [M ′ | t] then F = t×M ′

13



Determination of the Camera Matrices from the Fundamental Matrix. In the last
paragraph, it was stated that the fundamental matrix is completely determined by a pair of camera
matrices. The converse is not true, as is summarized in the following set of results.

Proposition 4.3. Let H represent a 3D projective transform.

1. Camera matrix pairs (P, P ′) and (PH−1, P ′H−1) have the same fundamental matrix.

2. F determines the pair of camera matrices up to a projective transform, H.

3. Given F , we can always find a pair of camera matrices P = [I | 0] and P ′ = [M | t] that
realize F .

4.2 Proofs of properties of the Fundamental Matrix

The following section will be devoted to proving some of the properties of the fundamental matrix
stated in the previous section.

Let P and P ′ be a pair of camera matrices and let u′ ↔ u be a pair of matched points. This
means that there is a point x in space such that u = Px and u′ = P ′x. We seek a matrix F (the
fundamental matrix) such that u′�Fu = 0. Expressing this in terms of F leads to the equation

x�P ′�FPx = 0

This equation must hold for any point x in space, since any such point gives rise to a pair of
matched points u = Px and u′ = P ′x. However, a matrix A satisfies the equation x�Ax = 0 for
all x if and only if A is skew-symmetric. Consequently, we have proven the following result

Proposition 4.4. Given a pair of camera matrices P and P ′, then a matrix F satisfies u′�Fu = 0
for all possible matched points u↔ u′ in the images taken by the two cameras, if and only if P ′�FP
is skew-symmetric.

Under this condition we say that the pair (P, P ′) is a realisation of the fundamental matrix F .
Two questions arise from this proposition. To what extent is the matrix F determined by the

two matrices P and P ′, and secondly, to what extent are P and P ′ determined by the matrix F .
It was stated in Proposition 4.2 that this condition uniquely determines F . This will be shown
later.

We first show that given matrix F , the matrices P and P ′ are not uniquely determined. Specif-
ically, if H is a non-singular 4×4 matrix, and P ′�FP is skew-symmetric, then so is H�P ′�FPH .
This shows that (P, P ′) and (P ′H,PH) are both realizations of the matrix F . It will be shown
later that this is the only ambiguity in the realization of a fundamental matrix.

Projective transform of a reconstruction. This may be seen in another way as follows.
If u = Px and H is a non-singular 4× 4 matrix representing any projective transformation then
replacing the camera P by PH−1 and the point x by Hx, we see that u = (PH−1)Hx. Thus,
the image point u is unchanged by this transformation. This shows that the camera matrices can
not be determined unambiguously by a set of image correspondences, since an arbitrary projective
transformationH applied to the scene and the cameras in this way does not result in any change in
the images. Thus, neither the scene, nor the camera placement may be determined mor accurately
than up to an unknown projective transformation. We speak of a projective transformation H
being applied to a camera matrix P to mean that P is replaced by PH−1.
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Normal form. Given a matrix F , we have just seen that there exist a large family of camera
matrix pairs, (P, P ′) that make a realization of F . Next, we will be interested in certain normal
form realizations. The first normal form will be one in which one of the cameras has matrix [I | 0]
and the other camera has camera matrix [M | −Mc], meaning that the camera centre is not at
infinity. In fact, this can be done with any number of cameras, as the following proposition shows.

Proposition 4.5. Given camera matrices Pi for i = 0, . . . , N , there exists a 4× 4 matrix H such
that P0H

−1 = [I | 0] and for all i = 1, . . . , N the camera centre for the matrix PiH
−1 does not lie

at infinity.

Proof. Since P0 has rank 3, it may be supplemented by one extra row to form a non-singular
matrix, which we will denote by H . We see immediately that P0H

−1 = [I | 0]. Multiplying each
of the other matrices by H−1 gives matrices PiH

−1 = P ′i . If the centre of each camera P ′i lies at
a finite point, then we are done. Otherwise, we must apply a further transformation. Let c′i be
the centre of the camera P ′i . Thus, P ′ic

′
i = 0. Now, we select a plane that contains none of the

points c′i, and which furthermore does not pass through the point [0, 0, 0, 1]�. Such a plane may be
represented as [v�1]�, where v is a 3-vector. The condition that the plane does not pass through

any of the points c′i means that [v�1]c′i �= 0 for any i. Letting H ′ =

[
I 0
v� 1

]
this implies that

H ′c′i is not a point at infinity. However, H ′c′i is the centre of the camera P ′iH
′−1. One verifies

further that [I | 0]H ′−1 = [I | 0]. Thus, transforming each P ′i by H ′−1 gives the required set of
camera matrices. 
�

This is a particularly convenient normal form for many applications. It may be easily verified
that a matrix of the type

H =

[
I 0
v� 1

]

is the general form for a 4× 4 matrix satisfying the condition [I | 0]H−1 = [I | 0]. The choice of
different vectors v correspond to different choices of the plane at infinity, since a point is mapped
to infinity by the transformation H if and only if it lies on the plane represented by [v�1]�.

Now, we may show that the two matrices P and P ′ uniquely determine F as long as the camera
centres for P and P ′ are not the same. Thus, suppose that P ′�FP is skew-symmetric. There is a
matrix H such that PH−1 = [I | 0] and P ′H−1 = [M | −Mc], where c �= 0 andM is non-singular.
Now applying H−� and H−1 to the left and right sides of P ′�FP , we see that

H−�P ′�FPH−1 =

[
M�

−c�M�
]
F [I | 0]

=

[
M�F 0
−c�M�F 0

]

is skew-symmetric. This implies that M�F is skew-symmetric and c�(M�F ) = 0. Since a 3× 3
skew-symmetric matrix is determined by its kernel (in this case c), it follows that M�F = [c]×.
Finally, therefore, F = M−�[c]× = M−� × c. Thus, the matrix F is uniquely determined by P
and P ′.

It resulted from the previous proof that the matrix M−�× c is the fundamental matrix corre-
sponding to a pair of camera matrices [I | 0] and [M | −Mc], where M is non-singular. One may
remove the restriction that M is non-singular with the following result.
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Proposition 4.6. The fundamental matrix corresponding to a pair of camera matrices P = [I | 0]
and P ′ = [M | t] is F = t×M .

Proof. One simply verifies that

P ′�FP =

[
M�

t�

]
[t]×M [I | 0] =

[
M�[t]×M 0

0 0

]

is skew symmetric. 
�

This result may be used to compute the fundamental matrix for any pair of matrices by trans-
forming the two camera matrices to the form given in the proposition by applying an appropriate
projective transformation H .

Factorization of the fundamental matrix : Conversely, given a fundamental matrix, it
is possible to determine a pair of camera matrices that give rise to that fundamental matrix by
applying Proposition 4.6.

Suppose that the singular value decomposition ([1]) of F is given by F = UDV �, where D is
the diagonal matrix D = diag(r, s, 0). The following factorization of F may now be verified by
inspection.

F = SM ; S = UZU� ; M = UEdiag(r, s, α)V �

where

E =



0 −1 0
1 0 0
0 0 1


 ; Z =




0 1 0
−1 0 0
0 0 0




and α is an arbitrary number. The matrix S is skew-symmetric, S = [t]×.
By factoring F in this way, as F = t×M , we can then apply Proposition 4.6 to get a pair of

cameras matrices P = [I | 0] and P ′ = [M | t] that correspond to F .

Uniqueness of Camera Matrix up to Projective Transformation. We are almost ready
to prove that the fundamental matrix determines the two camera matrices up to a projective
transformation. First, however, we need one more lemma.

Lemma 4.7. Let the rank 2 matrix F factor in two different ways as F = t×M = t′×M ′. Then
t = t′ and M ′ =M + ta� for some vector a.

Proof. First, note that tF = t[t]×M = 0, and similarly, t′F = 0. Since F has rank 2, it follows
that t = t′ as required. Next, from [t]×M = [t]×M

′ = F it follows that [t]×(M
′−M) = 0, and so

M ′ −M = ta� for some a. Hence, M ′ =M + ta� as required. 
�

We now answer the question when two pairs of camera matrices may correspond to the same
fundamental matrix.

Theorem4.8. Let (P1, P
′
1) and (P2, P

′
2) be two pairs of camera transforms. Then (P1, P

′
1) and

(P2, P
′
2) correspond to the same fundamental matrix F if and only if there exists a 4 × 4 non-

singular matrix H−1 such that P1H
−1 = P2 and P ′1H

−1 = P ′2.
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Proof. The if part of this theorem has already been proven, so we turn to the only if part. Since
each of the matrices P1 and P2 has rank 3, we can multiply them (on the right) by suitable
matrices H1 and H2 to transform them each to the matrix [I | 0]. If the matrices P ′1 and P ′2
are also multiplied by H1 and H2 respectively, then the fundamental matrix corresponding to the
camera matrix pairs are unchanged, as seen previously. Thus, we have reduced the problem to
the case where P1 = P2 = [I | 0].

Suppose therefore, that P1 = P2 = [I | 0] and that P ′1 = [M ′1 | t′1] and P ′2 = [M ′2 | t′2].
By proposition 4.6 we have F = [t′1]×M

′
1 = [t′2]×M

′
2. According to Lemma 4.7 this implies that

t′1 = t′2 = t and that M ′2 =M ′1 + ta� for some vector a. Let H−1 be the matrix

[
I 0
a� 1

]
. Then

one verifies that [I | 0] = [I | 0]H−1, so P2 = P1H
−1. Furthermore, P ′1H

−1 = [M ′1 | t]H−1 =
[M ′1 + ta� | t] = [M ′2 | t] = P ′2. Thus H−1 is the matrix required for the conclusion of theorem
4.8. 
�

4.3 Point set reconstruction

Given a pair of camera matrices P and P ′ and a pair of matched points u↔ u′ it is evident that
the space point x that gives rise to the two matching image points is uniquely defined, and may
be obtained by intersecting two rays from the camera centres. Here is a simple way of computing
the point x.

Suppose that the fundamental matrix factors as as F = t′ × M ′, and let P = [I | 0] and
P ′ = [M ′ | t′] be a realization of the matrix F . Let u ↔ u′ be a pair of matched points in
the two images. We wish to find a point x in space such that u = Px and u′ = P ′x. From
the relation u′�Fu = u′�[t′]×M

′u = u′�(t′ × M ′u) = 0, it follows that u′, M ′u and t′ are
linearly dependent. If in particular M ′u = βu′ − αt′ then we define the corresponding object

space point x to be the point

[
u
α

]
. It is now easily verified that Px = [I | 0]x = u and

P ′x = [M ′ | t′]x =M ′u+ αt′ = u′. This verifies that the given values of P , P ′ and xi constitute
a projective reconstruction of the data.

As shown, x is determined by the two camera matrices P and P ′ and the matched points
u ↔ u′. If we choose a different pair of camera matrices PH and P ′H realizing the same
fundamental matrix F , then in order to preserve the same pair of matched image points, the point
x must be replaced by H−1x. Thus, changing to a different realization of F results in a projective
transformation (namely H−1) of the scene. This proves the following theorem

Theorem4.9. (Faugeras [5], Hartley et al. [10]) Given a set of image correspondences {ui} ↔
{u′i} sufficient to determine the fundamental matrix, the corresponding object space coordinates
{xi} may be computed up to a collineation of projective 3-space P3.

Further Reading

For methods of computing the Fundamental Matrix, see the work of Faugeras, Luong et al, as
well as the original work of Longuet-Higgins [19, 6, 20]. For iterative methods of projective
reconstruction, see [5, 22, 13]. A more geometric approach to reconstruction is taken by Ponce
et.al ([23]) and Shashua ([30, 31]). Reconstruction from lines instead of points is considered in
[15].
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5 Self Calibration

So far, we have considered invariants that can be computed from two or more views with arbitrary
uncalibrated cameras. In such a case, the scene may be reconstructed only up to a projective
transformation of space. In the case where further assumptions are made about the cameras, it
is possible to determine the scene more precisely. The most significant result in this areas is due
to Maybank and Faugeras ([21]), who proved that if the calibration of the cameras is the same
for all cameras, then three views are sufficient to determine the calibration of the camera, based
only on point correspondences between the three images. Actually they proved only that three
“motions” or pairs of views are sufficient, which is not quite the same thing. However, it has
subsequently been established that three independent views (from which one may select three
pairs) are sufficient ([20, 13]).

It is shown in [21] that each pair of views gives rise to two quadratic equations in the five
unknown calibration parameters. These equations are known as Kruppa’s equations ([18]).

If the calibration of the camera may be deduced from just three views, then the reconstruction
problem is reduced to reconstruction using calibrated cameras. Several solutions of this problem
(the relative orientation problem) have been proposed ([19, 16]). It is possible to reconstruct the
scene up to a scaled Euclidean transformation, or similarity transform. It follows that Euclidean
invariants may in theory be determined from three views of the scene with the same camera.

Unfortunately calibration and Euclidean reconstruction seems to be quite difficult to carry out
in practice. Various algorithms have been proposed to do this ([20, 13]), but more work seems
necessary. At present, the only way known of computing such Euclidean invariants is through
reconstruction.

If further assumptions are made about the camera then self calibration becomes easier. For
instance with a pair of (distinct) pinhole cameras (section 2) for which the principal point is also
known it is possible to determine the focal lengths and carry out a scaled Euclidean reconstruction
([11]). Further results along this line are no doubt possible, since constraining the calibration
simplifies Kruppa’s equations.

6 Transfer

A number of papers have appeared in the last few years on the subject of model transfer. In this
scenario, it is assumed that one has two (or more) images of an object or scene taken from two
different viewpoints with uncalibrated cameras. These two views may be termed the reference
views. Now, one is given another view of the scene in which it is possible to identify some of the
points visible in the reference views. The task is to transfer the rest of the scene into the new
view. In particular, one seeks to determine where the other points in the scene (appearing in the
reference views) should appear in the new view.

As an example, suppose that a certain building is visible in the two reference views. In addition
there are a number of terrain features or other reference points visible in the two reference views,
which may also be located in the new view. By the process of transfer, one is able to overlay the
image of the building on the new image, just as it ought to appear in the new image. This may
be used to determine whether the building is present in the new view, or has been demolished.
In this way, the two reference images serve instead of a complete geometric model of the building
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– the need for a 3-dimensional model is replaced by two 2-dimensional views. Transfer is done
without the need for camera calibration.

Epipolar Transfer Perhaps the first to put forward the idea of transfer was Eamon Barrett
([2]). His method though expressed in terms of the vanishing of a 9 × 9 determinant may be
expressed in terms of the fundamental matrix. In particular, let J0 and J1 be the two reference
views and let J2 be the new view. Suppose that u2

i are a set of at least 8 points in the view J2

that may also be identified in the other images J0 and J1. Given 8 or more point correspondences
between the images J0 and J2 one may compute the fundamental matrix F02. Similarly one may
compute the fundamental matrix F12.

Now, suppose we are given another point that appears at coordinates u0 and u1 in the two
reference images. Let u2 be the (unknown) coordinates of the point in the image J2. By (4.1)
F02u

2 represents the epipolar line corresponding to u0. In other words, point u2 lies on the line
F02u

0. Similarly, u2 lies on the line F12u
1. One can therefore find u2 as the intersection of the

two lines : u2 = F12u
1 × F02u

2. This method of transfer is known as epipolar transfer.

Problems with Epipolar Transfer. The epipolar transfer method relies on finding the
intersection of two epipolar lines. This method will be expected to fail if the two lines are close
to being parallel, for then their exact intersection point may not be robustly determined. Let us
consider when this will happen. Let p02 be the image of the centre of the view J0 as seen in view
J2. Similarly p12 is the image of the centre of the view J1 as seen in J2. Points p02 and p12 are the
two epipoles in image J2. Now, let u

2 be the coordinates of a point to be determined in image J2.
If this point lies in a straight line with the two epipoles p02 and p12 then it may not be determined
by the intersection of two epipolar lines through the epipoles p02 and p12. However, p02, p12 u

2

will lie in a straight line if the point u2 lies in the plane determined by the three camera centres.
In short, the method of epipolar transfer will fail for points that lie close to the plane defined by
the three camera centres. If the three camera centres lie in a straight line, then the method will
fail entirely. This singularity is a deficiency of the method of epipolar transfer, rather than an
intrinsic instability as we shall see.

Trilinear Relationship Amnon Shashua ([32]) has explored a different method of transfer that
does not suffer from the deficiencies of the epipolar transfer method. Shashua shows that if u0, u1

and u2 are the coordinates of a point as seen in the three images, then there exist a pair of trilinear
relations f1(u

0,u1,u2) = 0 and f2(u
0,u1,u2) = 0, where both f1 and f2 are trilinear functions in

the homogeneous coordinates of u0, u1 and u2. The functions f1 and f2 are the same for all sets
of points u0, u1 and u2, and are dependent only on the viewing parameters. Furthermore, the
particular form of the functions f1 and f2 may be determined from only 7 point correspondences
between all three images.

Now, given a point that is seen in positions u0 and u1 in the reference images, by substituting
in the relations f1 and f2 one obtains a pair of linear equations f1(u

2) = 0 and f2(u
2) = 0. One

may then solve these two equations to find u2. It may at first appear that once more there will
exist degenerate conditions in which the two equations f1(u

2) = 0 and f2(u
2) = 0 do not have a

unique solution. However, the particular form of the relations, described by Shashua, ensures that
the set of points for which this occurs is a 1-dimensional set of points, rather than a 2-dimensional
set (the plane defined by the camera centres) as in epipolar transfer.
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Transfer by Projective Construction The method of Shashua requires 7 points in the new
image to be located in each of the reference images. It will be shown here that in fact only
6 (actually 51

2
) point matches are necessary to do transfer. In a typical situation in which the

method of transfer is to be used, the two reference images are analyzed off-line. In general, a large
number of points may be identified between the pair of reference images. Given sufficiently many
points (at least 8) it is possible to do a complete projective reconstruction of the scene by any of
the methods previously described in section 4.3. For greatest accuracy, an iterative method may
be used to do the projective reconstruction. This is a one-time cost incurred during the building
of the model. For instance, in the case of a building appearing in the scene, a complete projective
model of the house may be built.

Now, suppose that a new image is given and a set of point matches u0
i ↔ u1

i ↔ u2
i are found.

From the correspondence u1
i ↔ u2

i the point location xi in the 3D projective reconstruction may
be computed, or is already known. Hence, we actually have a set of 3D - 2D correspondences
xi �→ u2

i between the point in the projective reconstruction and its image in the image J2. Given
51

2
such correspondences, it is possible to determine a camera matrix P2 such that u2

i = Pxi for
all i. This will be done by the method of direct linear transformation (DLT) as described by
Sutherland ([33]). Now, any other point x in the model may be mapped to the point Px in the
new image J2.

Limitations of transfer. It is clear from the description of the reconstruction method, that
any point known in the 3D projective model may be mapped uniquely into the new image J2. The
only way that the method may fail is when the position of a point may not be determined in the
model. For instance, if x is a point lying on the line joining the camera centres of the two reference
images, then its position may not be determined from its coordinates in the two reference images.
This is so because the rays from the two camera centres to the point coincide, and hence their
intersection is not well defined. Consequently, it is impossible to determine the location of the
point in the 3D model, and hence in the new image J2. This is an intrinsic limitation of transfer.
It is impossible by any meanse to determine the location in a third image of a point lying on
the line joining the centres of the two reference images (unless the third camera centre lies on
this line as well). Thus, there exists a 1-dimensional critical set of points. This is a significant
improvement over the situation with epipolar transfer where the set of critical points is complete
plane of defined by the three camera centres.

Both the epipolar transfer and projective reconstruction methods generalize easily to the case
where three or more reference views are given. If the camera centres of the reference views are
non-collinear, then the critical set of points vanishes.

Further Reading

For projective geometry and homogeneous transformations Semple and Kneebone [29], Springer [6]
and the appendix in [5]. A good discussion of affine transformations is given in Koenderink [17].
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Part II

Single View Invariants

7 Invariants of planar objects

Algebraic invariants are invariants of configurations of algebraic objects, such as points, lines,
conics, and cubics. The following lists a number of algebraic invariants to plane projective trans-
formations.

7.1 Cross-ratio of four points on a line

This is a ratio of ratio of lengths on a line. It is preserved under projective transformations
between lines[

X ′i
1

]
=

[
t11 t12

t21 t22

] [
Xi

1

]
∗ ∗ ∗NOTATIONNEEDSFIXING ∗ ∗∗ (12)

The cross-ratio is given by

I =
(X ′3 −X ′1)(X ′4 −X ′2)
(X ′3 −X ′2)(X ′4 −X ′1)

=
(X3 −X1)(X4 −X2)

(X3 −X2)(X4 −X1)
(13)

where {X ′1, X ′2, X ′3, X ′4} represent the corresponding positions of each point along the line, e.g.
(X ′3 −X ′1) is the distance between points X′3 and X′1. Note, an invariant has the same value and
form after the transformation.

Since points and lines are dual, there exists an equivalent cross-ratio for lines. The dual relation
to collinearity is incidence at a point. A cross-ratio is defined on four lines which are incident at
a single point.

7.2 Five points

Two functionally independent invariants can be constructed for five points Xi in the plane, no
three of which are collinear:

I1 =
|S431||S521|
|S421||S531|

I2 =
|S421||S532|
|S432||S521|

(14)

where Sijk = (Xi,Xj,Xk) with Xi = (Xi, Yi, 1)
� and |S| the determinant of S. The invariants are

ratio of ratios of areas. The invariant can be derived by a geometric construction from the invariant
of four concurrent lines, see Figure 4, and can also be derived algebraically using determinants
(see below). The dual configuration is five general lines (no three concurrent). Examples of this
invariant are given in figure 5 and table 2.

Proof of invariance
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Figure 4: Five points on the plane have two functionally independent projective invariants. These
can be expressed as the cross ratio of four lines from a base point to the other four points.

a b c

Figure 5: The lines used to compute the five line planar projective invariant for the above images
are highlighted in white. The values are given in table 2.

Under the transformation X′i = kiTXi (where X′i = (X ′i, Y
′
i , 1)

� and Xi = (Xi, Yi, 1)�, and ki accounts
for scaling each point), a matrix of three such vectors transforms as:

 X ′i X ′j X ′k
Y ′i Y ′j Y ′k
1 1 1


 =


 t11 t12 t13

t21 t22 t23

t31 t32 t33




 kiXi kjXj kkXk

kiYi kjYj kkYk
ki kj kk




Taking determinants gives |S′ijk| = kikjkk|T||Sijk|, where S′ijk = (X′i,X′j ,X′k). Dividing such expres-
sions, as in equation (14) cancels both |T| and the scaling factors ki giving, for example,

I1 =
|S′431||S′521|
|S′421||S′531|

=
|S431||S521|
|S421||S531|

✷

7.3 Conic and two points

An invariant can be formed from a conic, C, and two points in general position, X1 and X2

I =
(X�1 CX2)

2

(X�1 CX1)(X
�
2 CX2)

(15)
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Five line invariants
Measured on I1 I2

Object 0.840 1.236
Figure 5(a) 0.842 1.234
Figure 5(b) 0.840 1.232
Figure 5(c) 0.843 1.234

Conic and line pair invariant
Measured on I1

Object 1.33
Figure 7(a) 1.33
Figure 7(b) 1.31
Figure 7(c) 1.28

Table 2: Values of plane projective invariants measured on the object, and from images with
varying perspective effects. The values vary (due to measurement noise) by less than 0.4% for the
five line invariants, and less than 4.0% for the conic and two line invariant.

Figure 6: (a) Two points, X1 and X2, coplanar with a conic C have a single plane projective
invariant. This is related to the cross ratio of four collinear points, X1,Xi,Xj and X2, (b), by a
construction preserved by projection.

The invariant can be constructed geometrically from the cross ratio of points on a line, see figure 6.
By duality the corresponding invariant for two lines, L1, L2, and a conic, C, is

I =
(L�1 C

−1L2)
2

(L�1 C
−1L1)(L

�
2 C
−1L2)

(16)

where the dual of a conic is a line conic given by C−1. Examples of this invariant are given in
figure 7 and table 2.

7.4 Two conics

Two projectively invariant measures can be formed for a pair of conics. These are:

I1 = Trace[C−1
1 C2](|C1|/|C2|)

1
3

I2 = Trace[C−1
2 C1](|C2|/|C1|)

1
3

where Ci is the conic matrix.
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a b c

Figure 7: The curves used to compute the conic and two line planar projective invariant for the
above images are highlighted in white. The values are given in table 2.

7.5 Canonical frame invariants

TO BE ADDED.

Further Reading

For algebraic invariants see Weiss [7] and the introduction to [5]. For canonical frame invariants
see Lamdan et al. [3], and Rothwell et al. [26].

8 Application: Model based recognition

The task of model based recognition is to determine which, if any, of a set of known objects
appear in a given image or image sequence. Object recognition systems draw on a library of
geometric models, containing information about the shape and appearance of a set of known
objects. Recognition is considered successful if the geometric configuration in an image can be
explained as a perspective projection of a geometric model of the object.

Recognition, then, is the establishment of a correspondence between image and model features.
Achieving this correspondence can be partitioned into three stages that should be contained within
any recognition system:

Grouping: what subset of the data belongs to a single object?

Indexing: which object model projects to this data subset?

Verification: how much image support is there for this correspondence?

In the following we contrast a typical system which does not use invariants with one that does.

8.1 Transformation/pose based methods

Model hypotheses are generated exhaustively by matching image groups to all model features
in the library. Each image-group to model-group match determines the transformation which
projects the model into the image. The hypothesis is verified by comparing the projected model
to image features. Essentially this method omits the indexing stage.
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In this case, the complexity of constructing a recognition hypothesis is O(λikmk) where λ is
the number of models, i the number of image features, m the number of features per model, and
k the number of features needed to determine the object-image transformation. In the SCERPO
system developed by Lowe k = 4. Clearly, complexity increases linearly with the number of models
in the library.

8.2 Index function methods

Model hypotheses are generated by an index function which directly identifies a model in the
library from a set of grouped image features. Index functions must be viewpoint invariant, i.e.
they are unaffected by the perspective distortions which occur when an object is projected into
an image, naturally invariants play a key role here. The identified model is projected onto the
image, and hypothesis verification applied.

In this case, the complexity of constructing a recognition hypothesis becomes O(ik) rather than
O(λikmk) in the pose based method, where k is the number of features required to form the index.
So, unlike pose based recognition methods, recognition complexity need not be proportional to
the number of models in the library. This is a considerable advantage if the number of models is
large. Index functions are generally based on geometric invariants of the objects in the library.

8.3 Recognition Using Invariants

The two stages of model based vision using invariants are

1. Model acquisition
Models are acquired directly from images. For planar objects this involves computing their
plane projective invariants and storing their outline for the process of verification.

2. Recognition
Invariants are computed for geometric configurations in the target image. If the invariant
value corresponds to one in the model library a recognition hypothesis is generated. This is
implemented by using invariant values to index into a hash table (no search). The hypothesis
is confirmed or rejected by verification: The model outline from the acquisition image is
projected onto the target image. If the projected edges overlap image edges to a sufficient
extent then the hypothesis is verified.

Camera calibration is not required at any stage. An example is shown in figure 8 for an
object (the bracket) which can be modelled by algebraic curves (namely 5 lines and a conic). It
is recognised despite being partially occluded.

Further Reading

Recognition using projective invariants: [2, 27, 25].

9 Invariants of 3D objects

Much recent debate has focused around a theorem, proven by a number of authors [3, 1, 4], which
states that invariants can not be measured for a 3D set of points in general position from a single

25



a b

Figure 8: (a) Acquisition image for bracket. Algebraic plane projective invariants are measured
from this image. (b) The recognised bracket is highlighted in white.

view. The theorem has frequently been misinterpreted to mean that no invariants can be formed
for three dimensional objects from a single image. For the theorem to hold, however, the points
must be completely unconstrained, (like a cloud of gnats). If a 3D structure is constrained, then
invariants are available.

3D projective invariants are invariant under projective transformations of P3. A projective
transformation of P3can be written as:


X ′1
X ′2
X ′3
X ′4


 =



t11 t12 t13 t14

t21 t22 t23 t24

t31 t32 t33 t34

t41 t42 t43 t44





x
y
z
1




with

x′ = X ′1/X
′
4 y′ = X ′2/X

′
4 z′ = X ′3/X

′
4

Fifteen parameters are required to define the 3D projective transformation matrix up to an arbi-
trary scale factor. Thus five 3D points are sufficient to construct a projective coordinate system.
A sixth point will then have invariant 3D coordinates in the projective basis defined by the other
five. These 3D point invariants can also be interpreted as the cross ratio of tetrahedral volumes
define by taking determinants of point coordinates, four at a time.

For example, an invariant for six 3D points is given by

I3(x) =
|x1 x2 x3 x4| |x1 x2 x5 x6|
|x1 x2 x3 x5| |x1 x2 x4 x6|

(17)

where xi = (xi, yi, zi, 1)
�. This invariant has the familiar property of invariants that

I3(x
′
1,x

′
2,x

′
3,x

′
4,x

′
5,x

′
6) = I3(x1,x2,x3,x4,x5,x6)

By assuming a set of constraints hold among the 3D projective invariants of a point set, it
becomes possible to measure 3D projective invariants in a single view. The following section illus-
trates the nature of these constraints and provides a geometric interpretation for the measurable
invariants.
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9.1 Invariants

1. “Butterfly configuration”
Points constrained to lie on two planes in a “butterfly” configuration, figure ??, have a
cross-ratio that can be measured in the image. This is a projective invariant of the entire 3D
structure, and not simply a disguised planar invariant, since each plane contains only four
points (five coplanar points are required to form a plane projective invariant from points
alone).

2. *** MORE TO BE ADDED.

Further Reading

Polyhedra and symmetric point sets [28, 25].
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Part III

Multiple View Invariants

10 Projective Invariants of Point Sets

As has been shown in section 4.3, although it is impossible to determine the exact geometry of
a scene from multiple views, it is in general possible to reconstruct the scene up to an unknown
projective transformation of space. Then projective invariants of the 3D structure (section 9)
computed from a projective reconstruction of the scene will have the same value as if it were
constructed from the actual scene. Such projective invariants do not include such scene properties
as angles and length ratios, which are not invariant under projective transformations of the scene.
The general strategy of computing these invariants is as follows.

1. Use image correspondences to compute the fundamental matrix F . Then find a factorization
F = [t]×M , and hence two camera matrices P = [I | 0] and P ′ = [M | t].

2. Compute the projective reconstruction of the scene, using for instance the method of Sec-
tion 4.3.

3. Compute a projective invariant of the reconstructed scene in P3.

10.1 An invariant of 6 points

We return to the six point invariant of equation (17). Given a set of six points {xi} in P3,
a coordinate system may be selected in which the first five points have coordinates [1, 0, 0, 0]�,
[0, 1, 0, 0]�, [0, 0, 1, 0]�, [0, 0, 0, 1]� and [1, 1, 1, 1]�. The coordinates of the sixth point give rise to
three independent projective invariants of the six points.

Another formulation of these invariants is given by selecting x0 and x1 as base points. Given
any other point in P3, not collinear with x0 and x1, there exists a unique plane passing through
that point and the two base points x0 and x1. In this way, the four points x2,x3,x4 and x5 give
rise to four planes all containing the line joining x0 to x1. From the four planes it is possible to
define a cross ratio. In particular, if λ is any line in space, skew to the line passing through x0

and x1, then λ intersects the four planes at points p2, p3, p4 and p5. The cross ratio of these four
points on the line λ is a projective invariant of the six original points in P3. Different invariants
result from different choices of x0 and x1.

Both these definitions of invariants fail if three of the points happen to be collinear, however,
this case will be ignored for the sake of simplicity.

11 Projective Invariants of Lines

In this section, invariants of lines in space will be described. It will be shown that four lines in the
3-dimensional projective plane, P3give rise to two independent invariants under collineations of
P3. Two different ways of defining invariants will be described, one algebraic and one geometric.
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11.1 Computing Lines in Space

To be able to compute invariants of lines in space, it is necessary to be able to compute the location
of a line in P3from its images in two or more views; Lines in the image plane are represented as 3-
vectors. For instance, a vector λ = [λ, µ, ν]� represents the line in the plane given by the equation
λu + µv + νw = 0. Similarly, a plane in 3-dimensional space is represented in homogeneous
coordinates as a 4-dimensional vector. The relationship between lines in the image space and
corresponding planes in object space is given by the following lemma.

Lemma 11.10. The set of all points in P3that are mapped by a camera with matrix P onto a line
λ in the image is the plane π with coordinates P�λ.

Proof. A point x lies on π if and only if Px lies on the line λ, and so λ�Px = 0. On the other
hand, a point x lies on the plane π if and only if π�x = 0. Comparing these two conditions leads
to the conclusion that π� = λ�P or π = P�λ as required. 
�

If a line in space is seen in two or more views, then it may be found by computing the
intersection of the corresponding planes in space.

11.2 Algebraic Invariant Formulation

Consider four lines λi in space. A line may be given by specifying either two points on the line or
dually, two planes that meet in the line. It does not matter in which way the lines are described.
For instance, in the formulae (19) and (20) below certain invariants of lines are defined in terms
of pairs of points on each line. The same formulae could be used to define invariants in which
lines are represented by specifying a pair of planes that meet along the line. Since the method of
determining lines in space from two view given in section 11.1 gives a representation of the line as
an intersection of two planes, the latter interpretation of the formulae is most useful.

Nevertheless, in the following description, of algebraic and geometric invariants of lines, lines
will be represented by specifying two points, since this method seems to allow easier intuitive
understanding. It should be borne in mind, however, that the dual approach could be taken with
no change whatever to the algebra, or geometry.

In specifying lines, each of two points on the line will be given as a 4-tuple of homogeneous
coordinates, and so each line λi is specified as a pair of 4-tuples

λi = ((ai1, ai2, ai3, ai4)(bi1, bi2, bi3, bi4))

Now, given two lines λi and λj, one can form a 4× 4 determinant, denoted by

|λiλj| = det



ai1 ai2 ai3 ai4
bi1 bi2 bi3 bi4
aj1 aj2 aj3 aj4
bj1 bj2 bj3 bj4


 . (18)

Finally, it is possible to define two independent invariants of the four lines by

I1(λ1, λ2, λ3, λ4) =
|λ1λ2| |λ3λ4|
|λ1λ3| |λ2λ4|

(19)
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and

I2(λ1, λ2, λ3, λ4) =
|λ1λ2| |λ3λ4|
|λ1λ4| |λ2λ3|

. (20)

It is necessary to prove that the two quantities so defined are indeed invariants under collineations
of P3. First, it must be demonstrated that the expressions do not depend on the specific formu-
lation of the lines. That is, there are an infinite number of ways in which a line may be specified
by designating two points lying on it, and it is necessary to demonstrate that choosing a different
pair of points to specify a line does not change the value of the invariants. To this end, suppose
that [ai1, ai2, ai3, ai4]

� and [bi1, bi2, bi3, bi4]
� are two distinct points lying on a line λi, and that

[a′i1, a
′
i2, a

′
i3, a

′
i4]
� and [b′i1, b

′
i2, b

′
i3, b

′
i4]
� are another pair of points lying on the same line. Then,

there exists a 2× 2 matrix Di such that

[
a′i1 a′i2 a′i3 a′i4
b′i1 b′i2 b′i3 b′i4

]
= Di

[
ai1 ai2 ai3 ai4
bi1 bi2 bi3 bi4

]
.

Consequently,



ai1 ai2 ai3 ai4
bi1 bi2 bi3 bi4
aj1 aj2 aj3 aj4
bj1 bj2 bj3 bj4


 =

[
Di 0
0 Dj

] 
a′i1 a′i2 a′i3 a′i4
b′i1 b′i2 b′i3 b′i4
a′j1 a′j2 a′j3 a′j4
b′j1 b′j2 b′j3 b′j4


 .

Taking determinants, it is seen that the net result of choosing a different representation of the
lines λi and λj is to multiply the value of |λiλj| by a factor det(Di) det(Dj). Since each of the lines
λi appears in both the numerator and denominator of the expressions (19) and (20), the factors
will cancel and the values of the invariants will be unchanged.

Next, it is necessary to consider the effect of a change of projective coordinates. If H is a 4×4
invertible matrix representing a coordinate transformation of P3, then it may be applied to each
of the points used to designate the four lines. The result of applying this transformation is to
multiply the determinant |λiλj | by a factor det(H). The factors on the top and bottom cancel,
leaving the values of the invariants (19) and (20) unchanged. This completes the proof that I1

and I2 defined by (19) and (20) are indeed projective invariants of the set of four lines.
An alternative invariant may be defined by

I3(λ1, λ2, λ3, λ4) =
|λ1λ4| |λ2λ3|
|λ1λ3| |λ2λ4|

. (21)

It is easily seen, that I3 = I1/I2. However, if |λ1λ2| vanishes, then both I1 and I2 are zero, but I3

is in general non-zero. This means that I3 can not always be deduced from I1 and I2. A preferable
way of defining the invariants of four lines is as a homogeneous vector

I(λ1, λ2, λ3, λ4) = [|λ1λ2| |λ3λ4| , |λ1λ3| |λ2λ4| , |λ1λ4| |λ2λ3|] . (22)

Two such computed invariant values are deemed equal if they differ by a scalar factor. Note that
this definition of the invariant avoids problems associated with vanishing or near-vanishing of the
denominator in (19) or (20).

30



11.3 Degenerate Cases

The determinant |λiλj| as given in (18) will vanish if and only if the four points involved are
coplanar, that is, exactly when the two lines are coincident (meet in space). If all three components
of the vector I(λ1, λ2, λ3, λ4) given by (22) vanish, then the invariant is undefined. Enumeration of
cases indicates that there are two essentially different configurations of lines in which this occurs.

1. Three of the lines lie in a plane.

2. One of the lines meets all the other three.

The configuration where one line meets two of the other lines is not degenerate, but does not
lead to very much useful information, since two of the components of the vector vanish. Up to
scale, the last component may be assumed to equal 1, which means that two such configurations
can not be distinguished. In fact any two such configurations are equivalent under collineation.

11.4 Geometric Invariants of Lines

It is also possible to define projective invariants of sets of four lines geometrically. In particular,
given four lines in space in general position, there will exist exactly two transverse lines that
meet all four of these lines. The cross ratio of the points of intersection of lines with each of the
transverse lines give two independent projective invariants of the set of four lines. These invariants
may take real or complex values. The relationship of these invariants to the algebraic invariants is
clarified in [12]. In particular, it is shown that there are just two independent projective invariants
of four lines in space.

12 Geometric Approach to Invariants

An interesting approach to invariant computation has been developed by Gros and Quan ([7, 8, 9])
based on Geometric construction. The following description of this technique is somewhat different
in detail from their approach, but the basic idea is the same.

The Coplanarity Test Gros and Quan make use of a test for coplanarity of four points, that
I have first seen referred to in [5], ascribed to Roger Mohr. I describe here a different test for
coplanarity, that seems to be very slightly simpler. Consider four points ui ↔ u′i for i = 1, . . . , 4
appearing in two images. Let xi be the points in P3corresponding to these image points. We
assume that the epipoles p and p′ in the two images are also known. The epipole p is the point
where the camera centre of the second camera appears in the first image, and p′ is symmetrically
defined. We assume that none of the points ui or u

′
i corresponds with one of the epipoles.

Proposition 12.11. The four points xi lie in a plane if and only if there is a 2D projective
transformation taking u1,u2,u3,u4,p to u′1,u

′
2,u

′
3,u

′
4,p

′.

The fact that the sets of points are in projective equivalence means of course that the cross-ratio
invariants of the two point sets are equal.
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Figure 9: Intersection of a line with a plane defined by three points. Consider points
u1, u2, u3 and the epipole p in one image and corresponding points u′1, u

′
2, u
′
3 and p′ in the second

image. Compute the 2D projective mapping H that takes the points to their corresponding points in
the second image. Transfer the line by H and compute its intersection with the line in the second
image. This intersection point is the point where the line meets the plane of the three points, as
seen in the second image. lines.

Proof. Suppose that the four points xi lie in a plane π and let e be the point where the line joining
the two camera centres meets π. Then both sets of points u1, . . . ,u4,p and u′1, . . . ,u

′
4,p

′ are (2D)
projectively equivalent to the set x1, . . . ,x4, e, and hence to each other. To prove the converse,
suppose that π is the plane containing x1, x2 and x3 and as before, let e be the intersection of π
with the line joining the camera centres.

There exists a unique 2D projective transformations T taking u1,u2,u3,p to x1,x2,x3, e, since
a 2D transform is uniquely defined by 4 points. A transform T ′ may be similarly defined, and
T ′−1T is the unique transform taking u1,u2,u3,p to u′1,u

′
2,u

′
3,p

′. If the point x4 does not lie on
the plane π, however, then its projections onto π from the two camera centres are different. This
means that Tx4 �= T ′x4, and so T ′−1Tu4 �= u′4, so the points are not in projective correspondence.


�

Gros and Quan use a coplanarity criterion to allow them to compute the point of intersection
of a line with a plane defined by three points. Using the above coplanarity criterion, this may be
done as follows. Let x1,x2,x3 be the three points and let L be a line. Let the images of the points
and line be ui and λ in one image, and the same with primes in the other image. Let p and p′

be the epipoles. Consider the transformation T defined by Tui = u′i and Tp = p′. The line λ′ is
also transformed by T to a line which we may (somewhat loosely) denote Tλ. The intersection
of λ′ and Tλ is the image of the point where the L meets the plane π. This follows immediately
from Proposition 12.11, since this is the unique point on λ′ that is in projective correspondence,
via T , with a point on the line λ. This is illustrated in fig 12.

Three points and Two Lines. The idea put forward by Gros and Quan is to use this method
to compute invariants. As an example, consider three points and two lines in 3D, and suppose
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Figure 10: Invariants from 3 points and 2 lines. At the top are two views of 3 points and 2
lines. It is assumed that the epipoles p and p′ are also known. To compute the invariants of the
set of points and lines, one finds a 2D projective transformation H that takes the points ui to u

′
i

and p to p′. Since a 2D projectivity is determined by 4 points, the transform H is uniquely defined.
Let A↔ A′ and B ↔ B′ be the two matching lines. By transforming (warping) the first image by
H, point ui is mapped to u′i, and the lines A and B are mapped to lines A′′ and B′′. The points
u′1, u

′
2, u

′
3 along with u′4 = A′∩A′′ and u′5 = B′∩B′′ form a set of 5 coplanar points (in the image

plane of the primed camera). The two 2D projective invariants of these 5 points are invariants of
the set of 3 points and 2 lines.

that the epipoles are known. The three points define a plane. The intersection of the two lines
with this plane, plus the three original points give five points in a plane, from which one may
derive two invariants. By using the construction of the previous paragraph and applying it to
both of the lines, one immediately finds the image of the three points and the two intersection
points, as seen in the second (primed) image. This method is explained further in Fig 12.

Four Points and One Line. As another example, consider four points and one line. One
may extract four subsets of three points from among the set of points. Each such subset defines
a plane that meets the line in a single point. This provides four points on one line, and hence a
single invariant. Using the above construction, one easily computes the four points, as seen in the
primed image. This is illustrated in Fig 12.

Six Points The construction used for four points and one line can be used for six points by
selecting two of the points to define a line. One is thus reduced to the case of four points and
one line. The difference, however is that one now has two extra points on the line, namely the
two points used to define the line. Thus we have a total of six points on the line A′, namely the
four intersection points plus the two points defining A′. From these six points on a line, we may
extract three independent cross ratios.

The invariants described in the paragraphs above were computed by similar (but slightly
different) constructions in [7, 8, 9].
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Figure 11: Invariants from 4 points and 1 line. At the top are two views of 4 points and
1 lines. It is assumed that the epipoles p and p′ are also known. For j = 1, . . . , 4 one finds 2D
projective transforms Hj defined as follows : Hj is the transform that takes p to p′ and ui to u

′
i for

each i = 1, . . . , 4, except for i = j. By mapping the line A into the other image by transformations
Hj one obtains four lines A

′′
j in the second image. The cross-ratio of the four points of intersection

of A′′j with A′ is an invariant of the four points and one line in space. This is because these four
intersection points are in projective correspondence with the points of intersection of the line with
the four planes defined by sets of three points.

Further Reading

Other methods of geometric computation of invariants are given by Ponce ([23]) Quan ([24]) and
in [14]. This includes invariants derived from smaller numbers of points (6 points in 3 views or 7
points in 2 views).

13 Algebraic Approach to Invariants

A very interesting algebraic method of computation of invariants was given by Carlsson ([4]). By
completely algebraic techniques, involving the so-called double algebra, he derived explicit formulas
for projective invariants of point and line sets as seen in a pair of images. The formulae express
the invariants directly in terms of the image coordinates of the points as seen in the two views.

As an example, we consider the line invariants discussed in section 11. Thus, let �i ↔ �′i for
i = 1, . . . , 4 be a set of four corresponding lines in two views, and let λi be the corresponding line
in 3-space. Denote by uij the intersection of the lines �i and �j . Thus uij = �i× �j . Similarly, let
u′ij = �

′
i × �′j. Then, with |λiλj | defined as in (18), Carlsson shows that

|λiλj| = ku′ij
�Fuij (23)

where k is a constant. From this it follows that the invariant (22) may be written entirely in terms
of the image coordinates, and the fundamental matrix.

I = (u′12
�Fu12.u

′
34
�Fu34, u

′
13
�Fu13.u

′
24
�Fu24, u

′
14
�Fu14.u

′
23
�Fu23) .
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The formula (23) may be seen directly using as follows. The determinant |λiλj |may be defined
directly by expressing the line λi as the intersection of the two planes P�6i and P

′�6′i. From this
one directly obtains

|λiλj| = det
[
P�6i, P

′�6′i, P
�6j, P

′�6′j
]
.

However, one may verify that

det
[
P�6i, P

′�6′i, P
�6j, P

′�6′j
]
= [�′i × �′j ]�F [�i × �j] .

This may be verified first for elementary basis vectors such as [1, 0, 0]� and then extended by
linearity to arbitary �i and �

′
i. This derivation was suggested to me by conversations with Rajiv

Gupta.
By consideration of the results of Carlsson, it may be seen that many of the invariants of mixed

point and line sets in P3are actually just disguised invariants of sets of lines. In fact, replacing
two points by the line that passes through them and then defining a line invariant gives the same
result. This is certainly true of all the invariants considered in [4].

Invariants of Points Given a set of six points, x1, . . . , x6, denote by λij the line that passes
through points xi and xj. Then the expression

I1(λ12, λ45, λ13, λ46) =
|λ12λ45| |λ13λ46|
|λ12λ46| |λ13λ45|

(24)

is invariant. The lines λij map to lines �ij and �′ij in the two images, and these lines may be
computed easily in terms of the measured image coordinates ui and u

′
i. Then, applying (23), one

easily obtains a formula for the six-point invariant in terms of the image coordinates ui and u′i
and the fundamental matrix F .

I = (x1, . . . ,x6) =
u′12:45

�Fu12:45.u
′
13:46

�Fu13:46

u′12:46
�Fu12:46.u

′
13:45

�Fu13:45

(25)

where uij:kl is the intersection of the line ui × uj with the line uk × ul. Namely, uij:kl = (ui ×
uj)× (uk × ul). This formula is formula (30) in [4]. The lines λ12 and λ13 meet in one point, x1,
and similarly lines λ45 and λ46 meet in x4. Consequently, there is only one invariant associated
with the set of four lines. By choosing other combinations of the points to construct lines, one
obtains more invariants. In total, there are three independent invariants of a set of six points.

Invariants of Mixed Points and Lines Given a set of mixed points and lines in P3, one can
define invariants in a similar manner by joining subsets of the points together to make lines. Then,
one applies the 4-line invariant to obtain invariants of the set of points and lines.
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