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Abstract
This paper considers the problem of self-calibration

of a camera from an image sequence in the case where
the camera’s internal parameters (most notably focal
length) may change. The problem of camera self-
calibration from a sequence of images has proven to
be a difficult one in practice, due to the need ulti-
mately to resort to non-linear methods, which have
often proven to be unreliable. In a stratified approach
to self-calibration, a projective reconstruction is ob-
tained first and this is successively refined first to an
affine and then to a Euclidean (or metric) reconstruc-
tion. It has been observed that the difficult step is
to obtain the affine reconstruction, or equivalently to
locate the plane at infinity in the projective coordi-
nate frame. The problem is inherently non-linear and
requires iterative methods that risk not finding the
optimal solution. The present paper overcomes this
difficulty by imposing cheirality constraints to limit
the search for the plane at infinity to a 3-dimensional
cubic region of parameter space. It is then possible to
carry out a dense search over this cube in reasonable
time. For each hypothesised placement of the plane
at infinity, the calibration problem is reduced to one
of calibration of a non-translating camera, for which
fast non-iterative algorithms exist. A cost function
based on the result of the trial calibration is used to
determine the best placement of the plane at infinity.
Because of the simplicity of each trial, speeds of over
10,000 trials per second are achieved on a 256Mhz pro-
cessor. It is shown that this dense search allows one to
avoid areas of local minima effectively and find global
minima of the cost function.
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of Education and Science (LA) and Research Coucil of Norway
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1 Introduction
Self calibration of a camera from image sequences

has been the subject of much recent research since the
seminal paper of Maybank and Faugeras [8]. Practi-
cal methods for computing the calibration have been
given by [3, 11], but there have been remaining prob-
lems of convergence and stability. The basic assump-
tion behind these papers is that the camera is the same
for all views, which means that no zooming is allowed.
More recently, the observation was made in [6, 7, 9]
that self calibration is possible under much looser as-
sumptions. Calibration is possible under a minimal
assumption that the cameras have no skew, or the
slightly tighter additional assumption that the pixels
have a fixed or known aspect ratio. This extension of
the theory of self-calibration allows calibration to be
carried out on video sequences with a zooming camera.

In a parallel development, self-calibration methods
have been given for non-translating cameras (that is
ones that do not change their focal centre). The ad-
vantage of these methods is that more robust, sim-
pler and often linear methods are available for self-
calibration in this case, both for unchanging ([4]) and
changing ([1, 2]) internal parameters. The theme of
this paper is that these simple methods are applica-
ble to the case of cameras undergoing general motion,
once the plane at infinity has been determined. In-
deed they may be used to guide the search for the
plane at infinity in a projective reconstruction. The
result is a stratified algorithm for self calibration, ap-
plicable to cameras undergoing general motion, with
changing internal parameters, in which one proceeds
from projective to quasi-affine to affine to Euclidean
reconstruction.

The only other approaches to this calibration prob-
lem have been given in [6, 7, 9]. The method of
Pollefeys et al. ([9]) applies a straight projective-to-

1



Euclidean iterative approach in which it is necessary
to make assumptions about internal parameters in or-
der to initialize the iteration, and Heyden’s approach
([6]) is similarly iterative. As this paper shows, iter-
ation is quite chancy in the context of self-calibration
under minimum assumptions on internal parameters.
We replace the need for descent-based iteration by a
quick, but exhaustive search for the best affine recon-
struction. The method described is very effective at
finding the global minimum of a calibration cost func-
tion, and lends itself to generalization by the use of
different costs and affine-to-euclidean reconstruction
schemes.

2 Calibration of a non-translating
camera

A method for computing the calibration of a rotat-
ing and zooming camera was given in [2] and is sum-
marized here. The method given there relies on the
fact that images obtained by such a camera are related
by image-to-image homographies, otherwise known as
2D projective transformations. One selects a reference
image J0, and assigns homographies Hi to each of the
other images. The homographies Hi are defined by the
following condition. If x0 is any point in the image
J0 and xj is the corresponding point in the image Jj ,
then xj = Hjx0. The homographies may be computed
by direct measurement of matching points in the set
of images, as described in [4]. Since matching points
are mapped to each other in this manner, the same is
true for the points on the image of the absolute conic
(the IAC). Denoting by ωi the IAC in the i-th image,
the rule for transforming conics under a homography
leads to an equation

ωj = Hj
−�ω0H

−1
j (1)

The IAC is related to the calibration matrix of each
camera by the formula ([4])

ω = K−�K−1 (2)

where K is the calibration matrix of the camera. The
entries of the matrix ω are readily related to the en-
tries of the calibration matrix K in the case where the
skew parameter (that is s = K12) is zero1.

In particular, if

K =


 αx 0 x0

αy y0

1


 (3)

1This is not true of the dual of the IAC, used in [1, 4] and is
the reason for the significant advantage of using the IAC instead
of its dual.

one may easily compute that

ω = K−�K−1
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Assumptions about the calibration matrix are now
easily related to conditions on the entries of ω. Specif-
ically,

Proposition1.

1. Zero-skew : If s = K12 = 0, then ω12 = 0.

2. Square-pixels : If s = 0 and αx = αy, then
ω11 − ω22 = 0.

3. Known principal point : If s = 0 and x0 = 0,
then ω13 = 0. Similarly if y0 = 0 then ω23 = 0.

Each equation of this type applied to ωj , when com-
bined with (1) gives a linear equation in the entries
of ω0. With at least five equations, one may solve
for the five distinct entries of ω0 up to scale. For in-
stance, each image (including) J0 gives one equation in
the zero-skew case, and five images are required to find
the calibration. If one assumes square pixels or known
principal point, then fewer images are necessary. Fi-
nally, one computes each ωj using (1) and retrieves
the calibration matrix from (2) using Cholesky factor-
ization. Further details, and results of implementing
this algorithm are reported in [2].

3 The general motion case
The purpose of this paper is to extend the tech-

niques of [2] described above to the case of a moving
camera, that is one undergoing translation as well as
rotation. In addition, the camera may be zooming,
which means that the internal parameters are chang-
ing. The problem is made considerably more diffi-
cult by the translation of the camera. In this case,
there are no homography maps that map points di-
rectly from one image to the next. Instead, matching
points are related by the fundamental matrix. How-
ever, the place of the inter-image homographies in the
stationary camera case are taken by the so-called “in-
finite homographies” (as described later) in the case of
moving cameras. Unfortunately, one can not compute
the infinite homographies without knowing the posi-
tion of the plane at infinity, which is not readily found.
However, if only these infinite homographies could be
discovered, then the theory and solution method given
for the stationary camera case could be applied di-
rectly to find the calibration of the cameras. Thus,



calibration is reduced to finding the plane at infinity.
As has been noted previously ([4, 12]), the real diffi-
culty in calibration is finding the plane at infinity.

Given a set of images of a scene, the first step in
the calibration process is to compute a projective re-
construction of the scene, using the method described
in [3], or any other method. The next step is to
find the true plane at infinity in the coordinate frame
of the projective reconstruction. Applying a projec-
tive transformation that takes this plane to infinity
upgrades the projective reconstruction to an affine-
reconstruction. After this, one can find the infinite
homographies and use the method of [2] to compute
the calibration of each camera, and ultimately com-
pute a Euclidean (sometimes called “metric”) recon-
struction of the scene.

The method of finding the plane at infinity pro-
posed in this paper is to carry out a direct search over
all possible planes to find the one that allows the best
calibration. Thus, let Pj = [Mj |tj ] be a set of cameras
and Xi be points together making up a projective re-
construction of a scene. Let V be a 4-vector repre-
senting a plane in the reconstructed scene, and let G
be a projective transformation taking V to the plane
at infinity. Any non-singular 4 × 4 matrix with 4-th
row equal to V� has this property. To verify this, note
that a point X lies on the plane represented by V if
and only if V�X = 0, and this is equivalent to the
condition that GX = (X, Y, Z, 0)� lies on the plane at
infinity. Now, we may apply G to the reconstruction,
replacing each Pj by PjG−1 and each point Xi by GXi.
If by some chance V represented the true plane at in-
finity, then we now have an affine reconstruction, and
one may proceed to calibrate the cameras, as described
next.

For each j, let [M′j |t′j ] = P′j = PjG be the camera ma-
trices after transformation. The infinite homography
for a pair of cameras is defined to be the homography
between the two images relating the respective pro-
jections of points lying on the plane at infinity. For
instance, a point X = (x�, 0)� on the plane at infin-
ity maps to points M′ix and M′jx in the i-th and j-th
images. These points are related by the homography
mapping Hij = M′jM

′
i
−1, which is the infinite homogra-

phy for this pair of images. Since the absolute conic
lies on the plane at infinity, its projections in two im-
ages are related via the infinite homography. From
this it follows that (1) holds where Hj = H0j is the
infinite homography for the image pair (0, j).

For convenience, we introduce a reference camera
represented by P′0 = [I | 0]. Note that P′0 is not neces-
sarily one of our cameras P′j . Let ω0 be the IAC in the

image taken with this camera. The infinite homogra-
phy from image 0 to image j is then simply M′j , from
which it follows that

ωj = M′j
−�ω0M

′−1
j (4)

As in the stationary camera case, each condition of the
form given in Proposition 1 gives a linear equation on
the entries of the symmetric matrix ω0. One may solve
this system to find ω0, subsequently compute each ωj

and obtain Kj by Cholesky factorization. If the com-
puted ωj is not positive-definite, then this final step
of Cholesky factorization is not possible. This factor
will work in our favour, since it indicates that the sup-
posed value ofV representing the plane at infinity was
in error. Note that each ωj is positive-definite if and
only if ω0 is.

The cost function. The complete set of equations
derived from (4) may be written as Aw = 0, where w
is a 6-vector made up of the distinct entries of the sym-
metric matrix ω0. If the plane at infinity (represented
by V) was correctly devined, and there is no noise,
then this set of equations will have an exact non-zero
solution, representing the matrix ω0. One may find
this solution by carrying out the Singular Value De-
composition (SVD) of A, namely A = UDV�. Matrix D
is a 6×6 diagonal matrix diag(d1, . . . , d6), and we may
arrange that d6 is the smallest entry, equal to zero in
the ideal case, and the solution is the last column of
V. In the absence of an exact solution, the last column
of V represents a least-squares solution for w, and the
residual Aw is d6U6, where U6 is the last column of U.
The magnitude of this residual vector is equal to d6,
the smallest singular value of A.

Although measurement noise will lead to an inexact
solution, and a non-zero residual, the most significant
source of residual is the wrong placement of the plane
at infinity. This suggests a strategy for finding the
correct placement of the plane at infinity, as follows.

Algorithm 1.

1. For each 4-vector V representing a plane at infin-
ity, compute a residual error r(V) as follows

(a) Form a 4 × 4 transformation matrix having
last row V and compute transformation ma-
trices P′j = PjG−1 = [M′j |t′j ].

(b) Form a linear equation set Aw = 0 from (4)
according to chosen constraints of the type
given in Proposition 1

(c) Compute the SVD of A = UDV�.



(d) The last column of V is the least-squares so-
lution containing the entries of ω0.

(e) If the computed ω0 is not positive-definite,
then reject the solution.

(f) The magnitude of the residual r(V) is the
smallest singular value of A.

2. Search for the value of V that minimizes the resid-
ual r(V), and leads to a positive-definite solution
for ω0. Accept this value of V as the placement
of the plane at infinity,

3. From the value of ω0 computed as step 1, com-
pute each ωj using (4), and compute Kj using
Cholesky factorization ω−1

j = KjKj
�. Since ω0 is

positive definite, so is ωj , and this factorization
will succeed.

The cost function represented by the smallest sin-
gular value of A represents the residual error associated
with the conditions given in Proposition 1. It is possi-
ble to use other cost functions in this context. In the
zero-skew case, for instance, the vector of skew-angles
for each of the different calibration matrices Kj has
also been tried, and seems preferable. However, this
represents a minimal modification to the algorithm.

4 Narrowing the Search for Infinity
The 4-vector V representing the plane at infinity is

defined up to scale only, and hence the search for an
optimum V may be carried out over a compact region
by searching over a 3-sphere. However, it is possible
to constrain the search even more effectively.
4.1 Obtaining a quasi-affine reconstruc-

tion.
The search for the best plane at infinity can be

narrowed by making a preliminary transformation to
a quasi-affine transformation ([5]). A quasi-affine re-
construction is computed by taking account of cheiral-
ity as described in [3]. In this paper, the technique is
refined to give accurate bounds for a search for the
plane at infinity.

As described in [3], the essence of cheirality is to
use information about which points are visible in an
image, and hence in front of the camera, to upgrade
a projective reconstruction to a “quasi-affine” recon-
struction. A quasi-affine reconstruction is a projec-
tive reconstruction in which the reconstructed scene
is not split across the plane at infinity. A quasi-affine
reconstruction may be computed from a projective-
reconstruction by solving a linear programming prob-
lem. In particular, for a projective reconstruction con-
sisting of points Xi and cameras Pj , one finds a quasi-

affine reconstruction in several steps as follows (for
justification see [5, 3]) :

1. Multiply each Pj and Xi by ±1 as necessary so
that PjXi = (x, y, w)� with w > 0. This is always
possible ([5]).

2. For any camera matrix P, let CP = (c1, c2, c3, c4)�

be defined by ck = (−1)k det(P̂k
), where P̂k is

obtained from P by removing the k-th column.
The vector CP is a homogeneous representation of
the camera centre, but the sign of CP is important
in this context.

3. For each ε = ±1, form the set of inequalities

Xi
�V > 0 for all points Xi

εCPj�V > 0 for all cameras Pj

4. For each choice of ε solve the set of inequalities
to find V. There must be a solution for at least
one of the choices of ε, perhaps both.

5. Choose a transformation matrix G with 4-th row
equal to V and such that sign(det G) = ε.

6. Replace each Xi by GXi and each Pj by PjG−1,
and the resulting reconstruction will be a quasi-
affine reconstruction.

The inequalities above are called the “cheiral inequali-
ties”. If solutions exist both for ε = 1 and ε = −1, then
they have opposite orientation ([5]). As explained in
[3] one adds extra inequalities |vi| <= 1 for each com-
ponent vi of V to constrain a solution. In order to find
a unique solution to the set of inequalities, the cheiral
inequalities are modified by introducing a further vari-
able δ. Then one forms the inequalities Xi

�V > δ and
εCPj�V > δ and linear programming is used to find
the solution that maximizes δ > 0.

This method is used to obtain one or possibly two
differently oriented quasi-affine reconstructions of the
scene. One of these reconstructions differs from the
true reconstruction by an orientation preserving (that
is positive determinant) projective transformation in
which the plane mapped to infinity does not cross the
convex hull of the points and camera centres. Any
further transformations applied to the reconstruction
to achieve an affine or Euclidean reconstruction will
have this form. Subsequent steps of the algorithm are
carried out with the two differently oriented quasi-
affine reconstructions (if both exist) until some time
later a choice is made between them.



4.2 Translation to the origin
The next step is to translate the quasi-affine re-

construction (that is the 3D points and the cam-
era centres) to the coordinate origin. At the same
time, to make possible affine distortion more benign,
anisotropic scaling is applied to make the reconstruc-
tion approximately round. More precisely a scaling is
applied so that the principal moments of the point set
are equal. This complete transformation is easily done
in one step as follows. Let S = 1/N

∑N
1 Yi

�Yi be the
scatter matrix of all the points Yi, which are the 3D
points and the camera centres. Let S = HH�, with H
upper-triangular, be the Cholesky factorization of S.
Transforming the reconstruction by H−1, that is re-
placing Pj by PjH and points Xi by H−1Xi, will carry
out the desired translation and scaling of the data.
Note that H represents an affine transformation.
4.3 Setting bounds on the plane at infin-

ity
At the end of the previous step, one has a quasi-

affine reconstruction centred on the origin. Next we
want to upgrade to an affine reconstruction which re-
quires the plane at infinity to be determined. In any
further transformation to be applied to the reconstruc-
tion to achieve an affine reconstruction, the plane V

mapped to infinity can not pass through the origin
(since then it splits the point set). Hence one may
assume that the vector V mapped to infinity is of the
form V = (v1, v2, v3, 1)� = (v�, 1)�. Furthermore,
the transformation GV mapping V to infinity may be
taken to have the form

Gv =
[

I 0
v� 1

]

which has unit determinant, and is hence orientation
preserving.

A search for the plane at infinity has thus been
reduced to a search over the 3-dimensional space rep-
resented by the coordinates of the vector v. Next it
is shown how this search may be narrowed to a search
over a rectangular region of parameter space, some-
what incorrectly here called a cube. First note that
the cheiral inequalities may be written in terms of a
matrix C, and a vector V = (v�, 1)� is a viable plane
at infinity if and only if each component of the vector
CV is positive. We set ε = 1 in forming these inequal-
ities, since we are now interested only in orientation-
preserving transforms. This condition gives a very
rapid test for a proposed plane at infinity being ac-
ceptable.

The plane at infinity must lie outside of the convex
hull of the scene, which is centred around the origin.

This constraint places finite bounds on the coordinates
of v, since planes with unbounded coordinates lie ar-
bitrarily close to the origin. One may determine the
bounds for the coordinates of v by linear programming
with the constraint matrix C. One obtains upper and
lower bounds for each vi (six problems in total) by
maximizing ±vi subject to the constraints CV > 0.
This limits the search for the plane at infinity to a
search over a cube containg the origin. Typically, one
finds bounds on vi of the order of −1.0 < vi < 1.0.

4.4 Searching for the plane at infinity
Searching over the complete cube for the best value

of v is quite tractable, and is the preferred method.
In our implementation, we take 50 samples in each
coordinate direction, a total of 503 = 125, 000 tri-
als in all. Each trial is represented by a vector
V = (v1, v2, v3, 1)�. The following steps are carried
for each such trial vector.

1. Cheirality test : If CV is not a positive vector,
then reject this trial.

2. Otherwise, for each camera matrix Pj = [Mj |tj ],
compute M′j = Mj − tjv�. Note that this M′j is the
left-hand block of P′j = PjG−1

v .

3. Form a linear equation set Aw = 0 from (4) ac-
cording to constraints as in Proposition 1 and
solve to find ω0.

4. IAC test : If ω0 is not positive definite (deter-
mined using the Cholesky factorization), then re-
ject this trial.

5. Otherwise, return a cost value (or vector) associ-
ated with the computed calibration.

The complete self-calibration algorithm is given by
Algorithm 1 in which this search technique is used as
step 2.

Although a blanket search may seem costly, in fact
it is very fast, since the computational cost at each
step is small. In fact, for a sequence of 19 images with
over 1000 points, the search over 250,000 trials (both
orientations) took only 23 seconds on a 256MHz Pen-
tium machine. This time is insignificant, compared
with the time taken for point tracking outlier detec-
tion and accurate bundle-adjusted projective recon-
struction. Furthermore, one could probably reduce
the density of search by half with little loss, thereby
reducing the search time by a factor of 8.



Iterative search To obtain a more accurate esti-
mate of the plane at infinity, one can carry out an
iterative cost minimization to find the exact cost min-
imum. We used Levenberg-Marquardt starting at the
minimum of the exhaustive search to minimize the cost
vector with respect to v. Since the minimum is very
close, this search terminates very quickly (in a few
milliseconds).

5 Convergence
The small dimension of the search space allows us

to get some idea of how well-behaved the cost function
is. Once the minimum of the cost function was found
on the cube containing v, values of the cost function
on the axial planes passing through the minimum were
plotted. The results are shown and discussed in Fig 1.
5.1 Experimental results with real images

The calibration algorithm was tested with gener-
ally satisfactory results on various different image se-
quences, including the LIFIA model house sequence
used in [3]. In addition, a new image sequence was
taken using a camera with a zoom lens mounted on a
Yorick stereo head/eye platform [10]. To achieve gen-
eral motion we used three of the four available degrees
of freedom of the head using one of the two indepen-
dent vergence axes, the common elevation axis and
the pan axis to translate and rotate the camera. The
servo lens provided ground truth data of the position
of the zoom lens for each frame in the image sequence.
The camera was then calibrated, using an accurately
machined calibration grid and a classical calibration
algorithm, to obtain ground truth values for the in-
ternal parameters at each of the different positions of
the zoom lens. The focal length of the camera was set
to increase linearly by a factor of approximately 1.4,
using the controlled zoom lens. Figure 2 shows 6 of
the 15 images of the sequence.

First, point correspondences were computed and
the projective reconstruction was obtained using the
method reported in [3]. The experiment was run using
both the zero skew and square-pixel constraints. Two
differently oriented quasi-affine reconstructions were
found in each case, but in each case only one of them
lead to a Euclidean reconstruction.

Figure 4 shows the results obtained for some of the
calibration parameters. The aspect ratio appears to
be very well estimated and remains almost constant
throughout the sequence. The estimate of the focal
length was close to the ground truth value, the maxi-
mum error being around 5%. In this image sequence,
the principal point (not shown) was badly conditioned
and the results were inherently unstable, being corre-
lated with camera rotation. However it was computed

to lie always within the image.
Once the Euclidean calibration was computed the

projective reconstruction of the scene points was up-
graded to a Euclidean reconstruction. A top view and
a side view of the reconstructed points is presented in
figure 5.1. Note that the metric structure of the scene
is well preserved.

6 Discussion and Conclusions
The shape of the cost surfaces arising from the self-

calibration problem demonstrates the difficulties that
are involved in cost-minimization to identify the plane
at infinity, and hence make the step to an affine recon-
struction. This suggests that it is imperative to take
note of the constraints arising from considerations of
cheirality, and also the positive-definiteness of the im-
age of the absolute conic if one is to hope to find a
robust affine, and subsequently Euclidean reconstruc-
tion of a scene. The technique of densely sampled
search over the permissible range of the plane at infin-
ity discussed in this paper has proven to be an effective
way of robustly and rapidly finding a global minimum
for the calibration cost.

In some cases, it has been observed, however that
despite finding a cost function minimum, stable val-
ues of the camera calibration parameters are often not
obtainable. This is especially true in the case where
minimal constraints are applied, such as the zero-skew
constraint alone. In this particular case, the calibra-
tion of the camera is obtained essentially indepen-
dently of the other cameras, and one is subject to the
usual ambiguities such as principal-point / rotation
and focal-length / distance.

The method outlined in this paper is applicable
with a large number of different cost functions and cal-
ibration methods, and a continuing research goal is to
find which cost functions give the best results. As an
example the goal function given here, which minimizes
sum of squares of skew parameters seems natural for
the case of assumed zero skew. However, other func-
tion, such as skew angle may give better results. The
search method is not limited to non-iteratively com-
putable cost functions such as those discussed here.
Use of an iterative calibration algorithm for the search
trials, such as that of [1] can allow other calibration
constraints, such as fixed but unknown principal point.
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