Camera calibration and the search for infinity

Richard I. Hartley

G.E. Corporate Research and Development

Eric Hayman, Lourdes de Agapito and Ian D. Reid
University of Oxford
\{hayman|lourdes|ian\}@robots.ox.ac.uk
hartley@crd.ge.com

The objective
To self-calibrate a zooming camera undergoing general motion using a stratified approach.

- From an initial projective reconstruction of the scene points obtain an affine reconstruction and finally upgrade it to euclidean

The problem

- Main difficulty: affine reconstruction, i.e. locating the plane at infinity $\left(\Pi_{\infty}\right)$ in the projective frame (an inherently non-linear problem).
- Once we have located Π_{∞} the remainder of the problem is equivalent to the self-calibration of a rotating camera with varying intrinsics.
- Recently a couple of methods to achieve this goal have emerged, including a fast linear algorithm (de Agapito et al, CVPR '99).

Our solution: to search for Π_{∞}
Perform an exhaustive search for the best plane at infinity:
.Hypothesize a candidate location for the plane at infinity.
2. Obtain the corresponding affine reconstruction.
3. Upgrade to euclidean using the method of calibration of a rotating camera.
4. Use the residual from this method as the cost function to select the best Π

Key point: use cheirality to narrow the search for the plane at infinity

- First use cheirality to obtain an intermediate quasi-affine reconstruction (which preserves the convex hull of the set of points and camera centres).
-By translating the scene to the origin, since Π_{∞} cannot pass through the origin, the fourth coordinate of Π_{∞} may be set to unity.
- Cheirality is also used to set bounds on the remaining three coordinates of Π_{∞}.
- Thus we may restrict the exhaustive search for Π_{∞} to this bounded region.

The algorithm

What is a quasi-affine reconstruction? - A projective reconstruction in which Π_{∞} does not split the reconstructed scene.

Projective reconstruction wher
Π_{∞} intersects the scene

- How is one obtained? By ensuring that all points lie in front of all cameras in which they are visible by solving the cheiral inequalities (Hartley IJCV '98)
The cheiral inequalities
- We assume a projective reconstruction $\left\{\mathrm{P}_{j}, \mathbf{X}_{i}\right\}$ with camera centres $\mathbf{C}^{\mathrm{P}_{j}}$.
- We seek a non-singular transformation, G with fourth row V^{\top} such that each point has positive depth with respect to each camera. The necessary conditions are:
$\mathbf{X}_{i}{ }^{\top} \mathbf{V}>0$ for all points \mathbf{X}_{i}
$\epsilon_{\mathbf{C}^{\boldsymbol{p}_{j} \top} \mathbf{V}}>0$ for all cameras P_{j}
- The signs of \mathbf{X} and $\mathbf{C}^{\mathbf{p}_{j}}$ matter (see the paper for details).
- The inequalities may be solved by linear programming.
- There may be two oppositely orientated solutions for $\epsilon= \pm 1$. G is chosen such that $\operatorname{sign}(\operatorname{det} G)=\epsilon$.
- If V is Π_{∞} we obtain an affine reconstruction. In this case the infinite homographies H_{j} are obtained as the left 3×3 blocks of $\mathrm{P}_{j} \mathrm{G}^{-}$

Locating the plane at infinity

- The cheiral inequalities place upper and lower bounds on the first 3 coordinates of Π_{∞}
- We perform an exhaustive search in this rectangular region in parameter space with the following steps for each trial

Locating the plane at infinity

1. Cheirality test: The cheiral inequalities mus

be satisfied.
2. If they are, obtain the infinite homographies, H_{i}, for this trial.
3. Find camera intrinsics from an algorithm for self-calibration of a non-translating camera 4. IAC test : If the images of the absolute conic are not positive definite then reject this trial. 5. Otherwise, return a cost value (or vector) associated with the computed calibration.

- The minimum of the search may be used to initialize a non-linear optimization in the three parameters, using the same cost function.
- The error surface is well-behaved close to the minimum, but highly indented around it. A non-linear minimization initialized at a random point would therefore be sure to fail.

Logarithmic plot of the coss function at
search cube.

Linear algorithm for self-calibration of non-translating cameras
The matrix of intrinsic parameters is:

$$
\mathrm{K}=\left(\begin{array}{ccc}
\alpha_{x} & s & x_{0} \\
& \alpha_{y} & y_{0} \\
& & \\
& & 1
\end{array}\right) .
$$

The IAC in the i-th image, $\omega_{i}=\mathrm{K}_{i}^{\top} \mathrm{K}_{i}^{-1}$, relates to $\boldsymbol{\omega}_{0}$ via the infinite homographies, H_{i} :

$$
\boldsymbol{\omega}_{i}=\mathrm{H}_{i}^{\top} \boldsymbol{\omega}_{0} \mathrm{H}_{i}^{-1} .
$$

Under the assumption of zero skew, $s=0$

$$
\boldsymbol{\omega}=\left(\begin{array}{ccc}
1 / \alpha_{x}^{2} & 0 & -x_{0} / \alpha_{x}^{2} \\
0 & 1 / \alpha_{y}^{2} & -y_{0} / \alpha_{y}^{2} \\
-x_{0} / \alpha_{x}^{2} & -y_{0} / \alpha_{y}^{2} & 1+x_{0}^{2} / \alpha_{x}^{2}+y_{0}^{2} / \alpha_{y}^{2}
\end{array}\right) .
$$

We may then impose the following constraints: 1. Zero-skew : If $s=\mathrm{K}_{12}=0$, then $\boldsymbol{\omega}_{12}=0$. 2. Square-pixels: If $s=0$ and $\alpha_{x}=\alpha_{y}$, then $\omega_{11}-\omega_{22}=0$.
3. Known principal point : If $s=0$ and $x_{0}=0$, then $\boldsymbol{\omega}_{13}=0$. Similarly if $y_{0}=0$ then $\boldsymbol{\omega}_{23}=0$.
Together with the homography constraint this yields linear equations in the entries of $\boldsymbol{\omega}_{0}$.

Experimental results

