
Euclidean Reconstruction from Uncalibrated Views ∗

Richard I. Hartley
GE - Corporate Research and Development,

P.O. Box 8, Schenectady, NY, 12301.

Abstract
The possibility of calibrating a camera from image

data alone, based on matched points identified in a
series of images by a moving camera was suggested by
Mayband and Faugeras. This result implies the possi-
bility of Euclidean reconstruction from a series of im-
ages with a moving camera, or equivalently, Euclidean
structure-from-motion from an uncalibrated camera.
No tractable algorithm for implementing their meth-
ods for more than three images have been previously
reported. This paper gives a practical algorithm for
Euclidean reconstruction from several views with the
same camera. The algorithm is demonstrated on syn-
thetic and real data and is shown to behave very ro-
bustly in the presence of noise giving excellent calbra-
tion and reconstruction results.

1 Introduction
The possibility of calibrating a camera based on

the identification of matching points in several views
of a scene taken by the same camera has been shown
by Maybank and Faugeras ([13, 4]). Using techniques
of Projective Geometry they showed that each pair of
views of the scene can be used to provide two quadratic
equations in the five unknown parameters of the cam-
era. A method of solving these equations to obtain
the camera calibration has been reported in [13, 4, 12]
based on directly solving these quadratic equations us-
ing continuation. It has been reported however that
this method requires extreme accuracy of computa-
tion, and seems not to be suitable for routine use. In
addition with large numbers of cameras (more than
three or four) this method threatens to be unwork-
able, because the number of potential solutions grows
exponentially in the number of views.

In this paper a method is given based partly on
the well known LM parameter estimation algorithm,
partly on new non-iterative algorithms and partly on
techniques of Projective Geometry for solving this self-
calibration problem. This algorithm has the advan-
tage of being applicable to large numbers of views,
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and in fact performs best when many views are given.
As a consequence, the algorithm can be applied to
the structure-from-motion problem to determine the
structure of a scene from a sequence of views with the
same uncalibrated camera. Indeed, since the calibra-
tion of the camera may be determined from the corre-
spondence data, it is possible to compute a Euclidean
reconstruction of the scene. That is, the scene is re-
constructed, relative to the placement of one of the
cameras used as reference, up to an unknown scaling.

The algorithm is demonstrated on real and syn-
thetic data and is shown to perform robustly in the
presence of noise.

2 The Camera Model
A commonly used model for perspective cameras is

that of projective mapping from 3D projective space,
P3, to 2D projective space, P2. This map may be
represented by a 3×4 matrix,M of rank 3. The map-
ping from P3 to P2 takes the point x = (x, y, z, 1)�

to u =Mx in homogeneous coordinates.
The matrixM may be decomposed asM = K(R|−

Rt), where t represents the location of the camera, R
is a rotation matrix representing the orientation of the
camera with respect to an absolute coordinate frame,
and K is an upper triangular matrix called the cali-
bration matrix of the camera. Given a matrix M it
is a very simple matter to obtain this decomposition,
using the QR-decomposition of matrices.

The entries of the matrix K may be identified with
certain physically meaningful quantities known as in-
ternal camera parameters. Indeed, K may be written
as

K =


 ku s pu

0 kv pv
0 0 1


 (1)

where

• ku is the magnification in the u coordinate direc-
tion

• kv is the magnification in the v coordinate direc-
tion
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• pu and pv are the coordinates of the principal
point

• s is a skew parameter corresponding to a skewing
of the coordinate axes.

Note that K is non-singular. This follows from the
requirement that M should have rank 3.

3 The Euclidean Reconstruction Prob-
lem

The reconstruction problem to be solved in this pa-
per will now be described. Consider a situation in
which a set of 3D points xj are viewed by a set of N
cameras with matrices Mi numbered from 0 to N − 1.
Denote by uij the coordinates of the j-th point as seen
by the i-th camera. Given the set of coordinates uij it
is required to find the set of camera matrices, Mi and
the points xj . This is the reconstruction problem.
A reconstruction based on a set of image correspon-
dences {uij} consists of a set of camera matrices Mi

and points xj such that Mixj ≈ uij . (The notation
≈ denotes equality up to a non-zero scale factor.) For
compactness we denote the reconstruction by the pair
({Mi}, {xj}). Without further restriction on the Mi

or xj , such a reconstruction is called a projective re-
construction, because the points xj may differ by an
arbitrary 3D projective transformation from the true
reconstruction ([3, 5]). A reconstruction that is known
to differ from the true reconstruction by at most a 3D
affine transformation is called an affine reconstruction,
and one that differs by a Euclidean transformation
from the true reconstruction is called a Euclidean re-
construction. The term Euclidean transformation will
be used in this paper to mean a similarity transform,
namely the composition of a rotation, a translation
and a uniform scaling.

According to the result of Maybank and Faugeras
([13]) if all the cameras have the same calibration then
the calibration matrixK may be determined, and is at
least locally unique. (Whether this is true for exactly
three views was left somewhat ambiguous in [13] but
was clarified by Luong ([12])). Consequently, we as-
sume in this paper that all cameras have the same cali-
bration, so thatMi = K(Ri | −Riti), where each Ri is
a rotation matrix andK is an upper-triangular matrix,
the common calibration matrix of all the cameras. We
attempt to retrieveMi and xj from a set of image cor-
respondences uij . The points xj and the camera ma-
trices, Mi can not be determined absolutely. Instead
it is required to determine them up to a Euclidean
transformation. In order to constrain the solution, it
may be assumed that R0 = I and t0 = 0. The solution
may then be determined up to scaling.

Because of Maybank and Faugeras’s result, with
more than three views any reconstruction for which
all the camera matrices Mi have the same calibration
is virtually assured of being the true reconstruction,
or at least differing by at most a Euclidean transfor-
mation – it is a Euclidean reconstruction.

This paper, therefore gives an algorithm for com-
puting a Euclidean reconstruction of a scene based
only on image correspondence data from uncalibrated
cameras. An alternative method for Euclidean recon-
struction that uses extra Euclidean constraints is re-
ported in [2].

4 Levenberg Marquardt Minimization
The Levenberg-Marquardt (LM) algorithm is a

well known algorithm for parameter estimation ([15]).
However, since it is such an important ingredient of
our reconstruction method, it is described here in de-
tail.
4.1 Newton Iteration

Given a hypothesized functional relation y = f(x)
where x and y are vectors in some Euclidean spaces
Rm and Rn, and a measured value ŷ for y, we wish to
find the vector x̂ that most nearly satisfies this func-
tional relation. More precisely, we seek the vector x̂
satisfying ŷ = f(x̂) + ε̂ for which ||ε̂|| is minimized.
The method of Newton iteration starts with an initial
estimated value x0, and proceeds to refine the estimate
under the assumption that the function f is locally lin-
ear. Let ŷ = f(x0)+ ε0. We assume that the function
f is approximated at x0 by f(x0 + δ) = f(x0) + Jδ,
where J is the linear mapping represented by the Ja-
cobian matrix J = ∂y/∂x. Setting x1 = x0 + δ leads
to ŷ−f(x1) = ŷ−f(x0)−Jδ = ε0−Jδ. It is required
to minimize ||ε0 − Jδ||. Solving for δ is a linear mini-
mization problem that can be solved by the method of
normal equations. The minimium occurs when Jδ−ε0

is perpendicular to the row space of J , which leads
to the so-called normal equations J�(Jδ − ε0) = 0
or J�Jδ = J�ε0 . Thus, the solution is obtained by
starting with an estimate x0 and computing successive
approximations according to the formula

xi+1 = xi + δi

where δi is the solution to the normal equations

J�Jδi = J�εi .

Matrix J is the Jacobian ∂y/∂x evaluated at xi and
εi = ŷ − f(xi) One hopes that this algorithm will
converge to the required least-squares solution x̂. Un-
fortunately, it is possible that this iteration procedure
converges to a local minimum value, or does not con-
verge at all. The behaviour of the iteration algorithm
depends very strongly on the initial estimate x0.
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4.2 Levenberg-Marquardt Iteration
The Levenberg-Marquardt (abbreviated LM) itera-

tion method is a slight variation on the Newton iter-
ation method. The normal equations Nδ = J�Jδ =
J�ε are replaced by the augmented normal equations
N ′δ = J�ε, where N ′ii = (1+λ)Nii and N ′ij = Nij for
i 
= j. The value λ is initially set to some value, typ-
ically λ = 10−3. If the value of δ obtained by solving
the augmented normal equations leads to a reduction
in the error, then the increment is accepted and λ is
divided by 10 before the next iteration. On the other
hand if the value δ leads to an increased error, then λ
is multiplied by 10 and the augmented normal equa-
tions are solved again, this process continuing until a
value of δ is found that gives rise to a decreased er-
ror. This process of repeatedly solving the augmented
normal equations for different values of λ until an ac-
ceptable δx is found constitutes one iteration of the
LM algorithm.
4.3 Implementation

Based on the implementation of the LM algorithm
in [15] I have coded a general minimization routine.
To use this algorithm in the simplest form it is nec-
essary only to provide a routine to compute the func-
tion being minimized, a goal vector ŷ of observed or
desired values of the function and an initial estimate
x0. It is also possible to specify a maximum number
of iterations, and a minimum increment. Iteration will
terminate after the specified number of iterations, or
when iteration results in an increment with norm less
than the specified minimum. The estimated value for
x̂ is then returned.

In addition, it is possible to provide a function
to compute the Jacobian matrix. If a null function
is specified, then the differentiation is done numeri-
cally. Numerical differentiation is carried out as fol-
lows. Each independent variable xi is incremented in
turn to xi+δ, the resulting function value is computed
using the routine provided for computing f and the
derivative is computed as a ratio. The value δ is set
to the maximum of |10−4 ∗ xi| and 10−6. This choice
seemingly gives a good approximation to the deriva-
tive. In practice, I have seen almost no disadvantage
in using numerical differentiation, though for simple
functions f I prefer to provide a routine to compute
J , partly for aesthetic reasons, partly because of a
possible slightly improved convergence and partly for
speed.

Various other optional parameters may be passed
to the LM routine. For instance a weight matrix spec-
ifying the weights of the dependent variables y. This
weight matrix may be diagonal specifying independent
weights for each of the yi, or else it may be symmet-

ric, equal to the inverse of the covariance matrix of the
variables yi. If C is the covariance matrix of y, then
the normal equations become J�C−1Jδi = J�C−1εi.

In addition, a routine may be provided to be called
after every step of iteration of the Marquardt algo-
rithm. This function is passed the present values of
x, and may be used to modify these variables in any
manner. Of course, this must be done with some care
to avoid invalidating the iteration proceedure. It will
be pointed out how this feature is used.

Implementation of a LM algorithm with these fea-
tures is straight-forward. The version in [15] provides
a good starting point.
4.4 Levenberg-Marquardt Scene Recon-

struction
In pose estimation and scene reconstruction prob-

lems involving several cameras the LM algorithm is
appropriately used to find a least-squares solution. In
cases where the camera parameters and the 3D lo-
cations of the points are to be found simultaneously
the Jacobian matrix, J has a special block structure.
This block structure gives rise to a sparse block struc-
ture of the normal equations. It is possible to take
advantage of this to achieve an enormous simplifica-
tion in the solution of the normal equations. In this
method the deltas for the camera parameters are com-
puted first. Then the deltas for the point locations are
computed by a sort of back-substitution. The time
complexity for this back-substitution is linear in the
number of points. This method is described in [17]
for Newton iteration. The method is easily adapted
to the LM algorithm. Using this method it is pos-
sible to solve systems where there are thousands of
point correspondences. In fact, I have solved in rea-
sonable time systems in which more than 5000 point
correspondences were given. If such a system were
solved using the complete normal equations, then the
dimension of the system of normal equations would be
greater than 15000×15000, and solving it using usual
methods (for instance Gaussian elimination) would be
out of the question.

5 Reconstruction
by Direct Levenberg-Marquardt It-
eration

A direct approach to the Euclidean reconstruction
problem is to solve directly for the unknown camera
matrices, Mi = K(Ri | −Riti) and points xj . In
particular, we search for Mi of the required form, and
xj such that ûij = Mixj and such that the squared
error sum ∑

i,j

d(ûij ,u
i
j)

2
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is minimized, where d(∗, ∗) represents Euclidean dis-
tance. Using this minimization criterion relies on an
assumption that measurement errors are caused by er-
rors in measurement of the pixel locations of the uij ,
and that these errors are independent and gaussian.
This problemmay be formulated in the form y = f(x),
where the independent variables x comprise the 3D co-
ordinates of each of the points x in space, the rotations
Ri of each of the cameras and the common calibration
matrix K. The dependent variables y comprise the
image coordinates uij .

There are various methods of parametrizing the ro-
tations. Horn ([8, 9]) uses quaternions to do this.
I prefer to parametrize rotations using Eulerian an-
gles. This has the advantage that a rotation is
parametrized by the minimum of three parameters,
instead of four using quaternions. To avoid problems
of singularities in the representation of rotations by
Eulerian angles, rotations are parametrized as incre-
mental rotations with respect to the present “base ro-
tation”. Thus, each Ri is represented as a product
Ri = Xi∆(θi, φi, κi), where ∆(θi, φi, κi) is the rota-
tion represented by Eulerian angles θi, φi and κi. Ini-
tially, Xi is set to the initial estimate of the rotation,
and θi, φi and κi are all set to zero (and hence ∆ is the
identity mapping). At the end of each LM iteration
Xi is set to the product Xi∆(θi, φi, κi), and θi, φi and
κi are reset to zero. This is accomplished easily in our
implementation by using the routine that is called at
the end of each iteration.

Such an approach to Euclidean scene reconstruction
will work perfectly well, provided the initial estimate
is sufficiently close. With arbitrary or random guesses
at initial values of the parameters it usually fails dis-
mally. The problem as posed is similar to the relative
placement problem. This problem was given a robust
solution by Horn ([8, 9]) In fact the algorithm given
in [8] amounts essentially to Newton iteration by solv-
ing the normal equations, using the method of back-
substitution mentioned in Section 4.4, and parametriz-
ing rotations as quaternions. Horn avoids the need for
an informed initial guess by iterating from each of a
number of equally spaced or random rotations and se-
lecting the best solution. The problem considered by
Horn differs from the problem considered here in that
we are considering uncalibrated cameras, and we wish
to be able to solve for a large number of cameras at
once. Thus, there is an unknown calibration matrix
that must be estimated. Furthermore, instead of one
rotation, we have several. With more than a small
number of cameras the idea of sampling the rotation
space is unworkable.

In short, direct iteration may be used to refine a

solution found by other techniques, but can not be
used on its own.

6 Projective Reconstruction
Instead of attempting a direct reconstruction, cali-

bration and pose estimation as in the previous section,
we use a two-step approach. In the first step, a pro-
jective reconstruction of the scene is computed, drop-
ping the assumption that the images are all taken with
the same camera. The scene configuration obtained in
this manner will differ from the true configuration by
a 3D projective transformation. In the second step,
this projective transform is estimated. The advantage
of proceeding in this manner is that projective recon-
struction is relatively straight-forward. Then step two,
the estimation of the correct 3D transformation, comes
down to solving an 8-parameter estimation problem,
which is far more tractable than the original problem.
Nevertheless, the estimation of the 3D transformation
is itself carried out in several sub-steps.

For the present, we drop the assumption that all
the cameras have the same calibration. The basic fact
about projective reconstruction is the theorem ([3, 5])
that any two reconstructions of a scene from a set
of (sufficiently many) image correspondences in im-
ages taken with uncalibrated cameras differ by a 3D
projective transformation. In particular a solution in
which all the cameras have the same calibration must
differ by a projective transformation from any other
solution in which the cameras are possibly different.

Various methods of projective reconstruction from
two or more views have been given previously ([3, 5,
14]). The method given in [5] is a straight-forward
non-iterative construction method from two views.
Where high precision is required, it should be followed
by iterative refinement. Mohr et. al. ([14]) have re-
ported a direct LM approach to projective reconstruc-
tion. However, with my recoding of their algorithm I
have been unable to obtain reliable convergence in all
cases. Therefore, I shall describe a different (although
similar) approach, also based on LM iteration.

As usual, we assume that errors in the data are
manifested as errors in measurement of the pixel loca-
tions of the uij , and that these errors are independent
and gaussian. As with Euclidean reconstruction, the
problem is to find the camera matrices,Mi and points
xj such that ûij = Mixj and such that the squared
error sum ∑

i,j

d(ûij ,u
i
j)

2

is minimized. Without loss of generality (and without
changing the value of the error expression) it may be
assumed that the first camera has matrixM0 = (I | 0).
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This least-squares minimization problem is different
from the one described in Section 5. The problem
is formulated in the form y = f(x) where the set of
independent variables x comprise the 3D coordinates
of all the points in space and the entries of the camera
matrices Mi for i > 0. The dependent variables y are
the image coordinates.

The main difference between my algorithm and that
of Mohr et. al. is that whereas they fix the locations
of five points in space, I fix the location and the ori-
entation of one of the cameras. In particular, I set
M0 = (I | 0). In the algorithm of Mohr et. al. a check
is necessary to make sure that the five points chosen
are not in fact coplanar. Such a check is not neces-
sary in my algorithm. Setting M0 = (I | 0) still leaves
three degrees of freedom. The LM method easily han-
dles systems with redundant parameters, however, so
this is not a problem. If desired, however, it is possi-
ble to constrain the solution completely by specifying
three arbitrary points to lie on the plane at infinity.
In doing this it is necessary to check that the points
are not collinear, or coplanar with the camera centre
of M0, which may be done easily be choosing three
points that do not map to collinear points in the im-
age corresponding to M0.

This method will not converge, however, if a good
initial estimate is not known. Fortunately, there exist
linear methods for computing an initial reconstruc-
tion. The strategy is as follows. We use two of the
views to compute a projective reconstruction of those
points seen in the two images. The locations of these
points and their images in the other views are used to
solve one by one for the positions of the other cameras
(in the arbitrary projective frame of the initial recon-
struction). The 3D locations of additional points may
be computed as soon as the camera parameters are
known for two cameras in which these points are visi-
ble.

In particular, let F be the fundamental matrix for a
pair of cameras. If F factors as a product F = [p′]×M ,
then the matrices (I | 0) and (M |p′) are one choice
of a pair of camera matrices for the two cameras. Let
u↔ u′ be a pair of matched points in the two images,
then it may be shown ([7]) that the point Mu lies on
the epipolar line u′ × p′ in the second image (p′ is
the epipole). If in particular Mu = βu′ − αp′ then

the corresponding object space point x is
(

u
α

)
. It

is easily verified that this point maps onto u and u′

in the two images. Using this method we may recon-
struct the points seen in these two images. This initial
reconstruction from two views may be refined by LM
iteration if required. In fact this is done in our imple-

mentation.
Given this initial reconstruction of a subset of the

points visible in the first two images, it is now pos-
sible to compute directly the camera matrix for any
other cameras in which at least six of these points
are visible. This is done using the direct linear trans-
formation (DLT) method as described by Sutherland
([19]). The order in which the camera matrices are
computed is done so as to maximize the number of
already reconstructed points seen by each camera in
turn.

After all the camera matrices and 3D point loca-
tions have been computed in this way, the LM camera
modelling program is run to refine the camera matri-
ces and the point locations as already described.

7 Converting Projective to Euclidean
Reconstruction

Once we have a projective reconstruction of the
imaging geometry any other reconstruction (includ-
ing a desired Euclidean reconstruction) may be ob-
tained by applying a 3D projective transformation.
In particular, if ({Mi}, {xj}) is a projective recon-
struction, then any other reconstruction is of the form
({MiH

−1}, {Hxj}) where H is a 4 × 4 non-singular
matrix. We seek such a matrix H such that the trans-
formed camera matricesMiH

−1 all have the same (yet
to be determined) calibration matrix, K. In other
words, we seek H such that MiH

−1 = K(Ri | −Riti)
for all i, where each Ri is a rotation matrix and K is
the common upper-triangular calibration matrix.

Without loss of generality, we may make the addi-
tional restriction that the zeroeth camera remains lo-
cated at the origin and that R0 is the identity. Since
in the original projective reconstruction M0 = (I | 0),
it follows that H−1 may be assumed to have the re-
stricted form

H−1 =
(

K 0
v� α

)
.

Since the constant α represents scaling in 3-space,
we may further assume that α = 1. Equivalently, since
K is non-singular, we may (and shall) rather assume
that H−1 has the form

H−1 =
(

K 0
−v�K 1

)
=
(

I 0
−v� 1

)(
K 0
0 1

)

(2)
Now, writing eachMi = (Ai | −Aiti) and multiplying
out leads to a requirement that

Ai(I + tiv�)K ≈ KRi (3)

for some rotation matrix Ri. Our goal is to find K
and v to satisfy this set of conditions. Recall that K
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is upper triangular, and we may further assume that
K33 equals 1, hence K contains five unknown entries.
The vector v has a further three unknown entries. In
total, it is required to estimate these eight unknown
parameters.

Of course, for inexact data, the equations (3) will
not be satisfied exactly, and so we will cast this prob-
lem as a least-squares minimization problem that may
be solved using LM. In particular, given values for K
and v, we compute the expression Ai(I + tiv�)K for
each i (remembering that Ai and ti are known). Tak-
ing the QR decomposition of this matrix, we obtain
upper-triangular matrices K ′i such that

Ai(I + tiv�)K = K ′iRi . (4)

Subsequently, we compute the matrices Xi = K−1K ′i
for all i. Since we have assumed that M0 = (A0 |
−Aiti) = (I | 0), it follows thatX0 = I. Furthermore,
if K and v satisfy the desired condition (3) then K ′i ≈
K for all i > 0, and so Xi ≈ I. Accordingly, we
seek to minimize the extent by which Xi differs from
the identity matrix. Consequently, we multiply each
Xi by a normalizing factor αi chosen so that the sum
of squares of diagonal entries of αiXi equals 3, and so
that detαiXi > 0. Now, we seek K and v to minimize
the expression ∑

i>0

||αiXi − I||2 (5)

Note that each αiXi−I is an upper-triangular matrix.
This minimization problem fits the general form of LM
estimation of a fuction f : R8 �→ R6(N−1) where N is
the total number of cameras. The function f maps
the eight 1 variable entries of K and v to the diagonal
and above-diagonal entries of αiXi−I for i > 0. Since
this minimization problem involves the estimation of
8 parameters only, it is obviously a great improvement
over the original problem as stated in Section 3 that
required the simultaneous estimation of the matrix K,
the N − 1 rotation matrices Ri for i > 0 and the 3D
point coordinates of all points xj .

It turns out still to be impractical to solve this min-
imization problem without a good initial guess at K
and v. It is possible to take a good prior guess at K
if some knowledge of the camera is available. On the
other hand, it is difficult to guess the vector v, so it
will be necessary to find some way to obtain an initial
estimate for v. It will turn out that if v is known,
then the calibration matrix K can be computed by
a straight-forward non-iterative algorithm, so there is
no need to guess K.

1It is possible to assume certain restrictions on the entries
of K, such as that skew is zero and that the pixels are square,
thereby diminishing the number of variable parameters

8 Euclidean From Affine Reconstruc-
tion

With H−1 of the form (2) matrix H may be written
as

H =
(
K−1 0
0 1

)(
I 0
v� 1

)
.

The right-hand one of these two matrices repre-
sents a transformation that moves the plane at infinity,
whereas the second one is an affine transformation, not
moving the plane at infinity. In fact, if x is a point be-
ing mapped to infinity by the transformation H , then
(v�1)x = 0. So (v�1) represents the plane that is
mapped to the plane at infinity by H .

We will now suppose that by some magic we have
been able to determine v. This means, in effect that
we know the position of the plane at infinity in the
reconstruction. Otherwise stated, we have been able
to determine the structure up to an affine transfor-
mation. We will now present a simple non-iterative
algorithm for the determination of K, and hence of
the Euclidean structure.

Equation (3) may be written as BiK = KRi where
Bi = αiAi(I+tiv�), and the constant factor αi is cho-
sen so that detBi = 1. Matrix Bi is known since Ai, ti
and v are assumed known. The equation BiK = KRi
may be written as K−1BiK = Ri. In other words,
each Bi is the conjugate of a rotation matrix, the con-
jugating element being the same in each case – the
calibration matrix K. For any non-singular matrix
X , let X−� be the inverse transpose of X . For a rota-
tion matrix R, we have R = R−�. From the equation
Ri = K−1BiK it follows by taking inverse transposes
that Ri = K�Bi

−�K−�. Equating these two expres-
sions for Ri we get K�Bi−�K−� = K−1BiK, from
which it follows that

(KK�)Bi−� = Bi(KK�) (6)

Given sufficiently many views and corresponding ma-
trices Bi equation 6 may be used to solve for the
entries of the matrix KK�. In particular, denoting
KK� by C and writing

C = KK� =


 a b c

b d e
c e f




the equation (6) gives rise to a set of nine linear equa-
tions in the six independent entries of C. It may be
seen that multiplying C by a constant factor does not
have any effect on the equation (6). Consequently, C
can only be solved up to a constant factor. It turns
out that because of redundancy, the nine equations
derived from (6) for a single known transformation Bi
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are not sufficient to solve for C. However, if two or
more such Bi are known, then we may solve for C.
In particular, for each view and corresponding Bi for
i = 1, . . . , N − 1 we have nine equations in the entries
of C. This overconstrained system of equations may
be written in the form Xa = 0, where X is a matrix of
dimension 9(N − 1)× 6 and the vector a contains the
independent entries of C. The least-squares solution
a is the eigenvector corresponding to the least eigen-
value of X�X . This is easily found using the Jacobi
method for finding the eigenvalues of a symmetric ma-
trix ([15]). Note that the views are numbered starting
at 0, so we need three views to provide two indepen-
dent transforms Bi, and hence to solve for C.

Once C = KK� is found it is an easy matter to
solve for K using the Choleski factorization ([1]). A
solution for K is only possible when C is positive-
definite. This is guaranteed for noise-free data, since
by construction, C possesses such a factorization. The
Choleski factorization of C is easily computed as fol-
lows. Since C is symmetric, it may be written as
C = UDU� where D is a diagonal matrix containing
the eigenvalues of C, all real and positive, and U is an
orthogonal matrix the columns of which are the cor-
responding eigenvectors. This factorization is easily
found using the Jacobi method for eigenvalue deter-
mination ([15]) or else the Singular Value Decomposi-
tion ([15, 1]). Since D is diagonal, real and positive,
we may take its square root, writing D = EE� where
E is diagonal. Then C = V V � where V = UE. The
matrix V is not upper-triangular yet. However, we
may apply the QR decomposition ([15, 1]) to write
V = KR where K is upper triangular and R is a rota-
tion matrix. Then C = V V � = KRR�K� = KK�

as required. This is the Choleski factorization of C.
It is easy to prove that the Choleski factorization is
almost unique. Specifically, if K1 and K2 are two up-
per triangular matrices satisfying K1K1

� = K2K2
�

then K−1
2 K1 = K2

�K1
−�. Since the left side of

this equation is upper-triangular, and the right side is
lower triangular, they must both in fact be diagonal.
Hence, K1 = K2D where D is diagonal. Furthermore,
D = K−1

2 K1 = K2
�K1

−� is equal to its own inverse
transpose, and hence is a diagonal matrix with diag-
onal entries equal to ±1. Hence, if we insist that the
diagonal entries or K are positive, then the Choleski
factorization C = KK� is unique.

In cases where the input data is defective, or the
plane at infinity is not accurately known it is possible
that the matrix C turns out not to be positive-definite,
and so the calibration matrix can not be found. In
practice however, the algorithm works extremely well,
provided the plane at infinity is accurately placed and

there are no gross inaccuracies (mistaken matched
points) in the data.

It may be remarked that the matrix C has a geo-
metric interpretation. It is the dual of the image of the
absolute conic. The condition that C = BCB� is re-
lated to the fact that C is invariant under translation
and rotation of the camera.

8.1 Euclidean reconstruction from Affine
Constraints

If certain collateral data is given that allows the
affine structure of the scene to be determined, then
this algorithm can be used to determine the Euclidean
structure. For instance, if three independent pairs of
parallel lines are known, then these can be used to
determine where the true plane at infinity lies in a
projective reconstruction. In particular, the points of
intersection of the parallel lines must all lie on the
plane at infinity. Given three pairs of lines, and hence
three points on the plane at infinity the plane at infin-
ity is determined. This determines the affine structure
of the scene. The above algorithm then may be used to
determine the Euclidean reconstruction of the scene.

Another affine constraint that may be used is a
known ratio of distances of points on a line. For in-
stance, suppose collinear points O, A and B are given
and the ratio of distances OA/OB = a/b is known.
The line OAB in a projective reconstruction may be
parametrized such that O, A and B have parameter
values 0, a and b. The point with parameter ∞ on
this line must lie on the plane at infinity.

Another method using Euclidean constraints to get
the Euclidean reconstruction of a scene is reported by
Boufama [2]. On the other hand, Sparr ([18]) gives
a method of computing affine structure given a sin-
gle view, and Koenderink and van Doorn [11] give a
method for computing affine structure from pairs of
affine views. Quan [16] gives a method of affine con-
struction from two views given affine constraints.

9 Quasi-affine Reconstruction
We are interested, however, in finding the plane at

infinity without any extra given information. The first
step will be to get an approximation to the plane at
infinity. This will be done by considering the cheirality
of the images, in other words, by taking into account
the fact that the points must lie in front of the cameras
that view them.

The subject of cheirality of cameras was considered
in detail in [6]. It was shown in that paper that if
({Mi}, {xj}) is a projective reconstruction of a set
of image correspondences derived from a real scene,
then there exist constants ηj and εi equal to ±1, such
that εiηjMixj = (uij , v

i
j , w

i
j)
� where each wij > 0. It
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should be noted that the equality sign here means ex-
act equality, and not equality up to a constant fac-
tor. Given the reconstruction ({Mi}, {xj}) we may
replace Mi by εiMi and xj by ηjxj to obtain a re-
construction such that Mixj = (uij , v

i
j , w

i
j)
� and each

wij > 0. Suppose that this has been done. Now

([6]) there exists a matrix H =
(

I 0
v� 1

)
such that

Hxj = (x′j , y
′
j , z
′
j , s
′
j)
� with s′j > 0 for all j, and such

that MiH
−1 = (A′i | −A′iti) with either detA′i > 0 for

all i or detA′i < 0 for all i. It was also shown in [6]
that both cases detA′i > 0 and detA′i < 0 are possible
if and only if there is a plane in space (in the true
reconstruction) such that all cameras lie on one side
of the plane, and all points lie on the other side.

The conditions satisfied by the matrix H transform
into inequalities. In particular, s′j > 0 means that

(v�1)xj� > 0 (7)

for each point xj . The condition detA′i < 0 also gives
rise to a linear inequality as follows. Writing Mi =
(Ai | −Aiti) then MiH

−1 = (A′i | −A′it′i) where A′i =
Ai(I + tiv�). Then

detA′i = detAi det(I + tiv�) = (1 + ti�v) detAi .

Since Ai and ti are known this gives a linear inequality

(1 + ti�v) detAi > 0 (8)

in the entries of v. These set of inequalities (7) and (8)
constraining the placement of the plane at infinity are
called the cheiral inequalities. Remember that there
is a second version of (8) in which the inequality is
reversed.

Naturally, we propose to solve the cheiral inequali-
ties using linear programming (LP). In order to obtain
a single solution it is necessary to define an appropri-
ate goal function to optimize. We choose to maxi-
mize the margin by which the given inequalities are
satisfied, since this should correspond informally to a
placement of the plane at infinity at a maximum dis-
tance from the points and the cameras. In order for
this condition to make sense, first the homogeneous
coordinate expression for xj = (xj , yj , zj, sj)� is nor-
malized so that ||xj || = 1. Now, we have a set of
inequalities of the form f i�v ≥ gi, where f i is simply
the vector of coefficients of the i-th equation. We add
an extra variable δ to obtain equations of the form
f i�v − δ ≥ gi. The LP problem is to maximize δ
subject to the given inequalities. If δ > 0 in the op-
timum solution, then the original inequalities have a
solution, and this is the solution that we accept to

obtain v. Note that it is necessary to solve the LP
problem twice corresponding to the two possibilities
detA′i > 0 and detA′i < 0. At least one of these prob-
lems has a solution, maybe both. Once v has been
found by solving the LP problem, the projective recon-
struction is transformed by the corresponding matrix
H . The new reconstruction may be termed a quasi-
affine reconstruction. Although it is not the true affine
reconstruction, due to the uncertainty of the solution
to the set of cheiral inequalities, the projective recon-
struction taking a quasi-affine reconstruction to the
true affine reconstruction will respect the convex hull
of the reconstructed point and camera set, in that this
convex hull will not be split across the plane at infinity.

By solving this cheiral inequalities, we find a can-
didate value for v. By the method of Section 8 we can
now compute the corresponding value of K. This esti-
mate may then be refined using the method described
in Section 7. There is one flaw in this scheme, namely
that it may not be possible to find K corresponding to
the estimated v, because the matrix C, which should
equal KK�, is not positive definite. In this case, it is
necessary to select a different v. This may be done by
carrying out a random search over the convex region
of 3-space defined by the cheirality inequalities. If the
quasi-affine reconstruction is translated so that the co-
ordinate origin is at the centroid of the reconstructed
point set, then the cheiral inequalities corresponding
to this new reconstruction define a convex bounded
region of R3. By searching over this region, we can
find a vector v such that the matrix C = KK� is
positive-definite. In fact, a reasonable approach is to
find several candidate vectors v and iterate from each
of them, finally selecting the best solution. This is
what I have done in practice.

10 Algorithm Outline
Since the details of the outline have been obscured

by the necessary mathematical analysis, the complete
algorithm for Euclidean reconstruction will now be
given. To understand the details of the steps of the al-
gorithm, the reader must refer to the relevant section
of the previous text.

1. Compute a projective reconstruction of the scene
(Section 6)

(a) Compute the essential matrix Q for a pair of
images and use this to parametrize the first
two cameras, and reconstruct the points

(b) Use LM iteration to refine this initial pro-
jective reconstruction.

(c) Parametrize the other cameras by the DLT
method. Compute new point locations as

8



appropriate.

(d) Refine the complete projective reconstruc-
tion using LM iteration.

2. Compute a quasi-affine reconstruction of the
scene (Section 9)

(a) Formulate the cheiral inequalities for the
projective reconstruction

(b) Use LP to solve the inequalities to find a
vector v.

(c) Use the transformation matrix H =(
I 0
v� 1

)
to transform the projective re-

construction to a quasi-affine reconstruction.

3. Search for a quasi-affine reconstruction from
which the calibration matrixK may be computed
(Section 9)

(a) For a randomly selected set of vectors v
contained within the region determined by
the cheiral inequalities solve the equations
CBi

−� = BiC as described in Section 8 un-
til we find a v such that the solution C is
positive-definite.

(b) Determine K by Choleski factorization of
C = KK�.

4. Carry out LM iteration using the method of Sec-
tion 7 to find a Euclidean reconstruction.

5. Using the values ofK, Ri and xj that come out of
the previous step, do a complete LM iteration to
find the optimal solution minimizing the image-
coordinate error, using the method described in
Section 5.

Various comments are in order here. First of all,
some of the steps in this algorithm may not be neces-
sary. Step 1(b) of the algorithm may not be needed,
but it is easy to include and ensures an accurate start-
ing point for the computation of the other camera pa-
rameters. The second step (determination of a specific
quasi-affine reconstruction) may not be necessary ei-
ther, since the third step does a search for a modified
quasi-affine reconstruction. However, it is included,
since it provides a point of reference for the subse-
quent search. The vector v found in the third step of
the algorithm should be small, so that the modified
quasi-affine reconstruction is close to the original one.
In fact, as mentioned previously it is possible to use
the cheiral inequalities to give bounds on the individ-
ual entries in the vector v. Finally, it has been found
that the last step of the algorithm, the final iteration

is scarcely necessary, and does not make a very large
difference to the solution. It commonly decreases the
value of the image coordinate error by no more that
about 10%, at least when there are many views. In
addition, this last step is relatively costly in terms of
computation time.

11 Experimental Evaluation
This algorithm has been evaluated on both real and

synthetic data.

11.1 Solution with Three Cameras
Since three cameras are the minimum number

needed for Euclidean reconstruction the algorithm was
tested on synthetic data with three views. The al-
gorithm was found to converge without difficulty for
noise-free data, and for data with added gaussian noise
of 0.1 and 0.5 pixels in an image of size approximately
700 × 600 pixels. The degradation becomes progres-
sively worse for greater degrees of noise, however the
ratio ku/kv remains relatively stable. These results
are shown in Table 1. The first line gives the cor-
rect values for the camera parameters. Subsequent
lines show greater degrees of noise. The final column
marked ∆ gives the residual RMS pixel error, that
is, the difference between the measured image coor-
dinates and the ones derived from the reconstruction.
This error should be of magnitude comparable with
the noise level.

11.2 Solution with Large Numbers of
Views

The algorithm was then carried out on synthetic
data with 15 views of 50 points. The 50 points were
randomly scattered in a sphere of radius 1 unit. The
cameras were given random orientations and were
placed at varying distances from the centre of the
sphere at a mean distance from the centre of 2.5 units
with a standard deviation of 0.25 units. They were
placed in such a way that the principal rays of the
cameras passed through randomly selected points on
a sphere of radius 0.1 units. The calibration matrix
was given a known value. In order to assess the qual-
ity of the Euclidean reconstruction the positions of the
reconstructed points were compared with the known
locations of the 3D points. Since the reconstructed
points and the original points are not known in the
same coordinate frame, it is necessary to align the two
sets of points first. Then the RMS error was computed
and used as a measure of quality of the reconstruction.
The algorithm of Horn ([10]) was used to compute a
rotation, translation and scaling that bring the recon-
structed points into closest-possible alignment with
the original point locations.
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Noise pu pv kv skew ku/kv ∆
– 3.0000e+02 3.5000e+02 2.5000e+03 2.0000e+01 9.0000e-01 –
0.0 3.0008e+02 3.5003e+02 2.4999e+03 2.0013e+01 8.9999e-01 0.0
0.1 2.7604e+02 3.3369e+02 2.5590e+03 1.7532e+01 8.9947e-01 0.09
0.5 1.2937e+02 2.3553e+02 2.9044e+03 3.2273e+00 8.9715e-01 0.50
1.0 -2.5284e+02 -1.1118e+01 3.5934e+03 4.6454e+01 8.7611e-01 5.67
2.0 2.3709e+02 2.7905e+02 2.3448e+03 6.6483e+01 8.7752e-01 5.22

Table 1: Reconstruction from Three Views

Noise pu pv kv skew ku/kv ∆1 ∆2 ∆3

– 5.0000e+02 4.0000e+02 1.0000e+03 -5.0000e+01 9.0000e-01 0.0 0.0 0.0
0.0 5.0000e+02 4.0000e+02 9.9999e+02 -5.0000e+01 9.0000e-01 9.805e-08 0.0 0.0
0.5 4.9968e+02 3.9876e+02 9.9959e+02 -4.9857e+01 9.0045e-01 8.359e-04 0.95 0.88
1.0 4.9936e+02 3.9754e+02 9.9911e+02 -4.9722e+01 9.0091e-01 1.678e-03 1.91 1.76
2.0 4.9867e+02 3.9511e+02 9.9792e+02 -4.9472e+01 9.0185e-01 3.386e-03 3.82 3.52
4.0 4.9717e+02 3.9037e+02 9.9463e+02 -4.9062e+01 9.0376e-01 6.911e-03 7.64 7.04
8.0 4.9362e+02 3.8148e+02 9.8455e+02 -4.8618e+01 9.0768e-01 1.454e-02 15.25 14.00
16.0 4.8425e+02 3.6696e+02 9.5125e+02 -4.9325e+01 9.1536e-01 3.314e-02 30.10 27.05

Table 2: Reconstruction from 15 Views

The results are shown in Table 2. The first line gives
the correct values of the camera parameters and sub-
sequent lines show the computed values with added
noise. The last three columns have the following
meaning.

∆1 The error in reconstruction, namely the distance
between the actual and the reconstructed point
locations.

∆2 The residual pixel error after step 4 of the algo-
rithm in Section 10.

∆3 The residual pixel error after step 5 of the al-
gorithm. This shows only a 10% reduction com-
pared with ∆2.

As can be seen from the Table 2, the results of
the reconstruction are extremely good and immune to
noise, both as regards the extracted camera calibra-
tion parameters and the quality of the point recon-
struction. Even for gaussian noise as high as 16 pixels
standard deviation in an image of size approximately
600× 600 (far greater levels of noise than will be en-
countered in practice) the camera parameters are rea-
sonably accurate, and the reconstruction is accurate to
within 0.033 units, or 3.3 centimetres in a sphere of ra-
dius 1 metre. Note that the three error estimates show
extraordinary linearity in terms of the added noise.

11.3 Solution with Real Data
The algorithm was evaluated on a set of image coor-

dinate correspondences kindly supplied by Boubakeur
Boufama and Roger Mohr. The object in question
was a wooden house, for which 9 views were used and
a total of 73 points were tracked, not all points be-
ing visible in all views. This is the same image set as
used in the paper [14]. The image coordinates were
integer numbers ranging between 0 and 500. Figure 1
shows one of the views of the house. The algorithm
converged very successfully on this data. The mea-
sured residual RMS pixel error was found to be 0.6
pixels per point, which is about as good as can be ex-
pected, since the image correspondences were not sup-
plied with sub-pixel accuracy. Not having any ground
truth information, I was unable to compare the recon-
struction against the correct points. Figure 2 show a
reconstructed view of the set of 73 points looking di-
rectly down the edge of the house. Clearly visible is
the corner of the house, showing a right-angled cor-
ner. This indicates the success of the Euclidean re-
construction, since angles are a Euclidean attribute of
the scene.

There is, however, one reason to suspect the ac-
curacy of the reconstruction. In cases where all the
camera rotations are about a common axis (as occurs
when the camera is stationary and the image rotates),
it appears that the problem is not well posed, for the
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Figure 1: One of the views of wooden houses

Figure 2: View of reconstructed point set

scene may be expanded in the direction of the ro-
tation axis at will. This is possibly the case in this
present case, since the the computed camera parame-
ters showed non-square pixels, which seems to be un-
likely.
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