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Figure 1: The pushbroom principle.

1 Real Pushbroom Sensors

Fig. 1 shows the idea behind a pushbroom sensor. In general terms, a pushbroom camera
consists of an optical system projecting an image onto a linear array of sensors, typically
a CCD array. At any time only those points are imaged that lie in the plane defined by
the optical center and the line containing the sensor array. This plane will be called the
instantaneous view plane or simply view plane.

The pushbroom sensor is mounted on a moving platform. As the platform moves, the
view plane sweeps out a region of space. The sensor array, and hence the view plane,
is approximately perpendicular to the direction of motion. The magnitude of the charge
accumulated by each detector cell during some fixed interval, called the dwell time, gives the
value of the pixel at that location. Thus, at regular intervals of time 1-dimensional images
of the view plane are captured. The ensemble of these 1-dimensional images constitutes a
2-dimensional image.

Many times, the camera has no moving parts in it. This fact, which contributes signifi-
cantly to the superior internal geometric quality of the image, implies that one of the image
dimensions depends solely on the sensor motion.

Pushbroom sensors are commonly used in satellite cameras for the generation of 2-D images
of the earth’s surface. Even though the word “pushbroom camera” is most prevalent in the
parlance of remote sensing where it is used to describe a specific type of satellite-mounted
camera, the image acquisition principle outlined above is applicable to many other imaging
situations. For example, the images acquired by side-looking airborne radar (SLAR), certain
types of CT projections, and images in many X-ray metrology setups can all be modeled as
pushbroom images. Before going on to a formalization of this model, we briefly outline two
real applications of pushbroom imaging.

SPOT Imagery. SPOT satellite’s HRV camera is a well-known example of a pushbroom
system. For SPOT, the linear array of sensors consists of 6000 pixel array of electronic
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sensors covering an angle of 4.2 degrees. This sensor array captures a row imagery at 1.504
ms time intervals (i.e. dwell time = 1.504 ms). As the satellite orbits the earth, a continuous
strip of imagery is produced. This strip is split into images, each consisting of 6000 rows.
Hence a 6000× 6000 pixel image is captured over a 9 seconds flight of the satellite. Such an
image covers a square with side approximately 60 Km on the ground.

The task of modeling an orbiting pushbroom camera exactly is somewhat complex and
several factors must be taken into account.

• By Kepler’s Laws, the satellite is moving in an elliptical orbit with the center of the
earth at one of the foci of the ellipse. The speed is not constant, but varies according
to the position of the satellite in its orbit.

• The earth is rotating with respect to the orbital plane of the satellite, so the motion
of the satellite with respect to the earth’s surface is quite complex.

• The satellite is slowly rotating so that it is approximately fixed with respect to an
orthogonal coordinate frame defined as follows: the z-axis emanate from the satellite
and passes through the center of the earth; the x-axis lies in the plane defined by the
satellite velocity vector and the z axis; the y-axis is perpendicular to the x and z axes.
This coordinate frame will be called the local orbital frame. During one orbit, the local
orbital frame undergoes a complete revolution about its y axis.

• The orientation of the satellite undergoes slight variations with respect to the local
orbital frame.

• The orientation of the view plane with respect to the satellite may not be known.

Some of the parameters of the satellite motion depend on fixed physical and astronomical
constants (for example, gravitational constant, mass of the earth, rotational period of the
earth). Other parameters such as the major and minor axes and orientation of the satellite
orbit are provided as ephemeris data with most images. In addition, the fluctuations of
the satellite orientation with respect to the local orbital frame are provided as is also the
orientation of the view plane. Nevertheless, it has proven necessary for the sake of greater
accuracy to refine the ephemeris data by the use of ground-control points.

Even if the orbit of the satellite is known exactly, the task of finding the image coordinates
of a point in space is relatively complex. There is no closed-form expression determining the
time when the orbiting satellite will pass through a given point in its orbit (time to perigee)
— it is necessary to use either an approximation or an iterative scheme. Furthermore the
task of determining at what time instant a given ground point will be imaged must be solved
by an iterative procedure, such as Newton’s method. This means that exact computation of
the image produced by a pushbroom sensor is time consuming.

X-Ray Metrology. In the most common form of X-ray imagers used for X-ray metrology
or part inspection, the object to be viewed is interposed between a point X-ray source and
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a linear array of detectors. As the object is moved perpendicular to the fan beam of X-
rays, a 2-D image consisting of several 1-D projections is collected. Each image collected in
this manner can be treated as a pushbroom image which is orthographic in the direction of
motion and perspective in the orthogonal direction (see [?] for details).

1.1 Overview

In this paper, a linear approximation to the pushbroom model is introduced. This new model
very greatly simplifies the computations involved in working with pushbroom images. The
key simplifying assumptions made in deriving this camera model are: (1) the sensor array
is traveling in a straight line, and (2) its orientation is constant over the image acquisition
duration.

Section 2 defines the linear pushbroom model and derives its basic mathematical form. We
will show that under the above assumptions — just as with a pin-hole camera — a linear
pushbroom camera can be represented by a 3× 4 camera matrix M . However, unlike frame
cameras, M represents a non-linear Cremona transformation of object space into image
space. In subsequent sections, many of the standard photogrammetric problems associated
with parameter determination are solved for the linear pushbroom model. In particular,
a linear technique for computing M from a set of ground control points is described in
Section 3. Section 4 describes a method of retrieving camera parameters from M . All the
algorithms discussed are non-iterative, relatively simple, very fast, and do not rely on any
extraneous information. This contrasts with parameter determination for the full pushbroom
model for satellite cameras, which is slow and requires knowledge of orbital and ephemeris
parameters.

Apart from computational efficiency, the linear pushbroom model provides a basis for the
mathematical analysis of pushbroom images. The full pushbroom model is somewhat in-
tractable as far as analysis is concerned. On the other hand, the agreement between the full
pushbroom model and the linear pushbroom model is so close that results of analyzing the
linear pushbroom model will be closely applicable to the full model as well.

An important result derived in this paper concerns the relationship of an image point (ui, vi)
T

in the first image with its corresponding point (u′i, v
′
i)
T in the second image (Section 5). We

show that a matrix analogous to the essential matrix for pin-hole cameras ([?, ?, ?]) exists
for linear pushbroom cameras as well. In particular, we prove that there exists a 4×4 matrix
Q, dubbed hyperbolic essential matrix, such that (u′i, u

′
iv
′
i, v
′
i, 1)TQ(ui, uivi, vi, 1) = 0 for all

i. We also describe a non-iterative technique for deriving Q from a set of image to image
correspondences.

As an example of the theoretical and practical gains achieved by studying the linear pushb-
room model is Theorem 5.4 of this paper, which shows that two linear pushbroom views of
a generic scene determine the scene up to an affine transformation. This has the practical
consequence that affine invariants of a scene may be computed from two pushbroom views.
As was shown in [?, ?], a similar result applies to perspective views where the scene is deter-
mined up to projectivity from two views. It is hoped that the linear pushbroom model may
provide the basis for the development of further image understanding algorithms in the same
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way that the pinhole camera model has given rise to a wealth of theory and algorithms.

The results described in this paper can be used to formulate a complete methodology for
stereo information extraction from a set of two or more images of a scene acquired via linear
pushbroom sensors. In this methodology, which is described in Section 6, no information
concerning the relative or absolute orientation and path of the sensors with respect to each
other is required. Using a few ground control points, and without resorting to any iterative
methods, one can assign 3-D coordinates to a set of image to image correspondences.

One can question the assumptions underlying the linear pushbroom model when used for
satellite imagery because the sensor array negotiates an elliptical trajectory and its look
direction slowly rotates. However, if the segment of the orbit over which the image was
acquired is small, it can be approximated by a straight line. For large orbital segments, one
can solve the problem in a piece-wise linear manner. In a final section, the accuracy of the
linear pushbroom model is discussed, and the results of some of the algorithms described
here are given.

Experimental results confirm that the assumption about linearity is quite valid even for low-
earth orbits and it does not have an adverse effect on the accuracy. For example, for SPOT
images of size 6000 × 6000 pixels, covering an area about 60 × 60 Km2, the linear and full
models agree within less than half a pixel. This corresponds to a difference of about 6×10−6

radians, or about 5 meters on the ground. Section 7 also presents experimental results that
compare the linear pushbroom model with a simple pin-hole camera, and an exact, orbiting
pushbroom model that does not make any simplifying assumptions.

2 Linear Pushbroom Sensors

In order to simplify the pushbroom camera model to facilitate computation and to provide a
basis for theoretical investigation of the pushbroom model, certain simplifying assumptions
can be made, as follows.

• The platform is moving in a straight line at constant velocity with respect to the world.

• The orientation of the camera, and hence the view plane, is constant.

This camera can be thought of as a pin-hole camera moving along a linear trajectory in
space with constant velocity and fixed orientation (see Fig. 2). Furthermore, the camera is
constrained so that at any moment in time it images only points lying in one plane, called
the view plane, passing through the center of the camera. Thus, at any moment of time, a
2-dimensional projection of the view plane onto an image line takes place. The orientation
of the view plane is fixed, and it is assumed that the motion of the camera does not lie
in the view plane. Consequently, the view plane sweeps out the whole of space as time
varies between −∞ and ∞. The image of an arbitrary point x in space is described by two
coordinates. The first coordinate u represents the time when the point x is imaged (that is,
lies in the view plane) and the second coordinate v represents the projection of the point on
the image line.
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Figure 2: Acquisition geometry of a linear pushbroom camera.

We consider an orthogonal coordinate frame attached to the moving camera as follows(see
Fig. 2). The origin of the coordinate system is the center of projection. The y axis lies in
the view-plane parallel with the focal plane (in this case, the linear sensor array). The z
axis lies in the view plane perpendicular to the y axis and directed so that the visible points
have positive z coordinate. The x coordinate is perpendicular to the view plane such that
x, y, and z axes form a right-handed coordinate frame. The ambiguity of orientation of the
y axis in the above description can be resolved by requiring that the motion of the camera
has a positive x component.

First of all, we consider two dimensional projection. If the coordinates of a point are (0, y, z)
with respect to the camera frame, then the coordinate of this point in the 1-dimensional
projection will be v = fy/z+pv where f is the focal length (or magnification) of the camera
and pv is the principal point offset in the v direction. This equation may be written in the
form (

wv
w

)
=

(
f pv
0 1

)(
y
z

)
(1)

where w is a scale factor (actually equal to z).

Now for convenience, instead of considering a stationary world and a moving camera, it will
be assumed that the camera is fixed and that the world is moving. A point in space will
be represented as x(t) = (x(t), y(t), z(t))� where t denotes time. Let the velocity vector of
the points with respect to the camera frame be −V = −(Vx, Vy, Vz)

�. The minus sign is
chosen so that the velocity of the camera with respect to the world is V. Suppose that a
moving point in space crosses the view plane at time tim at position (0, yim, zim)�. In the
2-dimensional pushbroom image, this point will be imaged at location (u, v) where u = tim
and v may be expressed using (1). This may be expressed in an equation


 u

wv
w


 =


 1 0 0

0 f pv
0 0 1




 tim

yim

zim


 (2)
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Since all points are moving with the same velocity, the coordinates of an arbitrary point x0,
as a function of time, are given by the following equation.

x(t) = x0 − tV = (x0, y0, z0)
� − t(Vx, Vy, Vz) (3)

Since the view plane is the plane x = 0, the time tim when the point x crosses the view plane
is given by tim = x0/Vx. At that moment, the point will be at position

(0, yim, zim)� = (0, y0 − x0Vy/Vx, z0 − x0Vz/Vx)
� .

We may write this as 


tim
yim

zim


 =




1/Vx 0 0
−Vy/Vx 1 0
−Vz/Vx 0 1






x0

y0

z0


 (4)

Combining this with (2) gives the equation


 u

wv
w


 =


 1 0 0

0 f pv
0 0 1




 1/Vx 0 0
−Vy/Vx 1 0
−Vz/Vx 0 1




 x0

y0

z0


 (5)

Here, (x0, y0, z0)
� are the coordinates of the point x in terms of the camera frame at time

t = 0. Normally, however, the coordinates of a point are known not in terms of the camera-
based coordinate system, but rather in terms of some fixed external orthogonal coordinate
system. In particular, let the coordinates of the point in such a coordinate system be
(x, y, z)�. Since both coordinate frames are orthogonal, the coordinates are related via a
transformation

(x0, y0, z0)
� = R

(
(x, y, z)� − (Tx, Ty, Tz)

�
)

= (R | −RT)(x, y, z, 1)� (6)

where T = (Tx, Ty, Tz)
� is the location of the camera at time t = 0 in the external coordinate

frame, and R is a rotation matrix.

Finally, putting this together with (5) leads to




u
wv
w


 =




1 0 0
0 f pv
0 0 1






1/Vx 0 0
−Vy/Vx 1 0
−Vz/Vx 0 1


 (R | −RT)




x
y
z
1




= M(x, y, z, 1)� (7)

Eq. (7) should be compared with the basic equation describing pinhole, or perspective cam-
eras, namely (wu,wv, w)� = M(x, y, z, 1)� where (x, y, z)� are the coordinates of a world
point, (u, v)� are the coordinates of the corresponding image point and w is a scale factor.
It may be seen that a linear pushbroom image may be thought of as a projective image
in one direction (the v direction) and an orthographic image in the other direction (the u
direction).
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The camera matrix M in Eq. (7) for a linear pushbroom sensor can model translation,
rotation, and scaling of the 3-D world coordinates as well as translation and scaling of 2-D
image coordinates. However, it cannot account for rotation in the image plane. In general,
a 2-D perspective transform of an image taken by a linear pushbroom camera cannot be
thought of as another image taken by different linear pushbroom camera. Many resampling
operation — e.g. resampling images in a stereo pair so that the match point disparities are
only along one of the image coordinates [?] — cannot be performed on linear pushbroom
imagery without breaking the mapping encoded in Eq. (7).

3 Determination of the Camera Matrix

In this section it will be shown how a linear pushbroom camera matrix may be computed
given a set of ground control points. The method is an adaptation of the method of Roberts
or Sutherland ([?]) used for the pinhole cameras. In particular, denoting by m1

�, m2
� and

m3
� the three rows of the matrix M and x = (x, y, z, 1)� a ground control point, (7) may

be written in the form of three equations

u = m1
�x

wv = m2
�x (8)

w = m3
�x .

The unknown factor w can be eliminated leading to two equations

u = m1
�x

vm3
�x = m2

�x (9)

Supposing that the world coordinates (x, y, z) and image coordinates (u, v) are known, equa-
tions (9) are a set of linear equations in the unknown entries of the matrix M . Given
sufficient ground control points we can solve for the matrix M . Note that the entries in the
row m1

� rely only on the u coordinates of the ground control points. Given four ground
control points, we can solve for the first row of M . Similarly, the second and third rows
of M depend only on the v coordinates of the matrix. Given five ground control points we
can solve for the second and third rows of M up to the undetermined factor. With more
ground control points, linear least squares solutions methods can be used to determine the
best solution.

This linear technique for camera model estimation should be contrasted with other satellite
camera models described in the literature (see, for example, [?, ?]). Most traditional models
for satellite cameras typically simulates the complex orbital geometry and imaging conditions
to map object space points to image coordinates. The resulting non-linear equations in model
parameters can only be solved using iterative methods as purely non-iterative methods —
e.g. those by Sutherland [?] or Longuet-Higgins [?] in the realm of pinhole cameras — are
unavailable.
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Mapping of Lines under M . In order to see the non-linear nature of the mapping
function performed by M , it is instructive to see how lines in space are mapped in the image
plane by M . A linear pushbroom transforms a point x in to u and v according to Eq. 9
Constraining x to lie on a line in 3-D is given by Vp + tVa, where Vp is a point on the line,
and Va is a vector along the line, the image of this line under M is given by

u = m1
�(Vp + tVa) (10)

v =
m2
�(Vp + tVa)

m3
�(Vp + tVa)

(11)

Eliminating t from these equations, one gets an equation of the form αu+βv+ γuv + δ = 0,
which is the equation of a hyperbola in the image plane.

4 Parameter Retrieval

It may be seen that the last two rows of matrix M may be multiplied by a constant without
affecting the relationship between world point coordinates (x, y, z) and image coordinates
(u, v) expressed by (7). This means that the 3 × 4 matrix M contains only 11 degrees of
freedom. On the other hand, it may be verified that the formation of a linear pushbroom
image is also described by 11 parameters, namely the position (3) and orientation (3) of the
camera at time t=0, the velocity of the camera (3) and the focal length and v-offset (2).
It will next be shown how the linear pushbroom parameters may be computed given the
matrix M . This comes down to finding a factorization of M of the kind given in (7). The
corresponding problem for pinhole cameras has been solved by Ganapathy ([?]) and Strat
([?]).

First of all we determine the position of the camera at time t = 0, referred to subsequently
as the initial position of the camera. Multiplying out the product (7) it may be seen that M
is of the form (K | −KT) for a non-singular 3× 3 matrix K. Therefore, it is easy to solve
for T by solving the linear equations KT = −c4 where c4 is the last column of M , and K
is the left-hand 3× 3 block.

Next, we consider the matrix K. According to (7), and bearing in mind that the two bottom
rows of K may be multiplied by a constant factor k, matrix K is of the form

K =


 1/Vx 0 0
−k(fVy/Vx + pvVz/Vx) kf kpv
−kVz/Vx 0 k


R . (12)

where R is a rotation matrix. In order to find this factorization, we may multiply K on the
right by a sequence of rotation matrices to reduce it to the form of the left hand factor in
(12). The necessary rotations will be successive Givens rotations about the z, y and x axes
with angles chosen to eliminate the (1,2), (1,3) and (3,2) entries of K. In this way, we find
a factorization of K as a product K = LR where R is a rotation matrix and L is a matrix
having zeros in the required positions. It is not hard to verify that such a factorization is
unique. Equating L with the left hand matrix in (12) it is seen that the parameters f , pv,
Vx, Vy and Vz may easily be read from the matrix L. In summary
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Proposition 4.1. The 11 parameters of a linear pushbroom camera are uniquely determined
and may be computed from the 3× 4 camera matrix.

5 Relative Camera Model Determination

The problem of determining the relative camera placement of two or more pinhole cameras
and consequent determination of pinhole cameras has been extensively considered. Most
relevant to the present paper is the work of Longuet-Higgins ([?]) who introduced the so-
called essential matrix Q. If {(ũi, ũ′i)} is a set of match points in a stereo pair, Q is defined
by the relation ũ

′T
i Qũi = 0 for all i. As shown in [?], (r, s, t)T = Qũi is the equation of the

epipolar line corresponding to ũi, in the second image. (The line (r, s, t)T in homogeneous
coordinates corresponds to the line equation ru + sv + t = 0, in the image-space.) Q
may be determined from eight or more correspondence points between two images by linear
techniques.

Other non-linear techniques for determining Q, more stable in the presence of noise, have
been published ([?, ?, ?, ?]). Those techniques relate especially to so called “calibrated
cameras”, for which the internal parameters are known. A paper that deals with the deter-
mination of the essential matrix for uncalibrated cameras is [?]. As for the determination
of the world coordinates of points see from two pinhole cameras, it has been shown ([?, ?])
that for uncalibrated cameras the position of world points is determined up to an unknown
projective transform by their images in two separate views.

Similar results for linear pushbroom cameras will be shown here. In Section 5.1, the hyperbolic
essential matrix for linear pushbroom cameras, which is analogous to the essential matrix
for pinhole cameras, is introduced. The epipolar geometry of linear pushbroom cameras is
discussed in Section 5.2. In Section 5.3, we prove that a hyperbolic essential matrix, which
encodes the relative orientation of two linear pushbroom cameras, determines the 3-D points
in object space up to an affine transformation of space. Thus the knowledge of relative
orientation in the case of linear pushbrooms is more constraining than that for the pin-hole
cameras; in the later case the ambiguity is a projective transformation of space. Sections 5.4
and 5.5 are devoted to a discussion of the critical sets and computation of Q from a set of
match points.

5.1 Definition of Hyperbolic Essential Matrix

Consider a point x = (x, y, z)� in space as viewed by two linear pushbroom cameras with
camera matrices M and M ′. Let the images of the two points be u = (u, v)� and u′ =
(u′, v′)�. This gives a pair of equations

(u, wv, w)� = M(x, y, z, 1)�

(u′, w′v′, w′)� = M ′(x, y, z, 1)� (13)
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This pair of equations may be written in a different form as




m11 m12 m13 m14 − u 0 0
m21 m22 m23 m24 v 0
m31 m32 m33 m34 1 0
m′11 m′12 m′13 m′14 − u′ 0 0
m′21 m′22 m′23 m′24 0 v′

m′31 m′32 m′33 m′34 0 1







x
y
z
1
w
w′




= 0 (14)

The 6× 6 matrix in (14) will be denoted A(M,M ′). Considered as a set of linear equations
in the variables x, y, z, w and w′ and constant 1, this is a set of six homogeneous equations
in six unknowns (imagining 1 to be an unknown). If this system is to have a solution, then
detA(M,M ′) = 0. This condition gives rise to a cubic equation p(u, v, u′, v′) = 0 where the
coefficients of p are determined by the entries of M and M ′. The polynomial p will be called
the essential polynomial corresponding to the two cameras. Because of the particular form
of p, there exists a 4× 4 matrix Q such that

(u′, u′v′, v′, 1)Q(u, uv, v, 1)T = 0 (15)

The matrix Q will be called the hyperbolic essential matrix corresponding to the linear push-
broom camera pair {M,M ′}. Matrix Q is just a convenient way to display the coefficients
of the essential polynomial. Since the entries of Q depend only on the two camera matrices,
M and M ′, equation (15) must be satisfied by any pair of corresponding image points (u, v)
and (u′, v′).

It is seen that if either M or M ′ is replaced by an equivalent matrix by multiplying the
last two rows by a constant c, then the effect is to multiply detA(M,M ′), and hence the
fundamental polynomial p and matrix Q by the same constant c (not c2 as may appear at
first sight). Consequently, two essential polynomial or matrices that differ by a constant
non-zero factor will be considered equivalent. The same basic proof method used above may
be used to prove the existence of the essential matrix for pinhole cameras.

A closer examination of the matrix A(M,M ′) in (14) reveals that p = detA(M,M ′) contains
no terms in uu′, uvu′, uu′v′ or uvu′v′. In other words, the top left hand 2× 2 submatrix of
Q is zero. This is formaly stated below.

Theorem5.2. Let ui = (ui, vi, 1)� and u′i = (u′i, v
′
i, 1)� be the image coordinates of 3-D

points pi (i = 1 . . . n) under two linear pushbroom cameras. For all i, there exists a matrix
Q, such that

Q =
(

u′i u′iv
′
i v′i 1

)



0 0 q13 q14

0 0 q23 q24

q31 q32 q33 q34

q41 q42 q43 q44






ui
uivi
vi
1


 = 0. (16)

Since Q is defined only up to a constant factor, it contains no more than 11 degrees of
freedom. Given a set of 11 or more image-to-image correspondences the matrix Q can be
determined by the solution of a set of linear equations just as with pinhole cameras.
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Figure 3: Epipolar lines

5.2 Epipolar Geometry

One of the most striking differences between linear pushbroom and perspective cameras is
the epipolar geometry. First of all there are no epipoles in the familiar manner of perspective
cameras, since the two pushbroom cameras are moving with respect to each other. Neither
is it true that epipolar lines are straight lines.

Consider a pair of matched point (u, v)� and (u′, v′)� in two images. According to equa-
tion (15) these points satisfy (u′, u′v′, v′, 1)Q(u, uv, v, 1)� = 0. Now, fixing (u, v)� and
inquiring for the locus of all possible matched points (u′, v′)�, and writing (α, β, γ, δ)� =
Q(u, uv, v, 1)�, we see that αu′ + βu′v′ + γv′ + δ = 0. This is the equation of a hyperbola
– epipolar loci are hyperbolas for linear pushbroom cameras. Q can be used in match point
computation to enforce the epipolar constraint.

Fig. 3 shows the images of a set of lines in space as taken with a linear pushbroom camera.
The curvature of the lines is exaggerated by the wide field of view.

The epipolar locus of a point is the projection in the second image of a straight line emanating
from the instantaneous center of projection of the first camera. Hyperbolic epipolar curves
are expected because, as already proved, under the linear push-broom model lines in space
map into hyperpolas in the image plane. Only one of the two branches of the hyperbola will
be visible in the image. The other branch will lie behind the camera.

Hyperbolic essential matrix contains all the information about relative camera parameters
for completely uncalibrated linear pushbroom cameras (i.e., cameras about which nothing is
known) that can be derived from a set of match points. In the following section, we consider
the information that can be extracted from Q.

5.3 Extraction of Relative Cameras from Q

Longuet-Higgins ([?]) showed that for calibrated cameras the relative position and orientation
of the two cameras may be deduced from the essential matrix. This result was extended to
uncalibrated cameras in [?] where it was shown that if M1 and M ′

1 are one pair of cameras
corresponding to an essential matrix Q and if M2 and M ′

2 are another pair corresponding
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to the same essential matrix, then there is a 4 × 4 matrix H such that M1 = M2H and
M ′

1 = M ′
2H . This result will be shown to hold for linear pushbroom cameras with the

restriction that H must be a matrix representing an affine transformation, that is, the last
row of H is (0, 0, 0, 1).

First of all, it will be shown that M and M ′ may be multiplied by an arbitrary affine
transformation matrix without changing the hyperbolic essential matrix. Let H be a 4× 4
affine transformation matrix and let Ĥ be the 6× 6 matrix

Ĥ =

(
H 0
0 I

)

where I is the 2 × 2 identity matrix. If A is the matrix in (14) it may be verified with
a little work that A(M,M ′)Ĥ = A(MH,M ′H), where the assumption that the last row
of H is (0, 0, 0, 1) is necessary. Therefore, detA(MH,M ′H) = detA(M,M ′) detH and so
the fundamental polynomials corresponding to pairs {M,M ′} and {MH,MH ′} differ by a
constant factor and so are equivalent.

Next we will consider to what extent the two camera matrices M and M ′ can be determined
from the hyperbolic essential matrix. As has just been demonstrated, they may be multiplied
by an arbitrary 4× 4 affine matrix H . Therefore, we may choose to set the matrix M ′ to a
particularly simple form (I | 0) where I is an identity matrix, by multiplication of both M

and M ′ by the affine matrix

(
M ′−1 t

0 1

)
. It will be seen that with the assumption that

M ′ = (I | 0), the other matrix M is almost uniquely determined by the hyperbolic essential
matrix.

Under the assumption that M ′ = (I | 0), Q may be computed explicitly in terms of the
entries of M . Using Mathematica([?]) or by hand it may be computed that

Q = (qij) =




0 0 m11m33 −m13m31 m13m21 −m11m23

0 0 m11m32 −m12m31 m12m21 −m11m22

m22 −m32 m14m32 −m12m34 m12m24 −m14m22

m23 −m33 m14m33 −m13m34 m13m24 −m14m23


 (17)

Given the entries qij of Q the question is whether it is possible to retrieve the values of the
entries mij . This involves the solution of a set of 12 equations in the 12 unknown values mij .
The four entries m22, m23, m32 and m33 may be immediately obtained from the bottom left
hand block of Q. In particular,

m22 = q31

m23 = q41

m32 = −q32

m33 = −q42

(18)

Retrieval of the remaining entries is more tricky but may be accomplished as follows. The
four non-zero entries in the first row can be rewritten in the following form (using (18) to
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substitute for m22, m23, m32 and m33).



−q42 0 −m13 −q13

−q41 m13 0 −q14

−q32 0 −m12 −q23

−q31 m12 0 −q24






m11

m21

m31

1


 = 0 . (19)

Similarly, the bottom right hand 2× 2 block gives a set of equations



−q42 0 −m13 −q43

−q41 m13 0 −q44

−q32 0 −m12 −q33

−q31 m12 0 −q34






m14

m24

m34

1


 = 0 . (20)

Immediately it can be seen that if we have a solution mij , then a new solution may be
obtained by multiplying m12 and m13 by any non-zero constant c and dividing m21, m31,
m24 and m34 by the same constant c. In other words, unless m13 = 0, which may easily
be checked, we may assume that m13 = 1. From the assumption of a solution to (19) and
(20) may be deduced that 4× 4 matrices in (19) and (20) must both have zero determinant.
With m13 = 1, each of (19) and (20) gives a quadratic equation in m12. In order for a
solution to exist for the sought matrix M , these two quadratics must have a common root.
This condition is a necessary condition for a matrix to be a hyperbolic essential matrix.
Rearranging the matrices slightly, writing λ instead of m12 and expressing the existence of
a common root in terms of the resultant leads to the following statement.

Theorem5.3. If a matrix 4× 4 matrix Q = (qij) is a hyperbolic essential matrix, then

1. q11 = q12 = q21 = q22 = 0

2. the resultant of the polynomials

det




λ 0 q31 q24

0 λ q32 q23

1 0 q41 q14

0 1 q42 q13


 (21)

and

det




λ 0 q31 q34

0 λ q32 q33

1 0 q41 q44

0 1 q42 q43


 (22)

vanishes.

3. The discriminants of the polynomials (21) and (22) are both non-negative.
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If the two quadratics have a common root, then this common root will be the value of m12.
The linear equations (19) may then be solved for m11, m21 and m31. Similarly, equations
(20) may be solved for m14, m24 and m34. Unless q31q42 − q41q32 vanishes, the first three
columns of the matrices (21) and (22) will be linearly independent and the solutions for the
mij will exist and be unique.

To recapitulate, if m12 is a common root of the two quadratic polynomials (21) and (22),
m13 is chosen to equal 1, and q31q42−q41q32 �= 0 then the matrix M = (mij) may be uniquely
determined by the solution of a set of linear equations. Relaxing the condition m13 = 1,
leads to a family of solutions of the form


 m11 m12c m13c m14

m21/c m22 m23 m24/c
m31/c m32 m33 m34/c


 (23)

However, up to multiplication by the diagonal affine matrix diag(1, 1/c, 1/c, 1) all such ma-
trices are equivalent. Furthermore, the matrix M ′ = (I | 0) is mapped unto an equivalent
matrix by multiplication by diag(1, 1/c, 1/c, 1). This shows that once m12 is determined, the
matrix pair {M,M ′} may be computed uniquely up to affine equivalence.

Finally, we consider the possibility that the equations (21) and (22) have two common roots.
This can only occur if the coefficients of Q satisfy certain restrictive identities that may be
deduced from (21) and (22). This allows us to state

Theorem5.4. Given a 4 × 4 matrix Q satisfying the conditions of Proposition 5.3, the
pair of camera matrices {M,M ′} corresponding to Q is uniquely determined up to affine
equivalence, unless Q lies in a lower dimensional critical set.

5.4 More about the Critical Set

It is not the purpose here to undertake a complete investigation of the critical set. As
previously stated, conditions under which there are two common roots to (21) and (22)
leading to two distinct solutions for M may be deduced from the form of (21) and (22). This
investigation will give a condition in terms of the entries of Q. More enlightening would be
a conditions in terms of the entries of the matrix M for the solution to be ambiguous. This
will be investigated next.

There will be ambiguous solutions to the problem of estimating the matrix M if the poly-
nomials (21) and (22) have two common roots. Suppose that the matrix Q is of the form
given in (17). Then we may compute the two quadratic polynomials from (21) and (22).
The results2 are

p1(λ) = (m13λ−m12)(m22m31 −m21m32 − λ(m23m31 −m21m33))

p2(λ) = (m13λ−m12)(m22m34 −m24m32 − λ(m23m34 −m24m33))

2These computations were carried out using Mathematica ([?])
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As expected, p1(λ) and p2(λ) have a common root λ = m12/m13. The second root of p1 and
p2 is the same if and only if two linear polynomials (m22m31−m21m32−λ(m23m31−m21m33))
and (m22m34−m24m32− λ(m23m34−m24m33)) have the same root. This is so if and only if

(m21m34 −m24m31)(m22m33 −m23m32) = 0 (24)

Since the right hand side of this expression is a product of two factors, there are two sep-
arate conditions under which an ambiguous solution exists. The first condition (m21m34 −
m24m31) = 0 corresponds geometrically to the situation where the trajectories of the two
cameras meet in space. This may be seen as follows. A point x = (x, y, z)� lies on the tra-
jectory of the centre of projection of a camera with matrix M if and only if M(x, y, z, 1)� =
(u, 0, 0)�, for under these circumstances the v coordinate of the image is undefined. In
particular, the points that lie on the trajectory of the camera M ′ with matrix (I | 0) are
of the form (x, 0, 0)�. Such a point will also lie on the trajectory of the camera with ma-
trix M if and only if xm21 + m24 = xm31 + m34 = 0 for some x – that is, if and only if
m21m34 −m24m31 = 0.

The geometrical meaning of the other condition has not been determined so far.3

5.5 Computation of Hyperbolic Essential Matrix

The matrix Q may be computed from image correspondences in much the same way as
Longuet-Higgins computes the perspective essential matrix ([?]). Given 11 or more point-
to-point correspondences between a pair of linear pushbroom images, equation (15) can be
used to solve for the 12 non-zero entries of Q, up to multiplication by an unknown scale.
Unfortunately, in the presence of noise, the solution found in this way for Q will not satisfy
the second condition of (5.3) exactly. Consequently, when solving for the matrix M , one will
find that the two polynomials (21) and (22) do not have a common root. Various strategies
are possible at this stage.

One strategy is as follows. Consider each of the two roots m12 of (21) and with each such
value of m12 proceed as follows : Substitute each such m12 in turn into the equation (20).
giving a set of four equations in three unknowns; solve (20) to find the least-squares solution
for m14, m24 and m34. Finally accept the root of (21) that leads to the best least-squares
solution. One could do this the other way round as well starting by considering the roots
of (22) and accepting the best of the four solutions found. A different strategy is to choose
m12 to be the number that is closest to being a root of each of (21) and (22). This is the
algorithm that we have implemented, with good results so far.

To obtain the best results, however, it is probably necessary to take the conditions of Propo-
sition 5.3 into account explicitly and compute a hyperbolic essential matrix satisfying these
conditions using explicit assumptions about the source of error to formulate a cost function
to be minimized. This has been shown to be the best approach for perspective cameras
([?, ?]).

3The condition seems to be that trajectory of the second camera lies parallel to the view plane of the
other camera, but this needs to be checked.
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Let us assume that the error is in the specification of the image coordinates (ui, vi)
� and

(u′i, v
′
i)
� in the two images, and that the errors in coordinates are independent Gaussian

variables. For simplicity we assume that the variances of individual pixels are the same,
though this assumption is not necessary. In this case, the correct minimization problem is
to find a matrix Q and coordinates (ûi, v̂i)

� and (û′i, v̂
′
i)
� such that Q is of the form specified

by Proposition 5.3, the epipolar constraint (û′i, û
′
iv̂
′
i, v̂
′
i, 1)�Q(ûi, ûiv̂i, v̂i, 1) = 0 is satisfied

for all i and the difference
∑
i(ui − ûi)

2 + (vi − v̂i)
2 + (u′i − û′i)

2 + (v′i − v̂′i)
2 is minimized.

This problem can be solved using a standard photogrammetric resection approach. Instead
of solving for Q, we solve for the camera matrix M and the world point locations xi. We
assume without loss of generality that M ′ = (I | 0). Given an estimate for M and each x̂i,
image coordinates (ûi, v̂i)

� and (û′i, v̂
′
i)
� are computed from the basic formula (7) and the cost

function to be minimized is the squared pixel error. An initial estimate of the camera matrix
M may be computed using the straight-forward linear approach given above. By non-linear
least squared iteration a final estimate for M and each xi is found. The hyperbolic essential
matrix Q may be computed from the final estimate of M . Although this method has not
been tested on pushbroom cameras, it has proven successful with perspective cameras.

The problem with the above method is that a large non-linear problem must be solved. A
comparison of this method and a different, fast and almost optimal method that uses the
correlation matrix of Q may form the subject of another paper.

The question of numerical stability is important in implementing algorithms using the linear
pushbroom model. In particular, it is easy to encounter situations in which the determination
of the linear pushbroom model parameters is very badly conditioned. In particular, if a set
of ground-control points lie in a plane or are very close to being planar, then it is easily
seen (just as with perspective cameras) that the determination of the model parameters is
ambiguous. We have developed techniques (not described here) for handling some cases of
instability, but care is still necessary. The algorithms described in this paper can not be
used in cases where the object set lies in a plane.

6 Scene Reconstruction

Once two camera matrices have been determined, the position of the points xi in space may
be determined by solving (14). This will determine the position of the points in space up to
an affine transformation of space.

In the case where both point matches between images and ground-control points are given,
the scene may be reconstructed by using the matched points to determine the scene up to
affine transformation, and then using the ground-control points to determine the absolute
placement of the scene. If the ground control points are visible in both images, then it is
easy to find the correct affine transformation. This is done by determining the position of
the ground control points in the reconstructed image, and then determining the 3-D affine
transformation that will take these points on to the absolute ground-control locations.

If ground-control points are available that are visible in one image only, it is still possible to
use them to determine the absolute location of the reconstructed point set. A method for
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doing this is given in [?] and will not be repeated here.

7 Experimental Results

Two key assumptions are made in the derivation of the linear pushbroom model (ref. sec-
tion 2. In the context of remote sensing applications, the first assumption is that during the
time of acquisition of one image the variations in velocity of the satellite in its orbit are negli-
gible. In addition, the motion of the earth’s surface can be included in the motion of satellite,
the composite motion being approximately rectilinear. The second assumption is that the
rotation of the local orbital frame as well as the fluctuations of orientation with respect to
this frame can be ignored. To what extent these assumptions are justified is explored this
section and several experiments that measure the accuracy of the linear pushbroom model
are described.

In the first experiment, the accuracy of the linear pushbroom model was compared with a full
model of SPOT’s HRV camera. This model, which is detailed in [?], takes into account the
orbital dynamics, earth rotation, attitude drift as measured by on-board systems, ephemeris
data, and several other phenomena to emulate the imaging process as accurately as possible.
A different model is discussed in [?].

The linear pushbroom model was compared with the full model on a pair of real images with
matched points computed using a stereo matching algorithm. A stereo pair of SPOT images
of the Malibu region, centered approximately at 34 deg 5 min north, and 118 deg 32 min
west (images with (J, K) = (541, 281) and (541, 281) in SPOT’s grid reference system [?])
were used. We estimated the camera models for these two images using a set of 25 ground
control points, visible in both images, picked form USGS maps and several automatically
generated image to image correspondences found using STEREOSYS ([?])

Two performance metrics were computed. The accuracy with which the camera model maps
the ground points to their corresponding image points is important. The RMS difference
between the known image coordinates and the image coordinates computed using the derived
camera models was measured. An application-specific metric, viz. the accuracy of the terrain
elevation model generated from a stereo pair, was also measured.

Once again, the data was modeled using a perspective camera model, a linear pushbroom
model and a full pushbroom model.

In order to make the results directly comparable, the same ground control points and image
to image correspondences were used for camera model computations in all three experiments.
(The number of tie or match points in computation of the pin-hole camera is an exception
where 511 tie-points, instead of 100, were provided in an attempt to boost its accuracy.) In
addition, the terrain model was also generated using the same set of match points.

The results of these three experiments are tabulated in Table 1. The first and the second
row list the number of ground control points and the number of ties points used in the
camera model computation. The third row gives the number of match points for which a
point on the terrain was generated. The camera model accuracy, i.e., accuracy with which
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Pin-hole Linear Push- Full SPOT
Model broom Model Model

Num. gc pts 25 25 25
Num. match pts 511 100 100
Num. terrain points 68,131 68,131 68,131
RMS error 11.13 pixels 0.80 pixels 0.73 pixels
Terrain accuracy 380.79m 35.67m 11.10m
Time ∼5 sec. ∼5 sec. > 20 min.

Table 1: A comparison of the three camera models.

a ground point (x, y, z)� is mapped into its corresponding image point, listed in the fourth
row. Finally, the RMS difference between the generated terrain and the ground truth (DMA
DTED data) is given in the fifth row.

The attempt to model SPOT’s HRV cameras by perspective cameras yielded camera models
with a combined accuracy of about 11 pixels. This is a large error because for a high
platform such as a satellite, even a single pixel error can translate into a discrepancy of
tens of meter along the horizontal and vertical dimensions (the exact amount depends on
the pixel resolution and the look angles). This is reflected in the accuracy of the generated
terrain which is as much as 380 meters off, on the average. Thus, as expected, a pin-hole
camera is a poor approximation for pushbroom camera. The linear pushbroom, on the other
hand, is quite competitive with the detailed model, both in terms of camera model accuracy,
as well as the accuracy of the generated terrain.

The last entry on the fifth row (the 11.10m accuracy for the terrain generated by the com-
plex model) is a little misleading since generated terrain is more accurate than the claimed
accuracy of the ground-truth it is being compared with. This figure is a statement about the
accuracy of the ground-truth, instead of the other way around. Figs. 4 and 5 show the terrain
generated by the perspective and the full SPOT models, respectively. Fig. 5 can be regarded
as the ground truth. In all these figures, the Pacific Ocean has been independently set to
have an elevation of 0. Also, since the area covered is rather large (about 60km×60km), the
terrain relief has been considerably exaggerated compared to the horizontal dimensions. We
have not included the terrain generated by the linear pushbroom model because it is visually
indistinguishable from that generated by the full model (Fig. 5).

Fig. 4 illustrates the distortion introduced when a partially perspective projection is modeled
by a fully perspective camera. In order to better understand this distortion, the following
experiment was conducted.

Using the full pushbroom model parameterized to an actual orbit and ephemeris data, and an
artificial terrain model, a set of ground to image correspondences were computed, one such
ground control point being computed every 120 pixels. This gave a 51× 51 grid of ground-
control points covering approximately 6000× 6000 pixels. Next, these ground control points
were used to instantiate the linear pushbroom model using the algorithm of section 3. In this
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Figure 4: Terrain reconstructed from perspective model

Figure 5: Terrain reconstructed from full model
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Figure 6: Error profile for linear pushbroom model

Figure 7: Error profile for perspective model

experiment, the locations of ground points were fixed for both the full and linear pushbroom
models. The difference was measured between the corresponding image points as computed
by each of the models. The absolute value of error as it varies across the image is shown in
Fig. 6. The maximum error was less than 0.4 pixels with an RMS error of 0.16 pixels. As
can be seen, for a complete SPOT image, the error incurred by using the linear pushbroom
model is less than half a pixel, and much less over most of the image.

To test whether a perspective camera model could do as well, the same set of ground control
points were modeled using a perspective camera model. The result was an RMS error of 16.8
pixels with a maximum pixel error of over 45 pixels. Figs 7. shows the error distribution
across the image.

22


