
Camera Estimation for Orbiting Pushbroom Imaging

Systems

Rajiv Gupta and Richard I. Hartley

General Electric Corporate R&D
River Rd, Schenectady, NY 12309, USA

Abstract: Several space-borne cameras use pushb-
room scanning to acquire imagery. Traditionally, mod-
eling and analyzing pushbroom sensors has been com-
putationally intensive due to the motion of the orbiting
satellite with respect to the rotating earth, and the non-
linearity of the mathematical model involving orbital dy-
namics. The most time-consuming part of the computa-
tion involves mapping a 3-D point to its corresponding
image point. A new technique for accomplishing this
task that leads to fast convergence is described. In this
technique, each iterative step assumes that the part of
the orbital segment in which the satellite is operating
is locally a straight line. It then moves the satellite so
that the given 3-D point would come into the instanta-
neous view plane. As the satellite moves closer and closer
to the destination point, this assumption becomes more
and more valid, holding perfectly in the limit. In most
cases we obtained the desired accuracy in one or two it-
erative steps. Thus, for most suitably initialized starting
points, the model is linear. Besides computational effi-
ciency, experimental results also confirm the accuracy of
the model in mapping 3-D points to their corresponding
2-D points.

Keywords: Photogrammetry, Satellite camera mod-
els, Pushbroom sensors.

1 Pushbroom Sensors

The pushbroom principle is commonly used in satellite
cameras for acquiring 2-D images of the Earth surface.
In general terms, a pushbroom camera consists of an
optical system projecting an image onto a linear array
of sensors (Fig. 1). At any time only those points are

imaged that lie in the plane defined by the optical center
and the line containing the sensor array. This plane will
be called the instantaneous view plane or simply view
plane (see [1] for details).

This optical system is mounted on the satellite and as
the satellite moves, the view plane sweeps out a region
of space. The sensor array, and hence the view plane,
is approximately perpendicular to the direction of mo-
tion. The magnitude of the charge accumulated by each
detector cell during some fixed interval, called the dwell
time, gives the value of the pixel at that location. Thus,
at regular intervals of time 1-D images of the view plane
are captured. The ensemble of these 1-D images consti-
tutes a 2-D image. It should be noted that one of the
image dimensions depends solely on the sensor motion.

SPOT satellite’s HRV camera is a well-known example
of a pushbroom system [2]. For HRV, the linear array of
sensors consists of 6000 pixel array of electronic sensors
covering an angle of 4.2 degrees. This sensor array cap-
tures a row pixels at 1.504 ms time intervals (i.e. dwell
time = 1.504 ms). As the satellite orbits the earth, a
continuous strip of imagery is produced. This strip is
split into images, each consisting of 6000 rows. Hence
a 6000 × 6000 pixel image is captured over a 9 seconds
flight of the satellite. Such an image covers a square with
side approximately 60 Km on the ground.

As a first level-of approximation, one is tempted to re-
gard satellite imagery as aerial imagery from a very high
platform. The following attributes, which are unique
to satellite imagery, make this approximation rather
crude [3].

Figure 1: The pushbroom principle.

Many Perspective Centers. In pushbroom imagery,
each line is imaged independently. This implies that
there are numerous, highly correlated, perspective cen-
ters associated with each image.

Terrain Height to Altitude Ratio. Even for the
satellites in low earth orbits, the terrain height to alti-
tude ratio for satellite imagery is about 80 times smaller
than that for aerial photography. Put another way, in
satellite imagery, the terrain appears to be relatively flat.
Thus the parallax arising due to difference in terrain re-
lief and view angles in stereo pairs is not as pronounced.
This implies that the parameters have to be known con-
siderably more accurately if meaningful information is
to be extracted from match point disparity.

Partially Perspective Image. In pushbroom imag-
ing, image rays captured by the detector array are re-
stricted to a plane perpendicular to the flight path. Thus
the image is perspective only in the cross-flight direction;
along the direction of flight, the projection is closer to
being orthographic than perspective. A corollary of this
fact is that the ray intersection method would not give
accurate information about along-track location. In gen-
eral, classical space resection techniques, by themselves,
are not reliable enough for satellite imagery.

Field of View Angle. Generally the size of the detec-
tor array capturing the image is much smaller than its

distance from the perspective center. This narrow field
of view sometimes contributes to the instability of the
solution.

Parameter Correlation. Scan line imaging suffers
from high degree of parameter correlation. For example,
any small rotation of the linear array around an axis
perpendicular to the flight path (i.e., along the length
of the array), can be compensated for by changing the
position of the satellite along the orbital path. The max-
imum likelihood least-squares estimation model must be
sufficiently constrained to take care of this problem.

Because of the above distinguishing features, it is well
known that the standard photogrammetric bundle ad-
justment typical of aerial imagery does not work for
satellite imagery [3, 1]. For accuracy, and in fact conver-
gence, a pushbroom camera model must explicitly take
into account the constraints imposed by: (1) the Ke-
pler’s Laws, (2) the rotation of the earth, and (3) the
constraints imposed by the ephemeris data.

In order to ascertain quantitatively the mapping inaccu-
racy of the perspective approximation to a pushbroom
image, we conducted the following experiment. We se-
lected a grid of 3-D points with known latitude, lon-
gitude, and elevation. The 2-D positions of these grid
points in a SPOT image was then derived using an ex-
act model — the one that will be described in this paper
— for the SPOT’s pushbroom camera. To these ground
control points, the best perspective camera (i.e., a pin-
hole camera) that minimizes the 3-D to 2-D mapping
error was fitted. The 2-D mapping error (in pixels) for
each grid point is shown in Fig. 2. As is clear from this
figure, the error in modeling a pushbroom camera with
a perspective camera can be as much as 40 pixels at the
image boundary.

The effect of this modeling error in an application-
specific context is illustrated in Fig. 3. This figure shows
the digital elevation model (DEM) of a small tile of ter-
rain derived from a stereo pair of SPOT images. Once
again, both cameras were modeled as pin-hole cameras.
An overall tilting of the derived terrain tile is quite ap-
parent in Fig. 3. Since the ground truth was known for
this example terrain tile, the corresponding error in ter-
rain elevation is shown in Fig. 4. As can be seen, an
attempt to model ortho-perspective imagery by a pin-
hole model can lead to discrepancy of more than 800
meters in the terrain model.

Even if one were to model the ortho-perspective nature
of the imagery, classical space resectioning is unable to
separate the correlation among the unknown parame-

2.5

5

7.5

10

12.5

2.5

5

7.5

10

12.5

10

20

30

40

2.5

5

7.5

10

12.5

2.5

5

7.5

10

12.5

10

20

30

40

Figure 2: Mapping error in modeling a pushbroom cam-
era as a pin-hole camera. The horizontal plane represents
the image coordinates and the error, in pixels, is shown
on the vertical scale.

ters. Additional constraints are required in order to
obtain convergence. For example, the constraint equa-
tions derived from known orbital relationships governed
by Kapler’s laws must be an integral part of the cam-
era model. The task of modeling an orbiting pushbroom
camera exactly must take into account the following fac-
tors.

• By Kepler’s Laws, the satellite is moving in an el-
liptical orbit with the center of the earth at one of
the foci of the ellipse. The speed is not constant,
but varies according to the position of the satellite
in its orbit. These position and velocity constraints
must be imposed explicitly by the camera model.

• The earth is rotating with respect to the orbital
plane of the satellite. The motion of the satellite
with respect to the earth’s surface should be incor-
porated in the camera model.

• The satellite is slowly rotating so that it is approx-
imately fixed with respect to an orthogonal coordi-
nate frame defined as follows: the z-axis emanates
from the satellite and passes through the center of
the earth; the x-axis lies in the plane defined by the
satellite velocity vector and the z axis; the y-axis is
perpendicular to the x and z axes. This coordinate
frame will be called the local orbital frame (see Fig. 6
and Section 3). During one orbit, the local orbital

20

40

60

20

40

60

-250

0

250

500

750

20

40

60

20

40

60

-250

0

250

00

0

Figure 3: Terrain elevation estimated using pin-hole ap-
proximation for a SPOT stereo pair.

frame undergoes a complete revolution about its y
axis. This slow attitude change should be built into
the camera model.

• The orientation of the satellite undergoes slight vari-
ations with respect to the local orbital frame. The
camera model must account for this attitude drift .

Needless to say that for satellite cameras the task of find-
ing the image coordinates of a point in space is relatively
complex and computationally intensive because many of
intermediate steps force the use of approximate or it-
erative schemes. For instance, there is no closed-form
expression determining the angular position of an orbit-
ing satellite given its time of flight from any given point
in its orbit (e.g., time of flight from perigee). Because
of this, the exact computation of the image produced by
a pushbroom sensor has traditionally been a time con-
suming task.

This paper describes a general methodology for modeling
a pushbroom camera that alleviates the problems men-
tioned above. A new technique for efficiently mapping a
3-D point to its corresponding 2-D image coordinate is
described. Despite the non-linearity of the mathematical
model, our scheme exhibits fast convergence.

In order to find the image coordinates of a given 3-D
point, the satellite must be moved so that the 3-D point
lies in its view plane (see Fig. 1). We present an iterative
procedure for accomplishing this task. Each iterative
step in this procedure assumes that the orbital segment
between the current location of the satellite and its final

20

40

60

20

40

60

0

200

400

600

800

20

40

60

20

40

60

0

200

400

00

00

Figure 4: Error in the terrain generated using pin-hole
approximation.

destination is a straight line. Under this assumption, the
instantaneous velocity of the satellite is computed and it
is moved so as to bring the given 3-D point into its in-
stantaneous view plane. Clearly, the assumption about
the linearity of the orbit is only an approximation; af-
ter this position update the satellite will be closer but
not at its exact intended position. Repeated applica-
tions of this iterative step bring the satellite arbitrarily
close to its destination position. In practice, the above
operation is repeated until the angle between the instan-
taneous view plane and the ray to the 3-D ground point
is less than some desired accuracy. We have found that
this procedure has very fast convergence because as the
satellite moves closer and closer to the destination point,
the linearity assumption becomes more and more valid.
In the limit the assumption holds perfectly and there is
no approximation in the final answer that is obtained.

The model is computationally efficient: in most cases
we obtained the desired accuracy in one iterative step.
Thus, for most suitably initialized starting points, the
model is linear. Experimental results also confirm the
accuracy of the model in mapping 3-D points to their
corresponding 2-D points.

The model described here has been implemented for the
SPOT satellite’s HRV cameras. Even though some of the
terminology used refers specifically to SPOT, the model
is applicable to all pushbroom cameras. To that extent,
SPOT is just an example application.

2 Camera Model Estimation

The over all camera parameter estimation process can
be divided into two main tasks, a modeling task and an
optimization task.

2.1 Modeling Task

Camera modeling involves reconciling information from
several different coordinate frames. For example, the
ground points are generally given in a map coordinate
system such as UTM or NAD-27; Ephemeris information
is typically available in a geocentric coordinate system;
computations involving look angles are most convenient
in the local orbital frame. For accurate camera model
estimation, it is essential that these frames be precisely
registered with each other. How this is done in our sys-
tem will be described in this and the next sections.

Before we can estimate the parameters of a camera, we
have to implement a software model of the camera. This
software model transforms a point in the world coordi-
nate system (given, for example, as [lat, lon, elevation])
into a pixel location (u, v) of the same point, in accor-
dance with parameters and mechanisms of the camera.
A camera modeling routine essentially mimics the oper-
ation of the camera as it transforms a ground point into
a pixel in the image.

Since the main camera modeling task is to map a given
point from the world coordinate system to the image co-
ordinate system we define these two coordinate systems
below.

Image Coordinates. Each pixel in the image is iden-
tified by its row and column numbers. The rows of an
image represent the satellite motion: successive rows are
imaged one dwell time apart. Thus by selecting a suit-
able origin, a time stamp can be associated with each row
in the image. The columns represent the field-of-view in
the cross flight direction.

World Coordinates. As mentioned earlier, a ground
point (i.e., its latitude, longitude, and elevation), the
auxiliary information provided by the on-board systems
(e.g., the ephemeris information), and the calibration in-
formation (e.g., the look angles) may all be with respect
to three different world coordinate systems. To simplify
processing, it is useful to transform all available infor-
mation to a geocentric, geo-fixed frame. In our imple-
mentation, we have chosen to convert all parameters to

the 1980 Geodetic Reference System (GRS-80) since the
ephemeris information supplied on a SPOT tape are pro-
vided in this coordinate system. A different coordinate
frame may be more suitable for another camera type.

GRS-80 is an earth centered, earth fixed, rotating co-
ordinate system. In this coordinate system, the X-axis
passes through the Greenwich meridian, the Z-axis co-
incides with the axis of the earth’s revolution, and the
Y-axis is perpendicular to both the X and Z axes so as
to form a right-handed system. GRS-80 models earth
as an ellipsoid with semi-major and minor axes given by
Ra = 6378.137 km and Rb = 6356.7523 km, respectively.

Given the geocentric latitude (ψs) and longitude (λs) of
the satellite, and its orbital radius (Rs), one can find its
GRS coordinates using the following formula.


 XsYs
Zs


 =


 Rs cosψs cosλsRs cosψs sinλs

Rs sinψs


 (1)

One can also compute geodetic latitude (φe) and longi-
tude (ηe) from the geocentric latitude (ψ) and longitude
(λ) as follows:

ηe = λe (2)

φe = tan−1(
R2
a

R2
b

tanψe) (3)

From the geodetic latitude (φe), longitude (ηe), and ele-
vation (h) of a point on the earth’s ellipsoid, the GRS-80
coordinates can be computed using the following equa-
tions. 

 XeYe
Ze


 =


 (N cosψe + h cosφe) cos ηe

(N cosψe + h cosφe) sin ηe
(N sinψe + h sinφe)


 (4)

where N is given by

N =
RaRb

R2
b cos2 ψe +R2

a sin
2 ψe

. (5)

The above equations are sufficient to transform all input
data to GRS-80.

2.2 Optimization Task

A ground control point is defined as a 3-D point whose
image coordinates are known. One can assemble a set
of ground control points by picking prominant features
on a map — e.g. road intersections, buildings, or other
geographically distinguished points on the ground— and

noting their 2-D location in the image for which we want
to compute the camera model. The optimization task
takes a set of ground control points as input and results
in an estimate of the camera parameters.

If a routine to transform any GRS-80 point (x, y, z) into
its image coordinates (u, v) is available, one can for-
mulate the camera parameter estimation problem as a
global optimization problem. In this formulation, the pa-
rameters of the camera are the unknown variables while
the ground control points and the ephemeris informa-
tion collected by the on-board systems provide inputs
and constraints. The over all task is to compute a set
of camera parameters that minimize the least-squared-
error between the given and computed pixel values for
each ground control point while abiding by all the orbital
constraints.

The optimization method used in our implementation is
based partly on the well known Levenberg-Marquardt
(LM) parameter estimation algorithm. Our extensions
to the basic LM algorithm include methods for handling
sparsity in the Jocobian matrix and its customization for
the camera parameter estimation problem. This imple-
mentation is briefly described in Section 6 and detailed
in [4].

The following section discusses the various parameters
associated with a satellite mounted pushbroom camera
and classifies them.

3 Model Parameters for a Push-
broom Camera

All the parameters needed for modeling the camera have
a predetermined nominal value which is known prior to
the launch. For some parameters, since they are con-
tinuously monitored by on-board systems, a more ac-
curate value is provided to the user as ephemeris and
other auxiliary information. Nevertheless, for the sake
of greater accuracy it has proven necessary to refine the
ephemeris data and estimate all the parameters simul-
taneously by solving the overall mapping problem using
ground-control points and orbital constraints.

Camera model for an orbiting pushbroom camera uses a
large number of parameters. It is useful to classify the
camera parameters into three classes: known parameters,
independent parameters, and dependent parameters. At
the implementation level, the parameter information in
the camera modeling software is distributed among three
structures called known params, dependent params and
independent params. Most routines are simply passed a

Y

X
Descending node Equatorial plane

Inclination of
the orbital plane

True anomaly (f)

Perigee

Semi-minor axis
a(1-e)

Angle of perigeee

Ascending node

Satellite position

Figure 5: The six orbital parameters.

pointer to these structures. The contents of these struc-
tures are described below.

Independent Parameters. The exact position of a
satellite in its orbit is fully described by the following
six parameters which are illustrated in Figure 5 (also see
[5]):

1. semi-major axis of the orbital ellipse (a),

2. orbital eccentricity (e),

3. inclination of orbital plane with respect to the equa-
torial plane (i),

4. geocentric angle between the perigee and the as-
cending node (ω),

5. longitude of the ascending (or descending) node
(λANk or λDNk)), and

6. true anomaly (f).

The first two parameters determine the elliptical shape
of the orbit. The third and fourth parameters fix this
ellipse in space with respect to the equatorial plane. The
fifth parameter, λANk (or, equivalently, λDNk), registers
the k-th orbital track with the rotating earth. In this
list, f is the only time dependent parameter; all others
can be assumed to be fixed for any given track of the
satellite.

Because of the rotation of earth, the equator crossing
of the satellite drifts westward with each revolution. Let
λDN1 the longitude of the first equator crossing when the
satellite is moving from north to south (also known as the
longitude of the first descending node). The nominal val-
ues for the longitude of the descending node, ascending
node and the top of the orbit for any given revolution

Z

X

Y

Pitch
axis

Yaw
axis

Velocity
vectorRoll

axis

Figure 6: The local orbital frame.

number can be calculated using the following relation-
ships.

λDNk = λDN1 − (k − 1)× ωe × T (360◦) (6)
λANk = λDN + 180◦ + ωe × T (180◦)
λTk = λANk − 90◦ − ωe × T (90◦)

Here, T (x) is the time the satellite takes to negotiate an
angle x from the ascending node, and we is the angular
speed, in degrees/second, of Earth’s rotation.

The above orbital parameters specify the position of the
camera platform. In order to specify the orientation or
the pose of the camera the following reference frames are
needed.

A Local Orbital Frame is defined at every point in the
orbit as follows (see Fig. 6). The origin of the frame is
the satellite’s center of mass; the yaw axis is the geocen-
tric vector pointing radially away from the Earth center;
the roll axis is in the orbital plane perpendicular to the
yaw axis, along the velocity vector; and pitch axis is per-
pendicular to both yaw and roll axes.

The Satellite Attitude Reference Frame is fixed
with the satellite. Nominally it is aligned with the local
orbital reference frame as follows: the X axis is along
the pitch axis, the Y axis is aligned with the roll axis
and the Z axis is aligned with the yaw axis. The angles
between the attitude frame and local orbital plane are
used to orient the satellite.

The complete orientation of the satellite is computed in
two parts: (1) the attitude or the look direction of each
pixel in the detector array within the satellite attitude
reference frame, and (2) the orientation of the attitude
reference frame with respect to the local orbital reference
frame.

First we specify the look direction of each detector ele-
ment. It is customary to specify the look direction by
two angles: Ψx and Ψy (Fig 7). Ψx represents the rota-
tion that causes the satellite to look forward or backward

along the direction of flight; Ψy is the rotation perpendic-
ular to it. More precisely, the first angle Ψx is the angle
made by the orthogonal projection of the look direction
in the Y-Z plane with the negative Z axis of the satellite
attitude reference frame. If the camera is pointed to-
wards the nadir, this angle is zero; a non-zero Ψx makes
the satellite look forward or backward along the ground
track. Similarly, Ψy is the angle that the orthogonal pro-
jection of the look direction vector, projected in the X-Z
plane, makes with the negative Z axis. In nadir viewing,
Ψy is zero for the central pixel; it gradually increases for
detectors looking eastward, and decreases for detectors
looking westward (see [2]).

Given Ψx and Ψy, the unit vector along the look direc-
tion in the attitude reference frame is given by U =
[tanΨy, tanΨx, 1]/

√
1 + tan2 Ψx + tan2 Ψy. The look

direction of the pth pixel in the attitude reference frame
can be computed from that of the first and the Nth pixel
by interpolation using Up = (1 − p−1

N−1)U1 + (p−1
N−1)UN ,

where U1 and UN are the look directions vectors for the
first and the N -th pixels.

The orientation of the satellite attitude reference frame
can be specified by three rotation angles, RotXi, RotYi,
and RotZi, of the attitude frame with respect to the
local orbital frame, for each row i in the image. Nomi-
nally, RotXi, RotYi, and RotZi are zero at every point in
the orbit. These parameters are continuously monitored
by the attitude control system and their rate of change
(instead of the actual value) is reported as a part of the
auxiliary information gathered during image acquisition.

We assume that d(RotXi)
dt , d(RotYi)

dt , and d(RotZi)
dt are avail-

able for each row, either directly, or through interpola-
tion. Under this assumption, the drift of the attitude
frame with respect to the local orbital plane can be com-
puted by integration if that for the first row of imagery
is known. This gives rise to three new independent vari-
ables RotX1, RotY1, and RotZ1, the rotation angles for
the first row.

Besides the above parameters, other independent camera
parameters include (1) time from the perigee to the scene
center, (2) the dwell time for the detectors (i.e. the time
between image lines), and (3) the image coordinates of
the center pixel.

Dependent Parameters. These parameters can ei-
ther be computed from the independent parameters or
are measured directly by the on-board systems. The
list includes such measurable and given parameters as
the ephemeris information (positions and velocities at
different points in the orbit), ground control points (i.e.,
associations between [lat, lon, elevation] and (u, v) in the

Za

Xa

Ya

Ψy

Ψx

Satellite
position

Look
direction

Figure 7: Look angles Ψx and Ψy.

image), and rates of change of RotXi, RotYi, and RotZi.
Dependent parameters are used to impose constraints on
the solution.

4 Tracking the Satellite

A satellite provides a stable and, more importantly, a
predictable platform. Thus one can employ constraints
dictated by the Kepler’s laws to achieve convergence. In
particular, the following laws can be used to position a
satellite at any desired location in the orbit, given the
value of its independent parameters.

1. The orbits are elliptical.

2. The vector from earth’s center to the satellite sweeps
equal area in equal time.

3. The time period P is given by P 2 = 4πa3

GMe
, where

a is the semi-major axis of the orbital ellipse and
GMe is the gravitational constant times mass the
mass of the earth.

This section details the procedures for computing the
angular position of a satellite given its travel time from
perigee and vice versa. The definition of the various el-
liptical parameters such as true and eccentric anomalies,
and relationships among them, essential for the deriva-
tions that follow, are given in Figure 8.

Reference Circle

Spacecraft

Occupied
Focus

E

Orbit

a f

b = a 1− e2

Figure 8: Parameters of an ellipse.

Computation of Elapsed Time from True
Anomaly.

The true anomaly f can be converted into the eccentric
anomaly E using,

cosE =
(cos f + e)
(1 + e cos f)

(7)

where e is the eccentricity of the orbit. A direct rela-
tionship exists between the mean anomaly M and the
eccentric anomaly E.

M = E − e sinE (8)

From Kepler’s second law, which relates mean anomaly
and mean angular velocity (ω̄), one can compute the
elapsed time as t = M/ω̄. In this equation, ω̄ can be
computed using Kepler’s third law: the mean angular
velocity (ω̄) is given by:

ω̄ =

√
GMe

a3
(9)

where a is the semi-major axis of the orbit, G is the
universal gravitational constant, and Me is the mass of
the earth.

Computation of True Anomaly from Elapsed
Time

One is tempted to back-trace the computation described
above to compute the true anomaly from the elapsed
time. However, Eq. 8 that relatesM and E is not explicit
in M . To overcome this one must either linearize it to
express E in terms of M , or compute E iteratively.

Once again, Mean Angular Velocity can be computed
from the Kepler’s 3rd law, ω̄ =

√
(GMe/a

3). The

mean anomaly, then, is given by M = t × ω̄, where t
is the elapsed time. One can first compute, from mean
anomaly M , a rough value for the eccentric anomaly E
using a series expansion of M = E − e sinE:

E =M + (e− e3/8 + e5/192− e7/9216) sinM
+ (e2/2− e4/6 + e6/98) sin(2M)
+ (3e3/8− 27e5/128 + 243e7/5120) sin(3M)
+ (e4/3− 4e6/15) sin(4M)
+ (125e5/384− 3125e7/9216) sin(5M)
+ (27e6/80) sin(6M) (10)

With this coarse value as the starting point, we can solve
for fixed point iteratively as follows.

old_E = 0.0;
while(fabs(E - old_E) > EPSILON) {

old_E = E;
E = M + e * sin(old_E); }

The value of E computer using Eq. 10 is generally quite
close to its final value. In practice, the above iteration
rarely takes more than one or two iterative steps. Fi-
nally, to compute the true anomaly f from eccentric
anomaly E, we use the identity

tan f =
√
1− e2 sinE
cosE − e . (11)

5 The Mapping Algorithm

Fig. 9 depicts the mapping of a 3-D ground point to its
corresponding image point. The satellite’s initial posi-
tion S in the orbit at time t = 0 is marked A. At this
time instant, everything in the intersection of the view
plane ABC and the ground swath is observed by the
satellite. The satellite will observe the point (x, y, z)
from the point D in the orbit: at this point, the new
view plane (DEF) passes through the ground point. In
order to estimate the u image coordinate, i.e. the image
coordinate of (x, y, z) that depends on time, the satellite
must be moved to point D from a known starting point
such as A. We accomplish this by making the dihedral
angle between the view plane and the ray SX equal to
zero, where S denotes the instantaneous position of the
satellite in the orbit.

The pseudo-code for transforming a 3-D point pt3d to its
2-D image coordinates u and v — in essence moving the
satellite from A to D — is given below. All the camera
parameters are stored in four structures kp, ip, dp, and

Orbit

Ground swath Ground point

B

C

E

F

t = t1
S = A

t = tt
S = D

View
plane

Figure 9: Bringing the ground point in the view plane.

ap which contain the known, independent, dependent,
and auxiliary parameters described earlier. The syntax
s->m is used to denote a variable m stored in the structure
s.

void transform(pt3d, u, v, kp, ip, dp, ap)

{

/* STEP 1. */

/* Find the true anomaly of the

scene center */

anomaly = time2anomaly(kp, ip,

ip->center_travel_time);

/* Move the satellite to the

scene center */

anomaly2parameters(kp, ip, dp, anomaly);

/* STEP 2. */

/* Enter coarse pointing mode */

disable_drift_calculations();

/* Compute the viewing angles */

compute_angles (pt3d, kp, ip, dp, ap);

/* Move the satellite such that the

* look vector is in the view plane */

closein_angle_discrepancy(0.0, pt3d, kp,

ip, dp, ap);

/* STEP 3. */

/* Enter fine pointing mode */

enable_drift_calculations();

/* Recompute the viewing angles */

compute_angles (pt3d, kp, ip, dp, ap);

/* Close-in the angular discrepancy

with drift computation enabled */

closein_angle_discrepancy(0.0, pt3d, kp,

ip, dp, ap);

/* STEP 4. */

/* Deduce u and v from travel_time and

viewing_angle_ratio */

u = ip->Ppu +

(dp->travel_time -

ip->center_travel_time)/ip->dwell_time;

v = 1 + 2*(ip->Ppv - 1)*

dp->viewing_angle_ratio;

}

The algorithm executes the following steps.

1. Initialization. The 3-D to 2-D mapping algorithm
always starts at the scene center (i.e., the point A in
the above description is the point in the orbit where
the central row of the image was acquired). The true
anomaly of A is computed using the time from perigee
to the scene center and the satellite is moved there. Re-
call that the time from perigee to the scene center is an
independent parameter; Computation of anomaly, given
the travel time, has already been detailed in Section 4.
The routine anomaly2parameters computes all the de-
pendent parameters of the satellite at position A in the
orbit. In particular, the following values are computed
and returned as dependent parameters:

1. satellite’s orbital position coordinates and its veloc-
ity vector in GRS,

2. distance of the satellite and its nadir point from the
geo-center,

3. latitude and longitude of the nadir point,

4. satellite heading (i.e. angle between its motion vec-
tor and the longitude),

The satellite is moved from point A to D in two main
steps called the coarse and fine pointing modes.

2. Move the View Plane: Coarse Pointing Mode.
In this mode it is assumed that the satellite is a per-
fectly stable platform and any drifts in its attitude
are ignored by disabling the drift calculations using
disable_drift_calculations(). In other words, it is
assumed that the local orbital frame and the satellite
attitude frame are assumed to be perfectly aligned with
each other at every point in the orbit.

Consider the angle between the view plane and the
ray from the satellite to the ground point. At point
D in the orbit, the point at which the ground point

would be imaged, this angle would be zero. So the
algorithm attempts to move the satellite to a place in
the orbit such that the ground point is in the view-
ing plane. This task is accomplished by the routine
closein_angle_discrepancy as follows.

Assume that the satellite is flying in a straight line as
shown in Fig. 10. Let the instantaneous position of the
satellite be t = t1 as shown. At this time instant, one
can compute the angle between the ray and the view
plane in a straight-forward manner. Instead of working
with the angle discrepancy between the look direction
and the view plane, we work with its complement, viz.,
the angle between the look direction and the direction of
the motion of the satellite. We want to move the satellite
to its target position at t = tt where the angle is Θt. In
order to accomplish this, we them move the satellite a
small time step ∆t to a new position t2. At this new time
instant, we recompute the position, the velocity vector,
and the angle Θ2. Using sine law,

∆t
sin (Θ2 −Θ1)

=
χ

sinΘ1
, and (12)

δt

sin (Θt −Θ2)
=

χ

sin (180−Θt)
.

Eliminating the unknown χ, we get

δt =
sin (Θt −Θ2)

sinΘt
sinΘ1

sin (Θ2 −Θ1)
∆t. (13)

It can be shown that no matter where t2 is with respect
to t1 and tt, the above equation holds. Thus we can
bring the satellite to bear any desired look angle Θt. In
practice, when the satellite is actually moved by ∆t+δt,
the angular discrepancy becomes smaller but is not ex-
actly zero. This is because of the assumption concerning
the straight-line motion of the satellite. The above step
is repeated till the angular discrepancy is as close to zero
as is numerically meaningful.

3. Move the View Plane: Fine Pointing
Mode. In this mode, the attitude drifts measured
by on-board system are taken into account using
enable_drift_calculations(). Once again the view-
ing angle is computed iteratively and the satellite is
moved to a place in the orbit such that pt3d is in the
viewing plane. The only difference between the coarse
and fine pointing modes is that at each iterative step the
angles computed are modified by the drift in satellites at-
titude. To do this, the drift in yaw, roll and pitch angles
of the attitude frame with respect to the local orbital
frame are determined as follows.

Typically, the rate of angular change in the satellite’s
orientation is measured by the on-board systems and

Ground point

Linear
orbit

t1 t2 tt
∆t δt

χ

Θ1 Θ2 Θt

Figure 10: Angular discrepancy and satellite motion.

given as a part of the ephemeris information. From the
few select points at which these rates of change of yaw,
roll and pitch angles are given, the rate of angular drift
for each image row is determined by interpolation. From
this data, the actual drift along yaw, roll and pitch axes
is then computed via integration.

4. Computation of u and v. Once the satellite has
been brought to place where the 3-D ground point lies
in the instantaneous view plane, the travel time contains
the information about the u coordinate. Let Ppu and
Ppv denote image center.

u = Ppu+(travel time − center travel time)/dwell time
(14)

Within the instantaneous view plane, the fraction of
field of view angle, in the cross-flight direction, that
is being cut by the look direction needed to see pt3d
contains the information about the v coordinate. Let
viewing angle ratio denote this fraction. The v coordi-
nate is given by

v = 1 + 2(Ppv − 1)viewing angle ratio (15)

The above iterative procedure always starts at the scene
center. Since most of the times the computed image
coordinate lies close to the one computed previously, it
would appear that one can make the above scheme more
efficient by starting the procedure at the last position
of the satellite instead of the scene center. However, in
practice, this reduces the number of iterations by at most
one and is not a significant time saver.

6 Optimization Task

The algorithm described in the previous section gives us
a routine transform(kp, ip, dp, ap) that, for given values
of the independent camera parameters ip, maps a 3-D
point (x, y, z) to its corresponding image point (u, v). In
practice, we are given ground control points — i.e., 3-D
points on the ground whose image coordinates are know
a priori — and we want to estimate the values in ip. If a
sufficient number of ground control points are given, the
values of the independent parameters in ip can be com-
puted using the collinearity condition. This condition
states that a ray that originates from the instantaneous
projection center of the camera and passes through the
point (u, v) in the image plane, must also pass through
the point (x, y, z). Thus, for an initial value of ip, we
can affect the mapping

transform(kp, ip, dp, ap) : (xi, yi, zi)→ (ûi, v̂i)

and iteratively modify ip until the RMS re-projection
error

n∑
i=1

√
(ui − ûi)2 + (vi − v̂i)2 (16)

is minimum.

If several images of the same scene are available, all
cameras can be solved simultaneously by enforcing ad-
ditional coplanarity constraints derived from image to
image match points. Let (ui, vi) and (u′i, v

′
i) be a pair

of corresponding points in a stereo pair and let the
associated cameras be denoted by (kp, ip, dp, ap) and
(kp′, ip′, dp′, ap′). The rays emanating from (ui, vi) and
(u′i, v

′
i) must meet in space at some unknown 3-D point.

In other words, there exists a point (xi, yi, zi) such that

transform(kp, ip, dp, ap) : (xi, yi, zi)→ (ui, vi),(17)
transform(kp′, ip′, dp′, ap′) : (xi, yi, zi)→ (u′i, v

′
i).(18)

From the initial values of the camera parameters, we
can compute an initial value of (xi, yi, zi). Regarding
(xi, yi, zi) also as a parameter to be determined, we can
include the match points (ui, vi) and (u′i, v

′
i) in the ob-

jective function given in Eq. (16).

The Levenberg-Marquardt (LM) algorithm, a well
known algorithm for parameter estimation ([6]), was
used to find the optimal values of camera model param-
eters that minimize (16). In general terms, given a hy-
pothesized functional relation y = f(x) where x and y
are vectors in some Euclidean spaces Rm and Rn, and
a measured value ŷ for y, the LM algorithm computes
the vector x̂ that most nearly satisfies this functional

relation. Our implementation of the LM algorithm is
described in detail in see [4] and will not be repeated
here.

Based on the implementation of the LM algorithm in [6],
we have coded a general minimization routine. To use
this algorithm in the simplest form it is necessary only
to provide a routine to compute the function f being
minimized, a goal vector ŷ of observed or desired values
of the function and an initial estimate x0. In this case, f
corresponds to the transform routine presented earlier,
the goal vector ŷ is (ûi, v̂i) so that (16) is minimized, and
initial estimate for x0 comes from the nominal values of
the SPOT parameters.

If desired, it is possible to provide a function to com-
pute the Jacobian matrix J . If a null function is speci-
fied, then the differentiation is done numerically. Find-
ing derivatives with respect to the model variables in
the orbital equations is a non-trivial exercise. For this
reason, we did not specify a Jacobian matrix and used
numerical differentiation, which is carried out as follows.
Each independent variable xi is incremented in turn to
xi + δ, the resulting function value is computed using
the routine provided for computing f and the derivative
is computed as a ratio. The value δ is set to the maxi-
mum of |10−4∗xi| and 10−6. This choice seemingly gives
a good approximation to the derivative. In practice, we
have seen almost no disadvantage in using numerical dif-
ferentiation.

As an alternative to all the dependent variables being
equally weighted, it is possible to provide a weight ma-
trix specifying the weights of the dependent variables
y. This weight matrix may be diagonal specifying in-
dependent weights for each of the yi, or else it may be
symmetric, equal to the inverse of the covariance matrix
of the variables yi.

At the start of parameter estimation, most parameters
are initialized to their nominal or auxiliary value and
an appropriate standard deviation is specified for each.
The values of the ephemeris information and the control
points are given to put the constraint. The following
section describes the results of a typical experimental
run.

7 Experimental Results

A pair of SPOT stereo images of the Los Angeles area
were used to calibrate the corresponding cameras. A
set of 25 ground control points and 100 image to image
match points were used for calibration. The algorithm

1 2 3 4
Error in pixels

20

40

60

80

100

120

Number of points

Figure 11: Error in re-projected points.

took about 1 minute on a SPARC 10 to solve for both
cameras.

Fig. 11 shows these points in the first image. The 3-
D points projected using the computed camera are also
shown in Fig. 11 along with the given points. Because
the camera can map a 3-D point to its corresponding 2-D
point with sub-pixel accuracy, all point pairs in Fig. 11
appear as a single point.

Fig. 11 shows the error distribution of the reprojected
points. As can be seen, about 90% of the points have a
reprojection error of less than 1.0 pixel and over 95% are
with in 2 pixel error. Points with larger than two pixel er-
rors were manually confirmed to be outliers arising from
errors in the automatic matching procedures (i.e., these
point pairs were mistakenly identified as match points).
The overall RMS error with which a ground point can be
mapped to its corresponding image point it 0.73 pixels.

Parameter Actual Nominal
Semi-major axis a 7182980 7203322 m
Eccentricity e 0.00103919 0.001327417
Inclination i 98.77000 98.73727 deg
Perigee angle w 90.00000 71.39493 deg
Longitude of DN -131.31380 -131.2472 deg
Look angle Ψx1 0.54666602 0.8728483 deg
Look angle Ψxn 0.56695408 0.8895469 deg
Look angle Ψy1 0.22989154 0.2299154 deg
Look angle Ψyn 27.1112440 27.11084 deg
Time perigee to ctr 1238.47153 1237.909 sec
Dwell time 0.00150400 0.001503339 sec

Table 1: Estimated vs. nominal parameter values.

Table 1 shows the estimated independent camera param-
eters for the first camera along with their nominal values.
The parameter values for the second camera are similar
and skipped for brevity. As can be seen, a considerable
variation exists between the actual and the nominal val-
ues. If the nominal values for independent parameters
were to be used for 3-D to 2-D mapping, we would get
an RMS error of 48.92 pixels. On the ground, this is
equivalent to having a position discrepancy of about 489
meters.

References

[1] Rajiv Gupta. Simple camera models for orbiting
pushbroom sensors. In The proceedings of 1995 Mo-
bile Mapping Symp, The Ohio State Universiy, May
1995.

[2] SPOT Image Corporation, 1897, Preston White
Dr., Reston, VA 22091-4368. SPOT User’s Hand-
book, 1990.

[3] Ashley P. Tam. Terrain elevation extraction from
digital SPOT satellite imagery. PhD thesis, Mas-
ters Thesis, Dept. of Surveying Engineering, Cal-
gary, Alberta, July 1990.

[4] Richard I. Hartley. Euclidean reconstruction
from uncalibrated views. In Proc. of the Second
Europe-US Workshop on Invariance, Ponta Del-
gada, Azores, pages 187–202, October 1993.

[5] C. C. Slama, editor. Manual of Photogramme-
try. American Society of Photogrammetry, Falls
Church, VA, fourth edition, 1980.

[6] William H. Press, Brian P. Flannery, Saul A.
Teukolsky, and William T. Vetterling. Numeri-
cal Recipes in C: The Art of Scientific Computing.
Cambridge University Press, 1988.

[7] R. Hartley, R. Gupta, and T. Chang. Stereo from
uncalibrated cameras. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition, pages
761–764, 1992.

[8] Richard I. Hartley and Rajiv Gupta. Linear push-
broom cameras. In Computer Vision - ECCV ’94,
Volume I, LNCS-Series Vol. 800, Springer-Verlag,
pages 555–566, May 1994.

[9] R. Gupta and R. Hartley. STEREOSYS 3.0 user’s
guide. Report, GE Corporate R&D, June 1992.

[10] R. Gupta, R. Hartley, and J.L. Mundy. Experimen-
tal verification of the accuracy of projective, per-
spective, and linear pushbroom cameras. Internal
report, iu group, GE Corporate R&D, June 1993.

[11] R. Gupta and R. Hartley. Camera estimation for
orbiting pushbrooms. In The Proc. of Second Asian
Conf. on Computer Vision, volume 3, Singapore,
December 1995.

[12] M. J. Hannah. Bootstrap stereo. In Proc. Image
Understanding Workshop, College Park, MD, pages
210–208, April 1980.

[13] M. J. Hannah. A description of SRI’s baseline stereo
system. Technical Report Tech. Note 365, SRI In-
ternational Artificial Intelligence Center, Oct. 1985.

[14] R.N. Colwell, editor. Manual of Remote Sens-
ing. American Society of Photogrammetry, Falls
Church, VA, second edition, 1983.

[15] Rajiv Gupta and Richard I. Hartley. Linear pushb-
room cameras. September 1997.

