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Abstract
A program is described for carrying out least-

squares camera modelling and scene reconstruction
from a set of image and scene measurements of ge-
ometric features. Because of the object-oriented na-
ture of the program, it is easily extendible to include
very general types of camera, image feature or mea-
surement. A Levenberg-Marquardt parameter esti-
mation algorithm is used to optimize the choice of
camera and feature parameters to fit the measure-
ments. A structured sparse technique is used to ob-
tain speediest performance on large problems.

1. Introduction
This paper describes a program called Carmen for

carrying out camera modelling and scene reconstruc-
tion using an iterative least-squares method. Car-
men has gone through several different versions over
several years. This paper describes the latest ver-
sion. A basic requirement of Carmen is to be capa-
ble of handling many different sorts of camera mod-
els simultaneously. These should include perspec-
tive (pinhole) cameras, linear pushbroom cameras
([6]), orbiting pushbroom cameras, panoramic cam-
eras ([4]), but it should be possible to add any other
camera model with minimum of effort, and without
recompilation of the previously existing code. In ad-
dition, recent work by several authors ([3, 14]) has
dealt with reconstruction from points as well as lines.
Furthermore, recent work of Quan raised the possi-
bility of using conics in the reconstruction process.
The program therefore had to be able to deal with
these object types while at the same time maintain-
ing the possibility of extending to images containing
other geometric features.
Many special methods have been developed for

reconstruction and camera modelling from several
views. A lot of effort has been expended on find-
ing efficient linear or non-iterative algorithms for re-
construction ([2, 3, 11, 9]). However, in most cases
ultimate precision is obtained by following up the lin-
ear methods with a full-scale least-squares minimiza-

tion technique, based on the Levenberg-Marquardt
or some other least squares algorithm. The object of
Carmen was to provide a framework in which least-
squares minimization can be carried out on a wide
variety of cameras viewing a wide variety of different
geometric features.

2. Program Structure

Overview. The overall purpose of Carmen is to
carry out an estimate of camera (or sensor) parame-
ters and 3D spatial feature parameters by analyzing
measurements taken on images of those spatial ob-
jects. Measurements of the 3D spatial objects and
the cameras themselves are also taken into account.
Parameters of cameras typically include the loca-

tion and orientation of the camera (external parame-
ters) as well as camera calibration information (inter-
nal parameters), though different types of sensor may
be parametrized differently. In some instances, some
of the parameters of the cameras may be known. For
instance, if the camera is calibrated, then the internal
parameters may be known, but the external param-
eters may not be. Alternatively, it may be assumed
that some parameters of the cameras are shared by
several or all the cameras. For instance, a common
assumption is that all the cameras have the same
(unknown) internal parameters.
For 3D spatial features, examples of parameters

are the location of points, Grassman or Plucker co-
ordinates of lines, or position and radius of spheres.
As with camera parameters, some of the parameters
of the 3D spatial features may be known within spec-
ified tolerances.
Measurements are made in the images and used

as a basis for estimating the unknown parameters
of the cameras and 3D features. Measurements in
the images may be of quite a general nature, such as
measurements of coordinates of the image of a point,
identification of a point that lies on the image of a
line, or the outline of the image of a sphere. More
complex measurements are possible, and allowed for



in the program design. Measurements may also be
made directly of the 3D spatial features or the cam-
eras.
Measurements are made with a specified tolerance

or error distribution, and in general, the measure-
ments will not coincide exactly with any realizable
configuration of cameras and spatial features. Each
given value of the variable parameters of the cam-
eras and spatial objects leads to a corresponding pre-
dicted configuration of image features in each of the
images. Comparing each predicted 2D feature with
the specified measurements of that feature leads to
an error (in general a vector). The same is true of
measurements of cameras and spatial objects. The
goal of the program is to find that set of parameters
for the cameras and spatial features that minimizes
the total squared error of all the measurements. The
exact formula is given below in (1). Thus, the prob-
lem is formulated as a standard parameter minimiza-
tion problem, and is carried out using the Levenberg-
Marquardt method ([10]).

Sparse Techniques. As has been observed previ-
ously ([12, 5]) the special nature of the camera mod-
elling problem allows sparse matrix techniques to be
used with enormous savings running time and stor-
age. The general model is as follows. There exist a
number of geometric features in space, denoted xi.
These are viewed by a set of cameras, each camera
projecting a feature xi into an image. The j-th cam-
era is represented by a mapping P j which takes a 3D
feature to a 2D feature uji = P jxi in the j-th image.
The special nature of the camera estimation problem
is that images of individual points are independent.
That is, the parameters of the feature xi do not have
any effect on uji′ for any i

′ not equal to i. It is this
sparse nature of the data that differentiates this par-
ticular problem from a general least-squares parame-
ter optimization problem, and makes the application
of structured sparse techniques effective. How this is
done is described in detail in [12, 5].

Extensibility. An object-oriented structure of
Carmen was chosen in order to allow easy exten-
sibility of its capabilities. The language used was
C++. It is clearly not possible to write a program
that will handle all types of cameras, geometric fea-
tures, or measurements of those features. However, a
user may easily extend the program to add new cam-
era types, spatial objects, or new ways of measuring
these objects just by adding new subclasses derived
from generic object classes.
There are several important classes of object :

geometric features; cameras or sensors ; mappings
from 3D to 2D geometric features; measurements and
measurement mappings. These object types will now
be considered one by one.

Geometric features. The geometric features are
objects such as points, lines or conics in the image, or
in space. More complicated geometric features may
be added at will by defining a new derived class. Ex-
amples are spheres in space, parametrized curves, or
solids of revolution. Geometric features are math-
ematically defined quantities, represented by a set
of parameters. For instance, points are represented
either as homogeneous or non-homogeneous vectors.
Lines are represented by pairs of points, or Plucker
coordinates. Plane conics are represented by sym-
metric matrices. Each different type of feature may
be described by a different number of parameters.

Camera Models. Sensors are characterized by
a set of parameters. For instance, the common pin-
hole camera model is defined by a specification of its
external parameters (location and orientation) and
internal parameters (calibration). More exact mod-
els for perspective cameras may include parameters
for radial distortion, or other effects. Other camera
models may similarly be described by sets of param-
eters. For instance, the linear pushbroom model ([6])
is described by a set of 11 parameters.

Camera Mappings. A camera mapping is a
specification of how a given camera model maps ge-
ometric features in space to geometric features in an
image. For instance for the pinhole camera model
and for space points x represented by homogeneous
vectors the corresponding image point u is given in
homogeneous coordinates by the formula u = Px,
where P is a 3 × 4 matrix which may be written
in terms of the camera parameters. It is neces-
sary to provide a camera mapping for each cam-
era/geometric feature pair of interest. New map-
pings are created as a subclass derived from a generic
camera mapping class.

Measurements. Measurements may be taken of
any 3D or 2D geometric feature, or of any camera.
The measurements may be directly of the parameters
of the object, or other more general measurements.
Measurements are rarely absolutely precise, so pro-
vision is given for specifying a standard deviation for
such measurements. As an example, if the 3D or 2D
features are points in space and the image, then it is
possible to measure the coordinates of these points



directly. Similarly, it may be possible to measure the
focal length or principal point of a pinhole camera.
In these cases, the parameters are measured directly.
In other cases, measurements are not made di-

rectly on the parameters. For instance a 2D line
will normally be represented as a homogeneous 3-
vector, the projective coordinates of the line. In-
stead of measuring the vector coordinates directly,
typically one measures the location of a line in an
image by identifying a number of points on the line.
Alternatively, a set of directed edgels may be pro-
vided by a edge extractor program. A similar situa-
tion is true with conics in an image. A conic may be
parametrized by the entries of the symmetric 3 × 3
matrix C that determines the conic. One does not
measure entries of the symmetric matrix directly in
the image, however. Instead, a set of points supposed
to lie on the conic may be identified.
In order to handle quite general forms of measure-

ment, a measurement class is defined, along with
a measurement mapping class. The measurement
mapping compares a measurement with a “measur-
able entity” (predicted feature or camera model) and
returns an error vector. The goal of the parameter
minimization procedure is to minimize the sum of
squares of the entries of this error vector, summed
over all measurements.
The general measurement setup is shown in Fig 1.

As an example, consider the case of a line in the
image. Such a line is represented by a vector λ =
(λ, µ, ν)�, which denotes the line in the image with
equation λu + µv + ν = 0, where u and v are image
coordinates. A measurement of this line may consist
of a point u = (u, v)� intended to lie on the line.
An appropriate error vector (in this case a 1-vector)
returned by the measurement mapping is the per-
pendicular distance of the point to the line, namely

d(u,λ) = (λu+ µv + ν)/
√
λ2 + µ2 .

Measurement of point location. As another
example consider the measurement of the location of
a point in an image. In many cases, the position of
the point may be measured directly. The error may
be supposed to have circularly symmetric (isotropic)
gaussian probability distribution, with variance, v.
In this case, the measurement û and measurable fea-
ture u are both points, and the measurement map-
ping returns a vector equal to the weighted difference
between these two points, v−1/2.(û− u). More gen-
erally the location of the point in the image is not
measured with an isotropic error distribution. For
instance, if the point lies on an edge its position may
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Figure 1: Measurement of a Geometric feature of
Camera

be measured with greater precision in the direction
of the edge normal than in the direction along the
edge. In this case, one might assume a gaussian er-
ror distribution with covariance matrix C. One may
write C = U�DU , whereD is a diagonal matrix with
entries representing the variance of the distribution
in two principal axial directions, and U is a rotation
matrix specifying the orientation of the axes of the
distribution. In this case, the measurement mapping
returns the vector D−1/2U(û − u). In the limiting
case, the location of the point in the along-edge di-
rection may be completely unknown, having infinite
variance. This case is handled by letting D−1/2 have
a zero entry in the corresponding axial direction.
To add new ways of measuring geometric features,

one defines a new measurement class, and the ap-
propriate measurement mapping as a subclass of the
generic mapping class.

Primaries and Secondaries. Geometric fea-
tures are divided into two types, represented by
classes called Primary and Secondary. A primary
geometric feature is one for which the parameters
are independently varying values. Generally, this is
synonymous with the concept of a 3D or object-space
geometric feature. Such a primary feature is mapped
by a camera into an image. The resulting geometric
feature is an object of class Secondary. The param-
eters of such a secondary feature are not indepen-
dent variables, but rather depend on the parameters
of the camera model and the primary feature from
which it is derived. The structure of the relationships
between the different types of classes of objects is il-
lustrated in Fig 2.

2D mappings. It should be noted that although
the discussion so far has been in terms of camera
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Figure 2: Class Structure. Measurements of the
camera model and primary feature are also possible,
though not shown here.

mappings from 3D object space to 2D image space,
this is in no way enforced by the structure of Car-
men. As an example, consider the problem of pro-
jective alignment of two 3D or 2D data sets. Con-
sider a set of points A and another set A′ which dif-
fer by an unknown projective transformation. The
point-to-point correspondence between the two sets
is assumed known. Thus, there exists a projective
transformation that takes points in A′ as nearly as
possible to corresponding points in A. The task is
to find the unknown projective transformation. This
problem may be handled by Carmen. The set A′ is
the set of primaries. The set A is the set of mea-
surements, and the unknown projective transforma-
tion is the camera mapping, parametrized by the un-
known entries of the matrix representing the projec-
tive transformation. The measurement mapping re-
turns the difference between the measured points in
A and the points in A′ transformed by the projec-
tive mapping. It is worth noting that there exists a
linear solution to this problem essentially similar to
the Direct Linear Transformation camera resection-
ing method ([13]) but it does not minimize geometric
distances. This method may be used to initialize the
iterative method used in Carmen.

3. Minimization
The quantity that we wish to minimize may be

expressed as follows Let {xi} be the set of primary

features and {P j} be the set of cameras. For sim-
plicity, we assume (in this discussion only) that each
primary is imaged by each camera. For each pri-
mary/camera pair, a suitable camera mapping exists.
Let uji be the secondary feature obtained by applying
the appropriate mapping for camera P j to primary
xi. Suppose that there are Nij measurements of the
feature uji , (The value of Nij will be zero if feature
xi is not seen by camera P j .) Let δk(u

j
i ) be the er-

ror vector corresponding to the k-th measurement of
secondary uji . In addition, suppose that there are
Lj measurements of the camera model P j and Mi

measurements of the primary xi and let δk(P j) and
δk(xi) be the corresponding k-th error vectors. One
seeks to minimize the value of

∑

j

Lj∑

k=1

||δk(P j)||2 +
∑

i

Mi∑

k=1

||δk(xi)||2

+
∑

i

∑

j

Nij∑

k=1

||δk(uji )||2 (1)

where ||·|| represents the Euclidean norm of a vector.
The minimum is sought by varying the parameters
of primary features and cameras.

4. Sparse Techniques

Let a set of primary features {xi} be visible from
several cameras, and let uji be the error vector re-
lated to a measurement of the image of xi as seen
by the camera with parameters P j . Given the error
vectors uij , Carmen attempts to retrieve the param-
eters of the cameras and the geometric features, xi.
This is done using a Levenberg-Marquardt (LM) al-
gorithm. A key step in the LM algorithm is to com-
pute the matrix of partial derivatives J of the error
vectors (dependent parameters) with respect to the
independent parameters. In the present case, the in-
dependent parameters fall into two classes, namely
the camera parameters and the feature parameters
xi. Altering the parameters of xi will cause a change
in the coordinates of only those error vectors uji with
the same index i as the primary feature. Similarly,
altering the parameters of a camera P j will lead to a
change in only those uji with the same index j as the
camera. Consequently, the matrix J has a particular
sparse structure as shown in the following diagram.
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The diagram shows the case for three camera and
four geometric features, but the general scheme is
easily extended to any number of features and cam-
eras. In the cases where some features are not visible
in some views, then the corresponding rows are miss-
ing from the matrix. This makes very little difference
to the following discussion.
The iterative step in a Newton parameter estima-

tion algorithm is to solve the over-determined set
of equations J∆ = ε, where J is the Jacobian, ∆
is a vector of increments to be applied to the vari-
able parameters, and ε is the residual error vector.
The equation is to be solved in the least-squared
sense. Using the method of normal equations ([10])
to solve these equations involves finding the solu-
tion of the square set of equations J�J∆ = J�ε.
In the Levenberg-Marquardt algorithm the normal
equation matrix J�J is augmented by incrementing
the diagonal elements before solution. Otherwise,
the principal is the same.
Because of the structure of the matrix J , the nor-

mal equations (augmented or not) have a special
block structure as follows

U0

U1

U2

V0

V1

V2

V3

W

WT

∆(P0)

∆(P1)

∆(P2)

∆(x0)

∆(x1)

∆(x2)

∆(x3)

ε(P0)

ε(P1)

ε(P2)

ε(x0)

ε(x1)

ε(x2)

ε(x3)

The important point about the matrix on the left is
that the bottom right-hand block has a sparse struc-
ture, consisting of diagonal blocks Vj . One may use
this fact to eliminate the top right hand block, and
then solve for the ∆(P j) all at once. Subsequently,
the ∆(xi) may be computed one feature at a time.
Details of this procedure are omitted, but are given

Figure 3: Linear-pushbroom image with spherical
marker balls

in [5]. Using this sparse technique gives an enor-
mous saving in computation time compared with a
straight-forward approach.
In the above description, it was assumed that there

was only one measurement of each secondary feature.
A brief check reveals that this is not a necessary re-
striction, since the special form of the normal equa-
tions does not rely on this. It is important in this
method that parameters of each primary geometric
feature should be separate, and that there should be
no explicit relations between these parameters. This
is necessary to preserve the block-diagonal structure
of the lower right-hand block of the normal equa-
tion matrix. It is not, however essential that the
parameters of the cameras should be independent,
since the upper left block does not need to be strictly
block-diagonal. This observation allows us to share
parameters between different cameras. For instance
one may specify that all cameras have the same in-
ternal parameters. This sort of parameter sharing is
allowed in Carmen.

5. Example
As an example of the use of Carmen consider Fig

3.
This is one of a sequence of X-ray images of a tur-

bine blade taken from many angles. The purpose is
to reconstruct features of the blade. The application
is described in greated details in the papers [8, 7, 1].
The type of sensor used is of the linear-pushbroom
type ([6]) which does a central projection in one axial
direction and orthographic projection in the other.
In order to estimate the positions of the features

(in this case, drill-holes) with maximum precision,
it is necessary to estimate very accurately the ori-
entation of the sensor for each view. To this end, a
series of calibration markers are included in a fixture
attached to the part. These calibration markers are
spheres, and are visible as medium-grey circles (more
precisely ellipses) in the image. The approximate lo-
cation of these markers is determined through a pri-
ori knowledge of the approximate sensor orientation
for each view. Carmen is then used to determine the
precise sensor locations.
In order to extend the basic capability of Carmen

for this application, it was necessary to write specific
derived classes as follows.

1. A parametrization of the linear pushbroom
model. This had 11 parameters.



Figure 4: Drill holes in turbine blade.

2. A camera-mapping specifying how the marker
spheres are mapped into the image by a linear-
pushbroom mapping.

3. A measurement mapping for comparing the pre-
dicted locations of the imaged marker features
with the measured feature position.

Each of these tasks is a relatively minor program-
ming task. Once this was done, least-squares esti-
mation of all sensor locations could be carried out
iteratively. After that, the positions of the features of
interest (drill holes) could be accurately determined.
Figure 4 shows the detected drill-holes in one of the
images.

6. Conclusion
The camera modelling and feature reconstruction

program, Carmen, described here gives the capa-
bility of minimizing squared sum error using a no-
tion of true geometric distance, or other error model.
It allows simultaneous use of several geometric fea-
ture types and camera models, and is arbitrarily ex-
tendible to new camera models or geometric features.
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