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Abstract

This paper describes how the fundamental matrix, F , the trifocal tensor T jki and the
quadrilinear relationship existing between corresponding points in four uncalibrated pro-
jective images may be derived in a common framework involving matrix determinants.
Part of the paper contains a derivation of previous results, and is intended as a summary
and reformulation. The derivations are based on the work of Faugeras and Mourrain [4]
and Triggs [23, 22].

Some new results are included on the independence of the equations used to compute
the trifocal and quadrilinear relationships, and methods of choosing those equations in a
robust manner.

1 Introduction

The Fundamental Matrix, introduced by Longuet-Higgins ([15]) has proven to be a basic
tool in the analysis of pairs of images. In particular, it has been been particularly
fruitful in the analysis of uncalibrated image pairs since being applied to this problem in
[3, 7, 6]. In a similar way, the trifocal (or trinocular) tensor has its roots ([20, 19, 24]) in
the analysis of calibrated images, but was later rediscovered [8, 11, 17]) and applied to
uncalibrated images. The discovery of a similar quadrilinear relationship followed, and
was investigated in ([23, 22, 4, 25, 14, 13]). All these multilinear relationships were put
in a common framework by the work of Triggs ([23]) and Faugeras and Mourrain [4].

This paper provides a summary of the derivation of the multilinear relationships, and
their expression in terms of the multidimensional tensors, namely the fundamental matrix
Fij , the trifocal tensor T

qr
i and the quadrifocal tensor Q

pqrs. Specific formulae are given
for each of these tensors in terms of the camera matrices. These tensors relate the
coordinates of lines and points in the separate images, as summarized in Tables 1 and
2 of this paper. This gives a more complete set of relationships than has been written
down previously.

Finally, the independence of the set of equations derived from point and line correspon-
dences is considered. This analysis leads to a recommended method for formulating the
equations derived from a correspondence in order to avoid singular cases and achieve
greatest numerical robustness. In the four-view case, each point correspondence gives
16 independent equations in the 81 entries of the quadrifocal tensor. This suggests that
the quadrifocal tensor ought to be computable from just five point correspondences, but



other considerations mean thas this should be impossible. This conundrum is resolved
by observing that whereas the set of equations derived from one correspondence has the
expected full rank (16 independent equations), the equations derived from different point
correspondences are not independent.

2 Bilinear Relations

We consider first the relationship that holds between the coordinates of a point seen
in two separate views. Thus, let u ↔ u′ be a pair of corresponding points as seen in
two separate images. It will be convenient, for clarity of notation, to represent the two
camera matrices by A and B, instead of the usual notation, P and P ′. Both the points
u and u′ are images of the same point x in space. For convenience, we write

u =


 u

1

u2

u3


 ; u′ =


 u

′1

u′2

u′3


 ; x =



x1

x2

x3

x4


 (1)

The projection from space to image can now be expressed as follows.

k


 u

1

u2

u3


 = Ax

k′


 u

′1

u′2

u′3


 = Bx (2)

where k and k′ are two undetermined constants.

These equations may be written down in one matrix equation. In order to do this, we
denote the i-th row of the matrix A by ai· , and similarly the i-th row of matrix B by b

i
· .

The projection due to the first camera may then be written as

 a

1
· u1

a2
· u2

a3
· u3


( x

−k

)
= 0 . (3)

This expression may be compared with (2) which is is just another way of writing the
same thing.

The projections of the point x into both views may be expressed as a single matrix
equation by writing the equations derived from one view and derived from the other
view in the same equation. This gives a set of equations




a1
· u1

a2
· u2

a3
· u3

b1
· u′1

b2
· u′2

b3
· u′3





 x
−k
−k′


 = 0 (4)
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Now, this is a 6 × 6 set of equations which by hypothesis has a non-zero solution, the
vector (x,−k,−k′)�. It follows that the matrix of coefficients in (4) must have zero
determinant. This condition leads to a bilinear relationship between the entries of the
vectors u and u′ expressed by the fundamental matrix F . We will now look specifically
at the form of this relationship.

Consider the matrix appearing in (4). Denote it by X . The determinant of X may be
written as an expression in terms of the quantities ui and u′i. Notice that the entries ui

and u′i appear in only two columns of X . This implies that the determinant of X may
be expressed as a quadratic expression in terms of the ui and u′i. In fact, since all the
entries ui appear in the same column, there can be no terms of the form uiuj or u′iu′j.
Briefly, as an expression in terms of the ui and u′i, the determinant of X is a bilinear
expression. The fact that the determinant is zero may be written as an equation

(u′1, u′2, u′3)F (u1, u2, u3)� = uiu′jFji = 0 (5)

where F is a 3× 3 matrix, the well-known fundamental matrix1.

We may compute a specific formula for the entries of the matrix F as follows. The entry
Fij of F is the coefficient of the term u′iuj in the expansion of the determinant of X .
In order to find this coefficient, we must eliminate the rows and columns of the matrix
containing u′i and uj , take the determinant of the resulting matrix and multiply by ±1
as appropriate. For instance, the coefficient of u′1u1 is obtained by eliminating two rows
and the last two columns of the matrix X as shown in (4). The remaining matrix is



a2
·
a3
·
b2
·
b3
·




and the coefficient of u′1u1 is equal to the determinant of this 4 × 4 matrix. In general,
we may write

Fji = (−1)i+j det
[
∼ ai·
∼ bj·

]
. (6)

In this expression, the notation ∼ ai· has been used to denote the matrix obtained from
A by omitting the row ai· . Thus the symbol ∼ may be read as omit, and ∼ ai· represents
two rows of A. The determinant appearing on the right side of (6) is therefore a 4 × 4
determinant. This expression for the fundamental matrix was pointed out to me by Rajiv
Gupta, and is also noted by Carlsson ([1]).

A different way of writing the expression for Fji makes use of the tensor εrst which is
defined to be 0 unless all of r, s and t are different, and is ±1 depending on whether the
indices (r, s, t) consitute an even or odd permutation of (1, 2, 3). The tensor εijk (or its
contravariant counterpart, εijk) is connected with the cross product of two vectors. If a
and b are two vectors, and c = a × b is their cross product, then the following formula
may easily be verified.

ci = (a× b)i = εijkajbk .
1Here and elsewhere we use the tensor summation convention that an index repeated in upper (con-

travariant) and lower (covariant) positions implies summation over the range of indices. It may be more
sensible to define Fij by the formula uiu′jFij = 0, but the formula (5) is conventional.
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Using this notation, one may derive the following formula.

Fji =
(
1
4

)
εipqεjrs det



ap·
aq·
br·
bs·


 . (7)

To see this, note that Fji is defined in (7) in terms of a sum of determinants over all
values of p, q, r and s. However for a given value of i, the tensor εipq is zero unless p and
q are different from i and from each other. This leaves only two remaining choices of p
and q ( for example if i = 1, then we may choose p = 2, q = 3 or p = 3, q = 2). Similarly,
there are only two different choices of r and s giving rise to non-zero terms. Thus the
sum consists of 4 non-zero terms only. Furthermore, the determinants appearing in these
four terms consists of the same four rows of the matrices A and B and hence have equal
values, except for sign. However, the value of εipqεjrs is such that the four terms all have
the same sign and are equal. Thus, the sum (7) is equal to the single term appearing in
(6).

A similar formula involving the fundamental matrix is

Fjiε
ipqεjrs = det



ap·
aq·
br·
bs·


 . (8)

This formula may be derived in a straight-forward manner from (7).

2.1 Invariants of Lines

In this brief section it will be shown how the fundamental matrix may be used to define
invariants of spatial objects (in this particular case, lines) in terms of the images of those
objects in a pair of images. This method was discovered by Carlsson ([1]). Given two
lines λ and µ in one image, and the corresponding lines λ′ and µ′ in the other image.
From (8) we may see that

(λ′ × µ′)�F (λ× µ) = Fji(λpµqεipq)(λ′rµ
′
sε
jrs)

= λpµqλ
′
rµ
′
s det



ap·
aq·
br·
bs·




= det



λpa

p
·

µqa
q
·

λ′rb
r
·

µ′sb
s
·




= det
[
A�λ,A�µ,B�λ′, B�µ′

]
(9)

The cross-products on the left side of this sequence of equations represent the point of
intersection of the lines in the two images. A term such as A�λ on the right represents a
plane in space that projects via camera matrix A onto the line λ. We now consider four
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line correspondences in two views. For i = 1, . . . , 4 let λ(i) ↔ λ′(i) be the i-th line corre-
spondence, where the upper index indicating the line number is put in parentheses to em-
phasize that it is not a tensorial index. We denote det

[
A�λ(i), A�λ(j), B�λ′(i), B�λ′(j)

]
by Iij . It was shown in [9] that the homogeneous vector

I = (I12I34, I13I24, I14I23) (10)

is a complete projective invariant of the four lines in space corresponding to the matched
lines in the images. According to (9), we may write Iij = (λ′(i) × λ′(j))�F (λ(i) × λ(j))
Substituting this formula into (10) yields a neat formula due to Carlsson ([1]) for the
projective invariants of four lines in space, in terms of their projections in two views.

3 Trilinear relations

The basic idea behind the derivation of the fundamental matrix can be used to derive
relationships between the coordinates of points seen in three views. This analysis re-
sults in the definition of a triply-indexed tensor, known as the trifocal tensor, with one
covariant and two contravariant indices. Unlike the Fundamental Matrix, this trifocal
tensor relates both lines and points in the three images. We begin by describing the way
matching points are related by the trifocal tensor.

3.1 Point relations

Consider a point correspondence across three views : u ↔ u′ ↔ u′′. Let the third
camera matrix be C and let ci· be its i-th row. Analogous to (4) we can write an
equation describing the projection of a point x into the three images.




a1
· u1

a2
· u2

a3
· u3

b1
· u′1

b2
· u′2

b3
· u′3

c1
· u′′1

c2
· u′′2

c3
· u′′3







x
−k
−k′
−k′′


 = 0 . (11)

This matrix, which as before we will callX , has 9 rows and 7 columns. From the existence
of a solution to this set of equations, we deduce that its rank must be at most 6. Hence
any 7 × 7 minor has zero determinant. This fact gives rise to the trilinear relationships
that hold between the coordinates of the points u, u′ and u′′.

There are essentially two different types of 7× 7 minors of X . In choosing 7 rows of X ,
we may choose either

1. Three rows from each of two camera matrices and one row from the third, or

2. Three rows from one camera matrix and two rows from each of the two others.
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Let us consider the first type. A typical such 7× 7 minor of X is of the form



a1
· u1

a2
· u2

a3
· u3

b1
· u′1

b2
· u′2

b3
· u′3

ci· u′′i




. (12)

Note that this matrix contains only one entry in the last column, namely u′′i. Expanding
the determinant by cofactors down this last column reveals that the determinant is equal
to

u′′i det




a1
· u1

a2
· u2

a3
· u3

b1
· u′1

b2
· u′2

b3
· u′3



.

Apart from the factor u′′i, this just leads to the bilinear relationship expressed by the
fundamental matrix, as discussed in section 2.

The other sort of 7× 7 minor is of more interest. An example of such a determinant is
of the form

det




a1
· u1

a2
· u2

a3
· u3

bj· u′j

bl· u′l

ck· u′′k

cm· u′′m




. (13)

By the same sort of argument as with the bilinear relations one sees that this leads to a
trilinear relation of the form detX = f(u,u′,u′′) = 0. By expanding this determinant
down the column containing ui, one can find a specific formula for detX , namely

detX = ±1
2
uiu′ju′′kεilmεjqxεkry det



al·
am·
bq·
cr·


 = 0xy (14)

where x and y are free indices corresponding to the rows omitted from the matrices B
and C to produce (13). We introduce the tensor

T qri =
1
2
εilm det



al·
am·
bq·
cr·


 (15)
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The trilinear relationship (14) may then be written

uiu′ju′′kεjqxεkryT
qr
i = 0xy . (16)

The tensor T qri is the trifocal tensor, and (16) is Shashua’s trilinear relation. The indices
x and y are free indices, and each choice of x and y leads to a different trilinear relation.

Just as in the case of the fundamental matrix, one may write the formula for the tensor
T qri in a slighly different way :

T qri = (−1)i+1 det


 ∼ a

i
·
bq·
cr·


 . (17)

As in section 2, the expression ∼ ai means the matrix A with row i omitted. Note that
we omit row i from the first camera matrix, but include rows q and r from the other two
camera matrices.

In the often-considered case where the first camera matrix A has the canonical form
[I | 0], the expression (17) for the trifocal tensor may be written simply ([10, 18]) :

T qri = b
q
i c
r
4 − b

q
4c
r
i . (18)

Note that there are in fact 27 possible trilinear relations that may be formed in this way
(refer to (13)). Specifically, note that each relation arises from taking all three rows from
one camera matrix along with two rows from each of the other two matrices. This gives
the following computation.

• 3 ways to choose the first camera matrix from which to take all three rows.

• 3 ways to choose the row to omit from the second camera matrix.

• 3 ways to choose the row to omit from the third camera matrix.

This gives a total of 27 trilinear relations. However, among the 9 ways of choosing two
rows from the second and third camera matrices, only 4 are linearly independent. This
means that there are a total of 12 linearly independent trilinear relations.

It is important to distinguish between the number of trilinear relations, however, and
the number of different trifocal tensors. As is shown by (16), several different trilinear
relations may be expressed in terms of just one trifocal tensor. In (16) each distinct
choice of the free indices x and y gives rise to a different trilinear relation, all of which are
expressible in terms of the same trifocal tensor T qri . On the other hand, in the definition
of the trifocal tensor given in (15), the camera matrix A is treated differently from the
other two, in that A contributes two rows (after omitting row i) to the determinant
defining any given entry of T qri , whereas the other two camera matrices contribute just
one row. This means that there are in fact three different trifocal tensors corresponding
to the choice of which of the three camera matrices contributes two rows.

3.2 Line relations

A line in an image is represented by a covariant vector λi, and the condition for a point
u to lie on the line is that λiui = 0. Let xj represent a point in space, and aij represent
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a camera matrix. The 3D point xj is mapped to the image point ui = aijx
j . It follows

that the condition for the point xj to project to a point on the line λi is that λiaijx
j = 0.

Another way of looking at this is that λiaij represents a plane consisting of all points
that project onto the line λi. Once more, the condition for the point xj to line on this
plane is that λiaijx

j = 0.

Consider the situation where a point xj maps to a point ui in one image and to some
point on lines λ′q and λ

′′
r in two other images. This may be expressed by equations

ui = kaijx
j

λ′qb
q
jx
j = 0

λ′′r c
r
jx
j = 0

This may be written as a single matrix equation of the form



a1
· u1

a2
· u2

a3
· u3

λ′qb
q
· 0

λ′′rc
r
· 0




(
x
−k

)
= 0 . (19)

Since this set of equations has a solution, one deduces that detX = 0, where X is the
matrix on the left of the equation. Expanding this determinant down the last column
gives

0 = detX =
1
2
uiεilm det




al·
am·
λ′qb

q
·

λ′′rc
r
·




=
1
2
uiλ′qλ

′′
r εilm det



al·
am·
bq·
cr·




= uiλ′qλ
′′
rT

qr
i (20)

This shows the connection of the trifocal tensor with sets of lines. The two lines λ′q and
λ′′r back project to planes meeting in a line in space. The image of this line in the first
image is a line, which may be represented by λi. For any point ui on that line the relation
(20) holds. It follows that λ′qλ′′rT

qr
i is the representation of the line λi. Thus, we see that

for three corresponding lines in the three images:

λp ≈ λ′qλ′′rT qrp (21)

The symbol ≈ means that the two sides are equal up to a scale factor. Since the two
sides of the relation (21) are vectors, this may be interpreted as meaning that the vector
product of the two sides vanishes. Expressing this vector product using the tensor εijk,
we arrive at an equation

λpλ
′
qλ
′′
r ε
ipwT qri = 0

w . (22)
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In an analogous manner to the derivation of (16) and (20) one may derive a relationship
between corresponding points in two images and a line in a third image. In particular, if
a point xj in space maps to points ui and u′i in the first two images, and to some point
on a line λ′′r in the third image, then one may derive a relation

uiu′jλ′′r εjqxT
qr
i = 0x . (23)

In this relation, the index x is free, and there is one such relation for each choice of
x = 1, . . . , 3, of which two are linearly independent.

We can summarize the results of this section in the following table, in which the final
column denotes the number of linearly independent equations.

Correspondence Relation number of equations
three points uiu′ju′′kεjqxεkryT

qr
i = 0xy 4

two points, one line uiu′jλ′′r εjqxT
qr
i = 0x 2

one point, two lines uiλ′qλ
′′
rT

qr
i = 0 1

three lines λpλ
′
qλ
′′
r ε
piwT qri = 0

w 2

Table 1. Trilinear Relations

Note how the different equation sets are related to each other. For instance, the second
line of the table is derived from the first by replacing u′′kεkry by the line λ′′r and deleting
the free index y.

3.3 Point relation as a special case of Line relations

It will now be shown that the trilinear relation (16) is in fact nothing but a special case
of the trilinear relation (20) for lines. In the trilinear relation uiu′ju′′kεjqxεkryT

qr
i = 0xy

for points, we may write λ′qx = u
′jεjqx and λ′′ry = u

′′kεkry. The trilinear relation then
becomes

uiλ′qxλ
′′
ryT

qr
i = 0xy (24)

which is beginning to looking much like the trilinear relation (20) for lines. Observe as
before that the indices x and y are free variables in this expression. We will now show
that for any choice of the free variables x and y, the terms λ′qx and λ

′′
ry do represent

geometrically meaningful lines. We concentrate on λ′qx, since the analysis for λ′′ry is
identical.

Consider the case x = 1. Then λ′q1 = u
′jεjq1, and expanding this out, we see that

(λ′11, λ
′
21, λ

′
31) = (0,−u′3, u′2). We see that λ′.1 is a line passing through the point u′j =

(u′1, u′2, u′3) and parallel with the first coordinate axis. A similar thing occurs for the
other choices x = 2, 3. Specifically, λ′.2 is the line through u

′j parallel with the second
coordinate axis, and λ′.3 is the line through u

′j passing also through the coordinate origin,
(0, 0, 1).

What is all this saying ? Let u↔ u′ ↔ u′′ be corresponding points in three image. If we
choose any lines λ′ and λ′′ that pass respectively through the two points u′ and u′′ then
from (20) we obtain a relation uiλ′jλ

′′
kT

jk
i = 0. For any arbitrary choice of the lines λ′
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and λ′′ we can write down such a relation. In the particular case where the lines λ′ and
λ′′ are chosen to be lines through u′ and u′′ either horizontal, vertical or passing through
the origin, then one obtains Shashua’s trilinear relation for points (16). One may choose
two lines through each of the points u′ and u′′, resulting in four independent trilinear
relations.

This interpretation of the point relationships has been previously observed in [16] and
[4].

4 Quadrilinear Relations

Similar arguments work in the case of four views. Once more, consider a point corre-
spondence across 4 views : u↔ u′ ↔ u′′ ↔ u′′′. With camera matrices A, B, C and D,
the projection equations may be written as



a1
· u1

a2
· u2

a3
· u3

b1
· u′1

b2
· u′2

b3
· u′3

c1
· u′′1

c2
· u′′2

c3
· u′′3

d1
· u′′′1

d2
· u′′′2

d3
· u′′′3







x
−k
−k′
−k′′
k′′′


 = 0 . (25)

Since this equation has a solution, the matrix X on the left has rank at most 7, and so all
8×8 determinants are zero. As in the trilinear case, any determinants containing only one
row from one of the camera matrices gives rise to a trilinear or bilinear relation between
the remaining cameras. A different case occurs when we consider 8 × 8 determinants
containing two rows from each of the camera matrices. Such a determinant leads to a
new quadrilinear relationship of the form

uiu′ju′′ku′′′lεipwεjqxεkryεlszQ
pqrs = 0wxyz (26)

where each choice of the free variables w, x, y and z gives a different equation, and the
4-dimensional tensor Qpqrs is defined by

Qpqrs = det



ap·
bq·
cr·
ds·


 (27)

Note that the four indices of the four-view tensor are contravariant, and there is no
distinguished view as there is in the case of the trifocal tensor. There is only one four-
view tensor corresponding to four given views, and this one tensor gives rise to 81 different
quadrilinear relationships, of which 16 are linearly independent.
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As in the case of the trifocal tensor, there are also relations between fixed lines and points
in the case of the four-view tensor. Equations relating points are really just special cases
of the relationship for lines. In the case of a 4-line correspondence, however, something
different happens, as will now be explained. The relationship between a set of four lines
and the quadrifocal tensor is given by the formula

λpλ
′
qλ
′′
rλ
′′′
s Q

pqrs = 0 (28)

for any set of corresponding lines λp, λ′q, λ
′′
r and λ

′′′
s . However, the derivation shows

that this condition will hold as long as there is a single point in space that projects onto
the four image lines. It is not necessary that the four image lines correspond (in the
sense that they are the image of a common line in space). Now, consider the case where
three of the lines (for instance λp, λ′q and λ

′′
r ) correspond by deriving from a single 3D

line. Now let λ′′′s be any arbitrary line in the fourth image. The back projection of this
line is a plane, which will meet the 3D line in a single point, X and the conditions are
present for (28) to hold. Since this is true for any arbitrary line λ′′′s , it must follow that
λpλ

′
qλ
′′
rQ

pqrs = 0s. This gives three equations involving λp, λ′q and λ
′′
r of which two

are linearly independent. However given a set of corresponding lines in four images, as
above, one may choose a subset of three lines, and for each line-triplet obtain a pair of
equations in this way. Thus for a set of four corresponding lines, one obtains a total of
8 equations, which may be verified (empirically) to be independent.

The 4-view relations may be summarized in the following table.

Correspondence Relation number of equations
4 points uiu′ju′′ku′′′lεipwεjqxεkryεlszQ

pqrs = 0wxyz 16

3 points, 1 line uiu′ju′′kλ′′′s εipwεjqxεkryQ
pqrs = 0wxy 8

2 points, 2 lines uiu′jλ′′rλ
′′′
s εipwεjqxQ

pqrs = 0wx 4

3 lines λpλ
′
qλ
′′
rQ

pqrs = 0s 2

4 lines λpλ
′
qλ
′′
rQ

pqrs = 0s, λpλ′qλ
′′′
s Q

pqrs = 0r, . . . 8

Table 2. Quadrilinear Relations.

No equation is given here for the case of three lines and one point, since this gives no
more restrictions on the tensor than just the 3-line correspondence.

5 Number of Independent Equations

It was asserted in considering the definition of the quadrifocal tensor Qpqrsl that each
point correspondence gives rise to 16 linearly independent equations. Similarly each point
correspondence across three views gives rise to four linearly independent equations in the
entries of the trifocal tensor T qri . We now examine this point more closely. We begin
with the four view case.
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5.1 Four View Case

Given sufficiently many point matches across four views, one may solve for the tensor
Qpqrs. Subsequently, one may retrieve the camera matrices and carry out projective
reconstruction. Details of how the step of retrieving the camera matrices is done are
omitted here, but are given by Heyden ([14, 13]). A curious phenomenon occurs how-
ever, when one counts the number of point matches necessary to do this. As indicated
above, it appears to be the case that each point match gives 16 linearly independent
equations in the entries of the tensor Qpqrs. On the other hand, it seems unlikely that
the equations derived from two totally unrelated sets of point correspondences could
have any dependencies. It would therefore appear that from 5 point correspondences
one obtains 80 equations, which is enough to solve for the entries of Qpqrs up to scale.
From this argument it would appear that it is possible to solve for the tensor from only
5 point matches across 4 views, and thence one may solve for the camera matrices, up to
the usual projective ambiguity. This conclusion however is contradicted by the following
remark.

Proposition5.1. It is not possible to determine the positions of 4 (or any number of)
cameras from the images of 5 points.

Proof. Since any two sets of five points in P3are projectively equivalent (barring the case
where 3 points are in a plane), we may assume that the five points form a projective
basis for P3. Consider the first camera. The situation is that each point xi is known for
i = 1, . . . , 5, and the images ui of the points are also known. However, each such 3D to
2D correspondence gives two linear equations in the entries of the camera matrix M , a
total of 10 equations in all from the 5 points. Since M has 11 degrees of freedom, it can
not be determined uniquely from 10 equations. This is in agreement with the observation
of Sutherland ([21]) that 5 1

2 such 3D to 2D correspondences are required to determine
M . This means that the camera matrix M is not determined uniquely with respect to a
fixed projective basis. The same applies to the other cameras, and thus the proposition
is demonstrated. 
�

Obviously there is some error in our counting of equations. In fact, Heyden states ([14])
that six point correspondences are necessary to compute Qpqrs. The truth is that our
counting argument is false, as is shown by the following two propositions.

Proposition5.2. Consider a single point correspondence u ↔ u′ ↔ u′′ ↔ u′′′ across
four views. Letting the four free indices w, x, y and z in (26) vary from 1 to 3 one
obtains from this correspondence a set of 81 equations in the entries of Qpqrs. The rank
of this set of equations is 16. Furthermore, let the equations be written as Aq = 0 where
A is an 81 × 81 matrix and q is a vector containing the entries of Qpqrs. Then the 16
non-zero singular values of A are all equal.

What this result is saying is that indeed as expected one obtains 16 linearly independent
equations from one point correspondence, and in fact it is possible to reduce this set of
equations by an orthogonal transform (multiplication of the equation matrix A on the
left by an orthogonal matrix U) to a set of orthogonal equations. The rank of the set of
equations is a “very solid” 16. This is a very favourable result as far as the conditioning
of the problem is concerned.
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The key point in the proof of Proposition 5.2 concerns the singular values of a skew-
symmetric matrix.

Lemma5.3. A 3× 3 skew-symmetric matrix has two equal non-zero singular values.

Although this is well known, a brief proof is given.

Proof. Defining matrices

E =


 0 1 0
−1 0 0
0 0 1


 ; D =


 1 0 0
0 1 0
0 0 0


 and Z = ED =


 0 1 0
−1 0 0
0 0 0




the Schurr normal form ([5]) of a 3 × 3 skew-symmetric matrix S can be written S =
kV ZV � where k is a scalar. Thus the SVD of S is given by S = kUDV � where U = V E.


�

The rest of the proof of Proposition 5.2 is quite straight-forward as long as one does not
get lost in notation.

Proof. (Proposition 5.2) The full set of 81 equations derived from a single point cor-
respondence is of the form uiεipwu′jεjqxu′′kεkryvu′′′lεlszQpqrs = 0wxyz. A total of 81
equations are generated by varying w, x, y, z over the range 1, . . . , 3. Thus, the equation
matrix A may be written as

A(wxyz)(pqrs) = uiεipwu′jεjqxu′′kεkryu′′′lεlsz (29)

where the indices (wxyz) index the row and (pqrs) index the column of A. We will have
occasion frequently to consider a set of indices, such as (wxyz) in this case, as a single
index for the row or column of a matrix. This situation will be indicated by enclosing
the indices in parentheses as here, and referring to them as a combined index.

We consider now the expression uiεipw. This may be considered as a matrix indexed
by the free indices p and w. Furthermore, since uiεipw = −uiεiwp we see that it is a
skew-symmetric matrix, and hence has equal singular values. We denote this matrix by
Swp. Writing the result of Lemma 5.3, using tensor notation we have

Uwa SwpV
p
e = kDae (30)

where the matrix D is as in Lemma 5.3. Now, the matrix A in (29) may be written as
A(wxyz)(pqrs) = SwpS′xqS

′′
yrS
′′′
zs. Consequently, applying (30) we may write

Uwa U
′x
b U

′′y
c U

′′′z
d A(wxyz)(pqrs)V

p
e V
′q
f V

′′r
g V

′′′s
h = kk′k′′k′′′DaeDbfDcgDdh . (31)

Now, writing
Û

(wxyz)
(abcd) = U

w
a U
′x
b U

′′y
c U

′′′z
d

V̂
(pqrs)

(efgh) = V
p
e V
′q
f V

′′r
g V

′′′s
h

D̂(abcd)(efgh) = DaeDbfDcgDdh
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and
k̂ = kk′k′′k′′′

we see that (31) may be written as

Û
(wxyz)
(abcd) A(wxyz)(pqrs)V̂

(pqrs)
(efgh) = k̂D̂(abcd)(efgh) . (32)

As a matrix, D(abcd)(efgh) is diagonal with 16 non-zero diagonal entries, all equal to
unity. To show that (32) is the SVD of the matrix A(pqrs)(tuvw), and hence to complete
the proof, it remains only to show that U (wxyz)

(abcd) and V (pqrs)
(efgh) are orthogonal matrices.

To this end, we show that U (wxyz)
(abcd) has unit norm orthogonal columns. Thus, for two

columns with combined indices (pqrs) and (tuvw) respectively, we verify
∑
i,j,k,l

Û
(ijkl)
(pqrs)Û

(ijkl)
(tuvw) =

∑
i,j,k,l

(U ipU
′j
q U
′′k
r U

′′′l
s )(U

i
tU
′j
u U
′′k
v U

′′′l
w )

=
∑
i

U ipU
i
t

∑
j

U ′jq U
′j
u

∑
k

U ′′kr U
′′k
v

∑
l

U ′′′ls U
′′′l
w

= δptδquδrvδsw

= δ(pqrs)(tuvw)

and so Û is orthogonal, as required. A similar argument shows that V̂ is orthogonal as
well. This completes the proof that A has rank 16, and all non-zero singular values are
equal. 
�

Thus, each point correspondence gives 16 equations. The surprising fact however is
that the equation sets corresponding to two unrelated point correspondences have a
dependency, as stated in the following proposition.

Proposition5.4. The set of equations (26) derived from a set of n general point corre-
spondences across four views has rank 16n− (n2 ), for n ≤ 5.

The notation (n2 ) means the number of choices of 2 among n, specifically, (
n
2 ) = n(n−1)/2.

Thus for 5 points there are only 70 independent equations, not enough to solve for Qpqrs.
For n = 6 points, 16n − (n2 ) = 81, and we have enough equations to solve for the 81
entries of Qpqrs. These propositions will be proven below.

Proof. We consider two point correspondences across four views, namely ui ↔ u′i ↔
u′′i ↔ u′′′i and vi ↔ v′i ↔ v′′i ↔ v′′′i. The first correspondence gives rise to a set of
equations : uiu′ju′′ku′′′lεipwεjqxεkryεlszQpqrs = 0wxyz where there is a different equation
for each choice of w, x, y and z. There are a total of 81 equations in the 81 entries of
the tensor Qpqrs. The coefficients of each equation may be considered as a vector in the
Euclidean space R81. According to Proposition 5.2, however, the 81 such vectors span a
subspace Su of dimension 16 in R81.

A similar set of equations may be derived from the second correspondence, and these
equations span a second 16-dimensional subspace Sv of R81. If the two subspaces Su

and Sv intersect only in the zero vector, then together the two subspaces generate a
subspace of dimension 32 of R81. The proposition we are proving asserts that this is not
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so, however. Therefore, it is our goal to show that these two subspaces have non-trivial
intersection.

The vectors generating Su may be denoted by û(wxyz) where (wxyz) is a combined index
for the vector, and each û(wxyz) is a vector with components

û(wxyz)(pqrs) = uiu′ju′′ku′′′lεipwεjqxεkryεlsz

and (pqrs) is a combined index for the component of the vector. We consider a specific
linear combination of the vectors û(wxyz) given by s = vwv′xv′′yv′′′zû(wxyz). This is a
vector with components

s(pqrs) = vwv′xv′′yv′′′zuiu′ju′′ku′′′lεipwεjqxεkryεlsz . (33)

In a similar fashion, the subspace Sv is generated by vectors v̂(ijkl) , which have compo-
nents

v̂(ijkl)(pqrs) = vwv′xv′′yv′′′zεwpiεxqjεyrkεzsl = vwv′xv′′yv′′′zεipwεjqxεkryεlsz .

The last expression is obtained from the previous one by swapping the first and last
indices of each ε.

Now, one forms the linear combination s = uiu′ju′′ku′′′lv̂(ijkl) , which when expanded
turns out to have the same components as the vector s(pqrs) in (33). In brief, we have

s = vwv′xv′′yv′′′zû(wxyz) = uiu′ju′′ku′′′lv̂(ijkl) . (34)

This shows that the subspaces Su and Sv or R81 intersect in a subspace generated by the
vector s. Thus, the dimension of the subspace generated by vectors û(wxyz) and v̂(ijkl)

is at most 31, provided that s is non-zero. To consider the possibility that s = 0, we
rearrange (33) to get

s(pqrs) = (uivwεipw)(u′jv′xεjqx)(u′′kv′′yεkry)(u′′′lv′′′zεlsz)
= (u× v)p(u′ × v′)q(u′′ × v′′)r(u′′′ × v′′′)s

where (u×v) represents the vector product. Such a vector product is nonzero unless the
u and v are equal, up to scale, and hence represent the same point. Thus, s is non-zero
unless u and v (or u′ and v′, etc) represent the same point. To take care of the case
where for instance u = v, we note that then

v′xv′′yv′′′zû(wxyz) = −u′ju′′ku′′′lv̂(wjkl) (35)

for each value of w. To verify this, note that the components of the vectors on each side
of (35) are

v′xv′′yv′′′zuiu′ju′′ku′′′lεipwεjqxεkryεlsz = −u′ju′′ku′′′lviv′xv′′yv′′′zεipwεxqjεyrkεzsl .

This means that Su and Sv intersect in at least a 3-dimensional subspace. Thus, in all
cases, we have shown that the subspace generated by Su and Sv has dimension at most
31.

We now consider the possibility that the dimension of the subspace is less than 31. In such
a case, all 31×31 sub-determinants of the matrix having as rows the vectors û(wxyz) and
v̂(ijkl) must vanish. These subdeterminants may be expressed as polynomial expressions
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in the coefficients of the points u, u′, u′′, u′′′, v, v′, v′′ and v′′′. These coefficients
together make up a 24-dimensional space. Thus, there is a function f : R24 → RN for
some N (equal to the number of such 31× 31 subdeterminants), such that the equation
matrix has rank less than 31 only on the set of zeros of the function f . Any arbitrarily
chosen example may be used to show that the function f is not identically zero. It
follows, that the set of point correspondences for which the set of equations has rank
less than 31 is a variety in R24, and hence is nowhere dense. Thus, for a general pair of
point correspondences, the set of equations generated by a pair of point correspondences
across 4 views has rank 31.

We now turn to the general case of n point correspondences across all 4 views. Note
that the linear relationship (34) that holds for two point correspondences is non-generic,
but depends on the pair of correspondences. In general, therefore, given n point corre-
spondences, there will be (n2 ) such relationships. This reduces the dimension of the space
spanned by the set of equations to 16n− (n2 ) as required. 
�

5.2 Three View Case

In this section, we consider the set of equations relating the entries of the trifocal tensor
T jki generated by a single point correspondence across three views. We find the following
favourable situation holds.

Proposition5.5. Consider a single point correspondence u ↔ u′ ↔ u′′ across three
views. Letting the two free indices x and y in (16) vary from 1 to 3 one obtains from
this correspondence a set of 9 equations in the entries of T qri . The rank of this set of
equations is 4. Furthermore, let the equations be written as At = 0 where A is a 9 × 27
matrix and t is a vector containing the entries of T qri . Then the 4 non-zero singular
values of A are equal.

Proof. This proposition is similar to Proposition 5.2, and is proven in much the same
way. The full set of 9 equations derived from a single point correspondence is of the form
uiu′jεjqxu

′′kεkryT
qr
i = 0xy. A total of 9 equations are generated by varying x and y over

the range 1, . . . , 3. Thus, the equation matrix A may be written as

A(xy)(iqr) = uiu′ju′′kεjqxεkry (36)

where the indices (xy) index the row and (iqr) index the column of A. As in the proof of
Proposition 5.2, we may write u′jεjqx = S′xq and u

′′kεkry = S′′yr. Then the matrix A in
(36) may be written as A(xy)(iqr) = uiS′xqS′′yr. Consequently, applying (30) we may write

U ′xa U
′′y
b A(xy)(iqr)V

′q
e V

′′r
f = k′k′′uiDaeDbf . (37)

Next, introducing a vector ui with covariant (lower) index, defined such that ui = ui for
all i, we have

U ′xa U
′′y
b A(xy)(iqr)uiV

′q
e V

′′r
f = k′k′′uiuiDaeDbf = k′k′′||u||2DaeDbf .

Now, writing
Û

(xy)
(ab) = U

′x
a U

′′y
b
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V̂
(qr
i

)

(ef) = uiV
′q
e V

′′r
f

D̂(ab)(ef) = DaeDbf .

and
k̂ = k′k′′||u||2

we see that (37) may be written as

Û
(xy)
(ab) A(xy)(iqr)V̂

(qr
i

)

(ef) = k̂D̂(ab)(ef) (38)

The matrix D(ab)(ef) is diagonal with 4 unit diagonal entries. As before, to complete the
proof, we need only show that Û and V̂ are orthogonal, The matrix Û is orthogonal as
is shown using the same argument as before. Since the matrix V̂ (qr

i
)

(ef) is not square (it
has dimension 27 × 9), we need to show that is has orthogonal columns. Details are as
follows.

∑
q,r,i

V̂
(qr
i

)

(ef) V̂
(qr
i

)

(e′f ′) =
∑
i,p,q

(V ′qe V
′′r
f ui)(V

′q
e′ V

′′r
f ′ ui)

=
∑
q

V ′qe V
′q
e′

∑
r

V ′′rf V
′′r
f ′

∑
i

(u2
i )

= δee′δff ′ ||u||2

= δ(ef)(e′f ′)||u||2 .

Thus, in fact, the rows of V̂ are orthogonal, and each one has the same norm equal to
||u||. This completes the proof. 
�

5.3 Choosing equations

In the previous two sections, proofs have been given that the singular values of the full set
of equations derived from three or four point equations are all equal. The key point in the
argument is that the two non-zero singular values of a 3× 3 skew-symmetric matrix are
equal. This proof may clearly be extended to apply to any of the other sets of equations
derived from line or point correspondences given in sections 3 and 4.

Consider once more the case of three point correspondences in three views. The results
on singular values show that it is in general advisable to include all 9 equations derived
from this correspondence, rather than selecting just four independent equations. This
will avoid difficulties with near singular situations. This conclusion is supported by
experimental observation. Indeed, numerical examples show that the condition of a set
of equations derived from a set several point correspondences is substantially better when
all 9 equations are included for each point correspondence. In this context, the condition
of the equation set is given by the ratio of the first (largest) to the n-th singular value,
where n is the number of linearly independent equations.

Including all 9 equations rather than just 4 means that the set of equations is larger,
leading to increased complexity of solution. However, whether the equations are solved
using the Singular Value Decomposition, or the method of normal equations, the increase
in complexity needs only to be linear. This point is explained in [12]. For formulae about
the complexity of the SVD, see [5].
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An alternative to including all 9 equations (or all 81 in the 4-view case) is to include
the minimum number (4 or 16 respectively) of correctly chosen equations. This notion
will be illustrated for the three-view case. As we saw in section 3.3, the equations
uiu′ju′′kεjqxεkryT

qr
i = 0xy derived from a point correspondence across three views may

be considered as a set of line equations uiλ′qxλ′′ryT
qr
i = 0xy by writing λ

′
qx = u′jεjqx and

λ′′ry = u
′′kεkry. Each choice of x or y gives a different line through the points u′j and

u′′k, a total of 9 choices.

Now, as a matrix, λ′qx is skew-symmetric, and hence has two equal singular values. As
remarked, this is the basis for the set of all 9 equations having rank 4, and 4 equal
singular values. On the other hand, if we select just two lines passing through u′j by
making a choice of two values for the index x, then the two columns of the matrix λ′qx
are not orthogonal, and the resulting 3× 2 matrix does not have equal singular values,
and in fact may be nearly rank-deficient. As previously seen, one remedy is to include
the equations derived from all 3 choices of the index x. The corresponding three lines
λ′qx are the lines parallel with the coordinate axes and through the origin and passing
through the point u′j. An alternative is to select two other lines λ̂′qx, for x = 1, 2,
passing through u′j and represented by an orthonormal pair of vectors. In this case, the
matrix λ̂′qx of dimension 3× 2 will have two equal singular values. If this is done also for
the point u′′k, then arguments of section 5.2 apply, and the resulting set of 4 equations
uiλ̂′qxλ̂

′′
ryT

qr
i = 0xy for x, y = 1, 2 will be independent and orthonormal. Note that the

condition that the vectors λ̂′q1 and λ̂
′
q2 are orthonormal has nothing to do with geometric

orthogonality of the lines. A simple way of finding a pair of orthonormal vectors λ̂′qx
such that u′qλ̂′qx = 0x is using Householder transforms ([5]). A Householder matrix hqx
is an orthogonal matrix such that u′qhqx = δ3x = (0, 0, 1). Setting λ̂qx = hqx for x = 1, 2
gives the required pair of lines passing through the point u′q.

We summarize this discussion as follows.

Recommended method for formulating point equations.

Given a point correspondence u↔ u′ ↔ u′′ across three views :

1. Find Householder matrix h′qx and h′′ry such that u′qh′qx = δ3x and u′′rh′ry = δ3y.

2. For x, y = 1, 2 set λ̂′qx = h′qx and λ̂′′ry = h′′ry.

3. The formula uiλ̂′qxλ̂′′ryT
qr
i = 0xy for x, y = 1, 2 gives a set of four orthonormal

equations in the entries of T qri .

Once more, it is evident that essentially this method will work for all the types of equa-
tions summarized in Tables 1 and 2.

Acknowledgement This discussion was prompted by remarks of an anonymous re-
viewer to my paper [12].
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6 Summary and Other Work

Although using a slightly different approach, this paper summarized previous results
of Triggs ([22]) and Faugeras and Mourrain ([4]) on the derivation of multilinear re-
lationships between corresponding image coordinates. The formulae for relations be-
tween mixed point and line correspondences are extensions of the result of [10, 12].
This paper suggests that the most basic relations are the point-line-line correspondence
equation uiλ′qλ′′rT

qr
i = 0 in the three-view case, and the line-correspondence equation

λpλ
′
qλ
′′
rλ
′′′
s Q

pqrs = 0 for four views. Indeed numerical robustness may be enhanced by
reducing other correspondences to this type of correspondence, for carefully selected lines.

There are several aspects of multilinear relations that have not been addressed in this
paper. Most notable is the inverse problem of reconstruction, in other words, retrieval
of the camera matrices (up to a common projective transformation) from the multilinear
tensor. For the two-view case this is the now somewhat classic problem of two-view
projective reconstruction considered by many authors, including [6, 2]. In the three-view
case a solution was given in [10, 12, 18]. The four-view case has been considered by
Heyden ([14, 13]) in the context of his algorithm for reconstruction from six points in
four views. Both for the three and four view reconstruction problem further work remains
to be done before a complete understanding is achieved.
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