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Abtract
A linear self-calibration method is given for com-

puting the calibration of a stationary but rotating
camera. The internal parameters of the camera are al-
lowed to vary from image to image, allowing for zoom-
ing (change of focal length) and possible variation of
the principal point of the camera. In order for calibra-
tion to be possible some constraints must be placed on
the calibration of each image. The method works un-
der the minimal assumption of zero-skew (rectangular
pixels), or the more restrictive but reasonable condi-
tions of square pixels, known pixel aspect ratio, and
known principal point. Being linear, the algorithm is
extremely rapid, and avoids the convergence problems
characteristic of iterative algorithms.

1 Introduction
The subject of self-calibration of a camera has re-

ceived considerable attention, following the ground-
breaking paper of Maybank and Faugeras [7]. This
idea opens the possibility of calibration of a camera
in the field, without the aid of jigs, or knowledge of
the position of world-points. A subsequent paper of
Hartley ([4]) gave a method for the self-calibration of
a rotating, but stationary camera, for which the the-
ory of [7] does not apply. The algorithm of [4] had the
advantage of being linear and hence very simple and
rapid, unlike the Maybank-Faugeras method, which
was somewhat complex.

The methods of these two papers required the cal-
ibration of the camera to be fixed over a sequence
of images – no zooming was allowed. Subsequently
interest in zooming cameras led to a method for self-
calibration of cameras with changing internal param-
eters ([5]). These results were strengthened in [6, 8] to
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apply in case of a minimal assumption of zero-skew.
These methods applied to moving cameras, and were
iterative1.

Recent papers ([1, 9]) have extended calibration ca-
pability by giving algorithms for rotating cameras, al-
lowing changing internal parameters, similar in intent
to the algorithms of [5, 6, 8]. The particular scenario
of a rotating and zooming camera is common in prac-
tice. For instance a camera at a sports arena under-
goes this sort of motion as it rotates and zooms to
follow a game. Unlike the algorithm of Hartley ([4]),
these methods use interation, based on the Levenberg-
Marquardt method to minimize a non-linear cost func-
tion. The linear methods of ([4]) do not appear to be
immediately extendable to the case of varying internal
parameters.

In this paper however it is shown that a simple trick,
first used in a different context in [11] transfers the ba-
sic calibration equation ((3) below) to one for which
a simple linear method applies. The resulting linear
method is extremely simple involving a least-squares
solution of a set of homogeneous equations in 6 un-
knowns. Each image in the sequence leads to one to
four equations, depending on the amount of assumed
knowledge of the camera. It turns out that the linear
method, apart from being quicker than the iterative
methods gives results of comparable quality.

2 Rotating cameras
We consider a set of images taken with cameras

all located at the same point in space, which will be
taken to be the coordinate origin. As has been shown
in (for instance) [4] one may analyse this situation by
representing each of the cameras as a 3×3matrix Pi. A

1It may be noted that these papers were all predated by
the paper [3] that gave a non-iterative algorithm for two-view
calibration in the case of known aspect ratio and principal point.
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point in the i-th image, represented by a homogeneous
3-vector xi corresponds to a ray in space consisting
of points of the form λP−1

i xi. Points on this ray are
mapped into the j-th image to a point xj = PjP

−1
i xi.

Denoting the transformation

Hij = PjP
−1
i (1)

one sees that the i-th and j-th images are related by
a projective transformation Hij . In practice, one may
compute these projective transformations between im-
ages by finding matching points in the two images and
computing the projective transformation that relates
the points. At least four matched points are necessary
for computing the projective transformation between
two images. Practical methods for computing these
transformations are given in [4, 2].

The projective transformation may be related to
the calibration matrices of each of the cameras, as
follows. Each camera matrix Pi may be decomposed
into an upper-triangular calibration matrix Ki and a
rotation matrix Ri representing the orientation of the
camera : Pi = KiRi. Substituting in (1) one obtains

Hij = KjRjR
−1
i K−1

i = KjRijK
−1
i . (2)

Since Rij is a rotation, RijRij� = I. Straight-forward
computation then shows that HijKiKi�Hij� = KjKj�.
This formula is often written as

Hijω
∗
i Hij

� = ω∗j (3)

where ω∗i = KiKi
� is the dual image of the absolute

conic ([4]) in the i-th image. This formula then repre-
sents the transformation of a conic under a projective
transformation. In the case where Ki = Kj , this for-
mula may be used to generate a set of linear equations
in the entries of ω∗i which may be used to solve for
ω∗i , and subsequently for Ki by Choleski factorization.
This is briefly the calibration method described in [4].

The difficulty with extending this linear solution to
the case of a camera with varying intrinsic parame-
ters under minimal assumptions such as zero skew or
known aspect ratio is that such constraints are not eas-
ily related to the entries of ω∗i . Consider a calibration
matrix

K =



αx s x0

αy y0

1


 (4)

Three constraints are possible, of which the first two
were tested in detail in this paper.

1. The zero-skew constraint : For each camera,
s = 0.

2. The square-pixel constraint : For each cam-
era, s = 0 and αx = αy.

3. The known principal point constraint : For
each camera, (x0, y0) = (0, 0).

If the pixels have a known aspect ratio other than
1, or the principal point is at a different know point
other than the origin, then a simple change of image
coordinates converts to one of the cases above.

Now, a constraint such as the zero-skew constraint
is not reflected in any simple way in the entries of
ω∗ = KK�. There seems to be no easy way to use
(3) to develop an algorithm to compute the camera
calibration, enforcing constraints of this type. There-
fore, in [1, 9], iterative algorithms are proposed, us-
ing Levenberg-Marquardt iteration to find a non-linear
least squares solution, parametrized directly by the en-
tries of the Ki. This may potentially cause problems
with lack of convergence, or convergence to local min-
ima, not to mention the greater complexity of coding.

A simple observation, however, leads to a linear al-
gorithm. Taking the inverse of (3) gives

Hij−�ωiH
−1
ij = ωj (5)

where ωi = Ki−�K
−1
i . Now, one may verify that with

K of the form (4), with s = 0,

ω = K−�K−1

=




1/α2
x 0 −x0/α

2
x

0 1/α2
y −y0/α

2
y

−x0/α
2
x −y0/α

2
y 1 + x2

0/α
2
x + y2

0/α
2
y




(6)

so ω represents a conic of the form

(x− x0)2/α2
x + (y − y0)2/α2

y + 1 = 0 ,

the image of the absolute conic. The important points
to note here are

Proposition2.1. 1. If s = K12 = 0, then ω12 = 0.

2. If s = 0 and αx = αy, then ω11 = ω22.

3. If s = 0 and x0 = 0, then ω13 = 0. Similarly if
y0 = 0 then ω23 = 0.

3 Generation and solution of equations
Select one image as being a reference image, and

let H0j be the homography relating the reference im-
age to the j-th image. For j = 0, one has H00 = I.
Let the image of the absolute conic in the refer-
ence image be ω0. Since it is symmetric, it may be



parametrized by its six diagonal and above-diagonal
entries, which may be denoted in some designated or-
der as (a1, a2, . . . , a6). Since the homographies H−1

0j

are known, the entries of ωj may be expressed lin-
early in terms of the entries ai of ω0. Now each of
the equation types in Proposition 2.1 gives one linear
equation in the entries of ωj , hence a linear equation
in the entries ai of ω0. For each image each condition
gives one equation, and the set of all equations may
be written as Ea = 0, where a = (a1, a2, . . . , a6)�,
and each row of E represents one equation. Given at
least five equations one can find a solution up to (non-
essential) scale. With more than 5 equations, one finds
a least-squares solution in the usual way ([4]), that is
by finding a that minimizes ||Ea|| subject to ||a|| = 1.

In forming these equations, one should include
equations for the reference image. Consider the zero-
skew condition. With H00 = I, the corresponding
equation becomes simply a2 = 0, assuming that a2

reprents the (1, 2) entry of ω0. This equation should
be included with the equations arising from the other
images in the matrix E of all equations. A (possibly in-
ferior) alternative would be to parametrize ω in terms
of only 5 entries, setting the (1, 2) entry to zero. Then
each image other than the reference image gives one
equation. The difference is that in this latter case, the
computed skew will be exactly zero in the reference
image but non-zero (because the equations will not be
satisfied exactly) in all other images. This approach
would unreasonably single out the reference image for
special treatment. The same remarks apply in the
square-pixel and known-principal point cases as well.

Since one requires at least 5 equations in the 6 in-
dependent homogeneous entries of ω0, one requires a
total of 5 images to solve in the zero-skew case, 3 im-
ages in the square pixel case, and only 2 images if one
also knows the principal point.

By solving for the vector (a0, a1, . . . , a6) one deter-
mines the value of ω0. The other ωj may be computed
from (5). From this one may compute the individual
calibration matrices Kj by inversion and Choleski fac-
torization of ωj, or else directly from ωj using (6).
The algorithm will fail if the computed value of α2

x

or α2
y is negative, which is equivalent to ωj not being

positive definite. This rarely occurs in practice except
in unstable situations in which calibration is intrinsi-
cally infeasible, or with inaccurate or incorrect input
data.

4 Unstable configurations
In the experimental evaluation of these algorithms,

it was observed that the results were quite unstable
if only the zero-skew constraint is used, unless the

camera motion contains some component of rotation
about the pricipal axis (Z-axis) of the camera. If some
Z axis motion is included, however, then results are
good. Thus, to obtain good results, one must either
have some Z-rotations, or else include square-pixel
constraints. It should be realized that this failure
mode does not represent a weaknesses in the linear
algorithm of this paper, but rather arises from a situ-
ation in which self-calibration is intrinsically unstable.

X-axis rotation. Consider the case where the
rotation is about the X axis of the camera and the
cameras have zero skew. In addition, suppose for the
present that the coordinate origin is at the principal
point, so that the principal point (x0, y0) = (0, 0). In
this case the calibration matrix of each camera is di-
agonal, K = diag(αx, αy, 1), and the transformation
matrix H−1

0j = K0RX�Kj is of the form

H−1
0j =




1 0 0
0 x x
0 x x




where the x values represent non-zero entries, not all
the same. Now (5) may be written as

ωj = H0j
−�ω0H

−1
0j (7)

=




1 0 0
0 x x
0 x x





a1 a2 a3

a2 a4 a5

a3 a5 a6






1 0 0
0 x x
0 x x


 .

(8)

From this one easily verifies that the expression for
the (1, 2) entry of ωj involves only the entries a2 and
a3 of ω0. Assuming that a2 = 0 (the skew is zero) and
referring to the expression (6) for ω0, one deduces that
the zero-skew constraint imposes a constraint only on
x0, allowing one to deduce that x0 = 0. There is no
constraint on y0, αx or αy, which may vary freely.
Thus, although y0 = 0 is assumed in this analysis,
there is no way this may be deduced using the zero-
skew constraint.

One may verify that the choice of coordinate sys-
tems used to compute the homographies H0j does not
materially alter the constraints imposed on the cali-
bration by a rotation about the X-axis, as analyzed
above.

Y -axis rotation. In a similar way, if the rotation
is about the Y axis, then the expression for (ωj)12

involves only a2 and a5, as may be deduced in a similar
manner. Thus, x0, αx and αy may vary freely. If all
rotations R0j are about the X or Y axis, then there is



no way to determine the parameters αx and αy of the
camera. If on the other hand, one includes a square-
pixel constraints, or rotations about the Z-axis, then
it turns out that the stability problems disappear.

Pan-tilt motion. A further important situation
that leads to failure is that of a camera mounted on
an alt-azimuth mounting, allowing panning about a
vertical axis, and tilting about a horizontal elevation
axis. In this case, the rotation of the camera with re-
spect to a horizonal reference position may be written
in the form RxRy, (pan followed by tilt). One easily
verifies that this rotation matrix has the distinguish-
ing property that the (1, 2) element is zero. Mimicking
the analysis for X-axis rotation above, and mutiplying
out as in (7) reveals that the (1, 2) element of ωj does
not depend on the element a4 = (ω0)22. According to
(6), this implies that αy is not determined. Further-
more, although element a5 of ω0 may be determined,
it represents the quotient y0/α

2
y. Hence y0 depends on

αy, and so can not be determined either.

5 Experiments
In this section we present experimental results ob-

tained using the linear algorithm on both synthetic
and real image sequences.
5.1 Synthetic data

Experiments were first carried out with synthetic
data to evaluate the performance of the linear algo-
rithm using the zero-skew and the square-pixel con-
straints described in section 2. The data was created
to simulate a camera with a zoom lense providing a
total focal length range of 12.5 mm to 35 mm. A cloud
of 250 points was randomly generated within a con-
fined spheric space of diameter 2 m lying in front of the
rotating camera at a distance of 5 m. The points were
then projected onto each of the image planes arising
from the different orientations of the camera and the
location of each image point was then perturbed in a
random direction by a distance governed by a Gaus-
sian distribution with zero mean and standard devia-
tion σ measured in pixels. The size of the image planes
was 384×288 pixels. The skew of the image axes was
taken to be zero, the aspect ratio of the image pix-
els equal to one and the principal point was asumed
to be located at the centre of the image. The camera
motion was such that the principal ray described a cir-
cular trajectory of radius θ = 5◦ measured from the
positive Z axis. To avoid the degenerate configuration
described at the end of section 4 a small amount of cy-
clorotation about the principal axis was then added to
each camera position. The focal length of the camera
increased linearly throughout the sequence. Figure 1

shows the results of this experiment. They show that
for typical image noise levels of σ smaller than 0.5 pix-
els the algorithm performs well. The plot for the prin-
cipal point shows a large variation when σ = 1 pixel.
However, it is well known that the principal point is
a poorly constrained parameter which easily fits its
value to the noise. Note also that the small devia-
tion of the camera (5◦) represents a very demanding
test for the algorithm. With wider excursions of the
camera, better results would be achieved ([4]).

In figure 1 we also show the performance of the
linear algorithms versus the iterative non-linear algo-
rithm described in [1]. The non-linear algorithm was
run imposing equivalent constraints of zero skew and
square pixels on the intrinsic parameters to minimize a
non-linear cost function using a Levenberg-Marquardt
method. For clarity we have only shown the result
when the image noise level of σ = 0.5 pixels which
shows that the results obtained with the linear algo-
rithm are comparable with those from the non-linear
iterative method.

5.2 Real image sequences
The image sequences used in our experiments were

taken using a camera with a zoom lens mounted on
a Yorick stereo head/eye platform [10]. The camera
was rotated using one of the two independent vergence
axes to pan the camera, and the common elevation
axis to tilt it. Note therefore that the motion selected
for these experiments falls in the case of the pan-tilt
degeneracy described in section 4. The mechanics of
our head do not permit rotations about the Z axis.
This experiment will therefore illustrate how the skew
zero constraint does not resolve this ambiguity and the
square pixels constraint must be imposed.

Two image sequences were taken. In the first se-
quence, the focal length of the camera remained fixed,
while the pan and the tilt of the camera were varied to
perform a circular trajectory. In the second sequence,
the focal length of the camera was set to increase lin-
early, using the controlled zoom lens, while the camera
performed a similar circular motion. The encoders of
the head/eye platform provided ground truth values
for the pan and tilt angles of the camera which are
accurate to 0.01 of a degree. The servo control of the
zoom lens provided ground truth values of the position
of the zoom lens for each frame in the image sequence.
The camera was then calibrated, using an accurately
machined calibration grid and classical calibration al-
gorithm, to obtain ground truth values for the inter-
nal parameters at each of the different positions of the
zoom lens. Radial lens distortion was modelled using
a one parameter model and the images were appropri-
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Figure 1: Calibration results with synthetic data in presence of various degrees of image noise, with one run at
each noise level. Computed values for the focal length (top), the location of the principal point (middle) and
the aspect ratio (bottom) imposing the zero skew (left) and square-pixels (right) constraints. Results obtained
using the non-linear iterative method of [1] imposing the zero skew and the square-pixels constraint are shown for
σ = 0.5. The aspect ratio was set to one by the algorithm when the square-pixels constraint was used



Figure 2: Mosaics constructed from the two bookshelf sequences during which the camera panned and tilted while
the focal length remained fixed (left) and was varied (right).

ately warped to correct for this factor.
The homographies that relate corresponding points

between views were computed in two stages. First, the
inter-image homographies were computed from cor-
responding corners and second, they were refined by
minimizing the global reprojection image error using
a bundle-adjustment technique [4, 2]. Figure 2 shows
the mosaics constructed by registering both image se-
quences.

When the zero skew constraint was imposed very
poor results were obtained for the calibration param-
eters. The fundamental ambiguity described in sec-
tion 4 was confirmed by observing that the two small-
est singular values of the equation matrix E were very
close to zero, implying that there is a one parameter
family of possible solutions to the calibration. Impos-
ing the zero skew constraint also failed to provide a
solution when used in the non-linear iterative mini-
mization.

Figure 3 shows the results obtained with the lin-
ear algorithm imposing the square-pixels constraint.
The results confirm the good performance of the lin-
ear method, which in these particular experiments give
better estimates than the iterative algorithm.

6 Conclusion
The key idea of the paper is to focus on the image of

the absolute conic rather than its dual. This leads to a
linear algorithm for the constrained calibration prob-
lem, rather than the iterative algorithms previously
reported. The linear algorithm is extremely simple
to implement and performs very well compared with
iterative algorithms, ofter giving better results. The
method fails in the case where the computed image of
the absolute conic is not positive-definite. However,
this did not occur in our experiments, except in the

case of critical rotation sequences for which the cali-
bration problem is inherently unstable. This serves as
a warning that the data used does not support a use-
ful estimate of the cameras’ calibration parameters. It
is probable that in these cases a calibration estimate
given by any other algorithm, such as the previous
iterative algorithms, would be virtually useless.

The linear methods do not apply in some cases for
which the iterative algorithms may be used, such as
fixed, but unknown aspect ratio, or fixed, but un-
known principal point. The common cases of zero
skew and known aspect ratio are covered, however. In
practice, skew is almost always zero, and the aspect
ratio is usually known to be one, or is available from
a spec-sheet for the camera. In any case the aspect
ratio is essentially invariant, and could be determined
off-line. Further experiments (not explained in detail
here) show that the linear algorithm can be used in a
linear search over a range of feasible aspect ratios to
determine the aspect ratio that gives the best fit to
the data.
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