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Abstract

The paper gives a practical rapid algorithm for do-
ing projective reconstruction of a scene consisting of
a set of lines seen in three or more images with un-
calibrated cameras. The algorithm is evaluated on
real and ideal data to determine its performance in
the presence of varying degrees of noise. By carefully
consideration of sources of error, it is possible to get
accurate reconstruction with realistic levels of noise.
The algorithm can be applied to images from differ-
ent cameras or the same camera. For images with the
same camera with unknown calibration, it is possible
to do a complete Euclidean reconstruction of the im-
age. This extends to the case of uncalibrated cameras
previous results on scene reconstruction from lines.

1 Introduction

This paper gives an effective algorithm for the pro-
jective reconstruction of a scene consisting of lines in
space as seen in at least three views with uncalibrated
cameras. The placement of the cameras with respect
to the scene is also determined. At least three views
are necessary, since as discussed in [8], no informa-
tion whatever about camera placements may be de-
rived from any number of line-to-line correspondences
in fewer than three views. With three arbitrary cam-
eras with unknown possibly different calibrations it is
not possible to specify the scene more precisely than
up to an arbitrary projective transformation of space.
This contrasts with the situation for calibrated cam-
eras in which a set of sufficiently many lines may be
determined up to a scaled Euclidean transformation
from three views ([7, 8]).

In the case where all of the three cameras are the
same, however, or at least have the same calibration,
it is possible to reconstruct the scene up to a scaled
Euclidean transformation. This result relies on the
theory of self-calibration expounded by Maybank and
Faugeras ([4]) for which a robust algorithm has been
given in [3]. In particular for the case of a stationary
camera and a moving object the camera calibration
remains fixed. This motion and structure problem for
lines was solved in [7, 8] for calibrated cameras. The

assumption of calibration means that a pixel in each
image corresponds to a uniquely specified ray in space
relative to the location and placement of the camera.
The result of this paper is that this assumption is not
necessary.

It will be assumed that three different views are
taken of a set of fixed lines in space. That is, it is
assumed that the cameras are moving and the lines
are fixed, which is opposite to the assumption made
in [8]. In general, it will not be assumed that the
images are taken with the same camera. Thus the
three cameras are uncalibrated and possibly different.

2 Notation and Basics

The three-dimensional space containing the scene
will be considered to be the 3-dimensional projective
space P3 and points in space will be represented by
homogeneous 4-vectors x. Similarly, image space will
be regarded as the 2-dimensional projective space P2
and points in an image will be represented by homoge-
neous 3-vectors u. The space-image mapping induced
by a pinhole camera may be represented by a 3 x 4
matrix M of rank 3, such that if x and u are cor-
responding object and image points then u = Mx.
Such a matrix will be called a camera matrix. It will
often be desirable to decompose a camera matrix into
a 3 x 3 matrix A and a column vector c, as follows

M = (A | c). If the camera centre is at a finite
point, then A is non-singular, but we will not make
this restriction.

All vectors are assumed to be column vectors. The
transpose u' of u is a row vector. Notationally, vec-
tors will be treated as n x 1 matrices. In particular
a'b is the scalar product of vectors a and b, whereas
ab' is a matrix.

Just as points in image space P? are represented by
homogeneous vectors so are lines in P2. Bold greek
letters such as A represent lines. The point u lies on
the line X if and only if ATu = 0.

Projective Reconstruction Consider a set of lines
in space viewed by several cameras, and let A} be the
image of the ¢-th line in the j-th image. The task



of projective reconstruction is to find a set of camera
matrices M; and 3D-lines x; so that line x; is indeed
mapped to the line )\é- by the mapping M;. For the
present we pass over the questions of how to represent
lines in space and how they are acted on by camera
matrices M;. If the camera matrices are allowed to be
arbitrary, then it is well known ([1, 2]) that the scene
can not be reconstructed more precisely than up to an
arbitrary 3D projective transformation.

Consider now a reconstruction from three views,
and let the three camera matrices be My, M7 and M.
We make the assumption that no two of the cameras
are located at the same point in space. Let H be
formed by adding one extra row to My to make a non-
singular 4 x 4 matrix. Then since HH™! = I .4,
it follows that MoH ! = (I|0). Since My may be
transformed to (I | 0), by applying transformation H
to the reconstruction we may assume without loss of
generality that My = (I | 0). Next we turn to the
form of M7 = (A; | ¢1). Since cameras My and M;
are not located at the same points, ¢; # 0 and M;
may therefore be scaled so that ¢; "¢y = 1. It may be
observed that further multiplication on the right by
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to itself, while mapping (A; | ¢1) to (A; — cicy ' Ay |
c1). This matrix has the interesting property that the
columns of A; —cic1 T A are perpendicular to ¢1, since
c1' (A; —ciei T Ay) = 0. It follows of course that A;
has rank 2, and so the camera is located on the plane
at infinity, but this remark is not used.

The result of this discussion is that in seeking a
projective reconstruction of a scene from three views,
we may assume without loss of generality that

1. My =(I]0).
2. My = (R |ry), wherers TR =0, and ry "1y = 1.
3. My = (S |sy), where sy sy =1

where for simplicity in future computations we have
changed notation to avoid proliferation of subscripts.

3 The Transfer Equations

We now address the question of how lines are
mapped by camera matrices. Instead of considering
the forward mapping, however, we will consider the
backward mapping — given a line in an image, deter-
mine the plane in space that maps onto it. This will
be a plane passing through the camera centre, consist-
ing of points that map to the given image line. This
plane has a simple formula as follows.

The plane in space mapped to the line A by
the camera with matrix M is equal to M " A.

To justify this remark, note that a point x lies on the
plane with coordinates M " X if and only if AT Mx = 0.
This is also the condition for the point Mx to lie on
the line A.

Now, consider three cameras with matrices My =
(I10), Mi = (R | ry) and Mo = (S | s4). Let
Ao, A1 and Az be corresponding lines in the three im-
ages, each one the image of a common line in space.
The planes corresponding to these three lines are the
columns of the matrix

X R™A ST
0 I‘4T)\1 S4T)\2

Since these three planes must meet in a single line in
space, the above matrix must have rank 2. Therefore,
up to an insignificant scale factor,

)\0 = (RT)\l)(S4T)\2) — (ST)\Q)(I‘4T)\1) (1)

This important formula allows us to transfer lines from
a pair of images to a third image directly. In general,
we will represent a line in space simply by giving its
images A1 and Ay with respect to the two cameras
with matrices M7 and M.

Now, writing R = (r1,ra,r3) and S = (s1,s2,83)
where the r; and s; are the columns of R and S, we
see that the i-th entry (or row) of A¢ given in (1)
is (ri " A1)(s4" A2) — (51 ' A2)(ra T A1), which may be
rearranged as A; | (rpsy ' —rysg | )A2. This leads to a
second form of (1).

>\1T(I‘184T — I‘4SlT)>\2 >\1TT1)\2
Xo=| AT(resa’ —mus2 DA | = AT
>\1T(I‘3$4T — I‘4$3T)>\2 >\1TT3A2

2)
where the 3 x 3 matrices T}, are defined by this equa-
tion. Formula (2) is much the same as a formula given
for calibrated cameras in [8], but proven here for un-
calibrated cameras. In [8], the letters E, F and G are
used instead of Ty. However, since F' is the standard
notation for the fundamental matrix, we prefer to use
Tk. Equations (1) and (2) may be termed the transfer
equations in two alternative forms.

If sufficiently many line matches are known, it is
possible to solve for the three matrices Tj. In fact,
since each A} has two degrees of freedom, each set of
matched lines A < Al « A} gives rise to two linear
equations in the entries of Ty, T and T3. Exactly
how these equations may best be formulated will be
discussed later. Since the T, T> and T3 have a total
of 27 entries, but are defined only up to a common
scale factor, 13 line matches are sufficient to solve for
the three matrices. With more than 13 line matches,
a least-squares solution may be computed.



4 Retrieving the Camera Matrices

Formula (2) gives a formula for the transfer matri-
ces Ty, in terms of the camera matrices. We now show
that it is possible to go the other way and retrieve the
camera matrices, M; from transfer matrices Tj. It will
be assumed in this discussion that the rank of each of
the matrices T} is at least 2, which will be the case
except in certain special camera configurations. See
[8] for a discussion of methods applying to calibrated
cameras in the case where the rank of T} is less than
2.

Now, note that (ry x ri)"Tp = 0 since (ry x
ri,) 't = (rgxry) vy = 0. It follows that we can com-
pute ry X rj up to an unknown multiplicative factor by
finding the null-space of T, foreach k = 1, ..., 3. Since
the camera matrix M7 = (R | rq) = (r1,r2,1r3,r4) has
rank 3, the set of vectors {r4 x ry} has rank 2. Con-
sequently, ry (or —ry) may be computed as the unit
vector normal to all of ry X rg for £k =1,...,3. The
vector s4 may be computed in the same way.

To derive formulae for the camera matrices M7 and
M. we make use of the assumption (here for the first
time) that r4 " rj, = 0 for each i < 4. Then one verifies
that vy ' T, = —s | . This means that

M2 = (S | S4) = (—TlTI‘4, —TQTI‘4, —T3TI‘4,S4) .
(3)
Furthermore, substituting rs'Tp, = —si ' into the
formula T = risy| — r4si ! and multiplying by s4
gives Tjsy = 1, + 141y ' T)s4, from which one obtains
ry, = (I —ryry " )Tysy. Thus,

M1 = (R | 1‘4) = (AT1547ATQS4,AT3S4,I‘4) (4)
where A =T —ryry .

The correctness of these formulae is dependent on
the fact that Ty is of the form Tk = rySs' — rasi'.
In other words, if one computes M; and M; from the
Tk using (4) and (3) and then recomputes Ty using
(2) then one does not retrieve the same values of Tk
unless T}, is of the correct form.

5 Finding a Linear Solution.

We suppose for now that lines in an image are de-
fined by specifying a pair of end points. Let Ag <
A1 < A2 be three corresponding lines and suppose
that the two end points of Ag are ug = (ug,vo,1)"
and uj = (up,v,1)". Since Ao passes through ug
and uj) we get equations up' Ag = ufy' Ag = 0. Sub-
stituting (2) into these two equations we obtain two
linear equations in the entries of matrices Ty. There-
fore 13 line correspondences are sufficient to solve for
the matrices Ty up to a common scale factor. With
more than 13 correspondences a least-squares solution

is found. The least-squares solution does not minimize
the distance of the transferred line from the end points
up and ug, since the left hand sides of these two equa-
tions do not represent precisely the distance from the
transferred line to the endpoints of the measured line
Ao- As we shall see, a normalizing factor is missing.
This is the price we pay, however, to have a linear
algorithm. To understand this algorithm better, we
now consider the effect of noise, at the same time gen-
eralizing to lines defined by several points, rather than
just two end points.

We will suppose that lines in an image are defined
by specifying a number of points and that the best
line is the one that minimizes the sum of squares of
distances from the points to the line. If u = (u,v,1)"
and A = (\,u,v)", then the perpendicular distance
from the point u to the line A is given by

u’'X
A2+ p2)i2 -

If a line A is defined by a set of points u/, and
A= (A 1,0)7 is another line, then we define

AN = Y A

d(A,u) = (5)

= AT [ D W T | AN+ 4%)
J
= GATAX (6)

where A =}, wu'T and & = 1/(A2 + 2).

If lines A; and Ao are known, then the transfer
equation (2) states that a transferred line Ag may be
expressed as a linear combination of the entries of the
matrices T;. We may write this as Ag = Bt where t is
a 27-dimensional vector of the entries of the matrices
Ty. Then we may write

d*(Ao, Xo) = wtT (BTAB) t . (7)

Summing over a set of matches lines indexed by a
superscript ¢, one sees that the quantity to be mini-
mized is

ST (A, Ay = t7 (Z@iB”AgBi> t (8

Unfortunately, the constants &' are not known a-
priori, but depend on the values of the matrices Tj. A
linear solution may be found by assuming that all the
values of @ are equal to 1, or equivalently by seeking
to minimize the following expression.

deg,xg)/m —t7 (Z B”A@Bi> t  (9)
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The value of t that minimizes this expression is the
eigenvector corresponding to the minimum eigenvalue
of >, BT A} B, which is easily found using Jacobi’s
method ([5]). With perfect data, the smallest eigen-
value will be zero. Thus, one sees that using the linear
method to solve for the T} corresponds to the some-
what arbitrary decision to set all the & to 1 instead
of their proper values. This has the effect of weight-
ing all the lines differently, and leads to sub-optimal
results.

6 Getting the best solution

The linear methods described so far for comput-
ing the camera matrices are not stable in the presence
of noise. In fact, unless special care is taken, the re-
sults may be extraordinarily bad. It is necessary to
take extra precautions in order to get a good solu-
tion that is relatively immune to noise. The methods
described below give the best results among several
different approaches that were tested to avoid prob-
lems with noise. In fact, using these techniques result
in quite accurate and stable reconstruction.

6.1 Scaling the Coordinates.

If the units in the image plane are pixel numbers,
then a typical line will have an equation of the form
A+ pv +v = 0, where v >> A pu. In this case,
the matrix in (9) is poorly conditioned, having more
than one eigenvalue close to zero. By experiment, it
has been found that scaling all pixel coordinates so
that the pixel values in the data range between about
—1.0 and 1.0 works well, giving a far closer match of
the transferred line to the actual data than with the
unscaled coordinates. An alternative approach is to
try a range of scale factors, selecting the one that gives
the best sum-of-squares residual error. The residual
error is obtained by minimizing (9) to find the T}, then
computing line A using (2) and finally computing the
error using (8) to estimate the true quality of the fit.
Since this computation is quite fast, one can afford
repeated trials of this nature.

6.2 Converging on the optimal solution

In the presence of noise, the matrices T} obtained
by minimizing (9), or even (8) will not have the correct
form as given in (2). Hence the camera matrices com-
puted using (4) and (3) will not correspond precisely to
the computed T}. Furthermore, minimizing (9) does
not correspond exactly to minimizing the distance of
the constructed line Ay to the endpoints of Ag. Thus,
the computed camera matrices can only be considered
as an approximation to the optimal solution — and
not a very good approximation either. Nevertheless,
it is good enough to initialize an iterative algorithm
to converge to the optimal solution.

Starting from the initial solution found by the lin-
ear methods already described, we proceed by vary-
ing the entries of the camera matrices M; and M5 to
converge to the optimal solution. This is a straight-
forward parameter minimization problem, solved us-
ing the Levenberg-Marquardt algorithm ([5]). (See
also the paper [3] in these proceedings for applications
of the Levenberg-Marquardt algorithm to other recon-
struction problems.) The varying parameters are the
24 entries of the matrices M; and M5 and the quantity
to be minimized is the true error expression (8). The
lines Y and A} are not varied, but are set to the best
fit lines in the two images. The first form of the trans-
fer equation (1) is used to compute the lines Aj. Typi-
cally convergence occurs within 10 iterations. Further-
more, each iteration is very fast, since construction of
the normal equations ([5]) requires time linear in the
number of lines, and the normal equations are only of
size 24 x 24. For construction of the normal equations,
numerical (rather than symbolic) differentiation is ad-
equate, and simplifies implementation. The total time
required for reconstruction of 20 lines in three views
is not more than 5 seconds on a Sparc 2.

6.3 The Optimal Solution

The solution given in the previous example is not
quite optimal, since all the error is confined to mea-
surement in the zero-th image, instead of being shared
among all three images. The true optimal solution can

be found by approximating lines A% and A} by lines 5\11
and 5\; The variable parameters are the two camera
matrices My and M as well as the coordinates of the
lines 5\11 and 5\; The goal is to minimize the sum of
squares error given by a sum of terms of the form (6)
for all lines 5\; for j = 1,2,3. As before, the lines 5\8
are computed using (1).

The disadvantage of this approach is that there may
be a large number of varying parameters. This disad-
vantage is mitigated however by an implementation
based on the sparseness of the normal equations as
described in [6]. Carrying out this final iteration to
obtain a true optimal solution gives minimal gain over
the method described in the previous section. More-
over, it is definitely not a good idea to skip the previ-
ous iterative refinement step and attempt to find the
optimal solution right away. Convergence problems
can arise if this is done.

7 Reconstruction

Once the camera matrices are computed, it is a
simple task to compute the positions of the lines in
space. In particular, the line in space corresponding
to a set of matched lines Ag <+ A1 <> A2 must be the



e ra

Figure 1: Three photos of houses

intersection of the three planes M; ' A;. If the three
lines Ag, A1 and g satisfy the transfer equation (1),
then the three planes will meet exactly. This will be
the case with the lines estimated using either of the
two iterative methods described above. Consequently,
the line may be expressed as the intersection of any
two of the three planes.

8 Experimental Evaluation of the Al-
gorithm

This algorithm was tested as follows. Three images
of a scene consisting of two houses were acquired as
shown in Fig 1. Edges and vertices were obtained au-
tomatically and matched by hand. In order to obtain
some ground truth for the scene, a projective recon-
struction was done based on point matches using the
algorithm described in [2]. To carefully control noise
insertion, image coordinates were adjusted (by an av-
erage of about 0.5 pixels) so as to make the projec-
tive reconstruction agree exactly with the pixel coor-
dinates.

Lines were selected joining vertices in the image,
only lines that actually appeared in the image being
chosen (and not lines that join two arbitrary vertices),
for a total of 15 lines. Next, varying degrees of noise
were added to the endpoints defining the lines and
the algorithm was run to compute the projective re-
construction.

Finally for comparison, the algorithm was run on
the real image data. For this run, two extra lines
were added, corresponding to the half obscured roof
and ground line in the right hand house. Note that
in the three images the endpoints of these lines are
actually different points, since the lines are obscured
to differing degrees by the left hand house. One of the
advantages of working with lines rather than points is
that such lines can be used.

In order to judge the quality of the reconstruction,
and present it in a simple form, the errors in the po-
sitions of the epipoles were chosen. The epipolar po-
sitions are related to the relative positions and orien-
tations of the three cameras. If the computed cam-
era positions are correct, then so will be the recon-
struction. The epipoles in images M; and Ms cor-
responding to the centre of projection of camera My

Noise | residual | epipolar | epipolar
error error 1 error 2

0.1 1.82e-02 | 4.55e-01 | 4.27e-01
0.25 | 4.50e-02 | 1.15e+400 | 1.07e+00
0.5 8.89e-02 | 2.31e4+00 | 2.14e+00
1.0 1.74e-01 | 4.50e+4-00 | 4.26e+4-00
2.0 3.38e-01 | 7.29e+00 | 7.44e+00
3.0 9.96e-01 | 8.10e+01 | 2.56e+01
4.0 1.36e+00 | 2.15e+01 | 2.84e+01
- 3.10e-01 | 2.55e-01 | 7.27e-01

Table 1: Results of reconstruction for 15 lines from
three views. Dimension of the image is 640 x 484 piz-
els. The last line represents the reconstruction from
17 real data lines.

are simply the last columns of M; and M, respec-
tively. To measure whether two epipoles are close,
the following method was used. Let p and p be ac-
tual and computed positions of the epipole, each vec-
tor being normalized to have unit length. We define
d(p,p') = 180.0 + min(||p — pll, |Ip + B|)/m. If the
epipoles are close to the centre of the image, then this
quantity gives a measure of their distance. If they are
far from the image centre (which they are in this case —
the epipoles are at locations (8249, 2006) and (-17876,
23000) in Euclidean coordinates), this is an approx-
imate measure of the angular difference between the
radial directions to the epipoles. The factor 180/ is
included to give this angle in degrees.

The results of these experiments are given in Ta-
ble 1. The columns of this table have the following
meanings.

e Column 1 gives the standard deviation of zero-
mean gaussian noise added to both the w and v
coordinates of the end-points of the lines

e Column 2 gives the residual error, which is the
RMS distance of the images of the reconstructed
lines from the measured noisy end points of the
lines.

e Columns 3 and 4 (epipolar error) give the epipolar
error (described above) for the epipoles in images
1 and 2 corresponding to the camera centre of
image 0.

As can be seen from this table, the algorithm per-
forms quite well with noise levels up to about 2.0 pix-
els (the image size being 640 x 484 pixels). For 3.0
and 4.0 pixels error the residual error is still small,



but the epipolar error is large, meaning that the al-
gorithm has found a solution other than the correct
one. Since residual error should be of the order of the
injected noise, the solution found is apparently just
as good as the correct solution. Thus, the algorithm
has worked effectively, but the problem is inherently
unstable with this amount of noise. Note that 3-4
pixels’ error is more than should occur with careful
measurement.

The last line of the table gives the results for the
real image data, and shows very good accuracy.

9 Conclusions

The algorithm described here provides an effective
means of doing projective reconstruction from line cor-
respondences in a number of images. The algorithm is
rapid and quite reliable, provided the degree of error
in the image-to-image correspondences is not exces-
sive. It does, however require careful implementation
to avoid convergence problems. For more than about 2
pixels of error in an image of size about 512 x 512 pix-
els, the problem of projective reconstruction becomes
badly behaved. There exist multiple near-optimal so-
lutions. For high resolution images where the relative
errors may be expected to be smaller, the algorithm
will show enhanced performance.

It is to be expected that (as with reconstruction
from points [3]) the robustness of the reconstruction
will increase substantially with more than the mini-
mum number of views. This situation arises when an
object is tracked through several frames by a video
camera.

The work of [3] shows that a projective reconstruc-
tion may be converted to a Euclidean reconstruction
if all the cameras have the same calibration, or al-
ternatively Euclidean constraints are imposed on the
scene.
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