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Kruppa’s Equations Derived from the Fundamental
Matrix
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Abstract— The purpose of this note is to give a specific
form for Kruppa’s equations in terms of the Fundamen-
tal matrix. Kruppa’s equations can be written explicitly
in terms of the singular value decomposition (SVD) of the
fundamental matrix.
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I. Introduction

KRUPPA’S equations ([1]) received prominence in the
computer vision field through the work of Maybank,

Faugeras and Luong ([2], [3], [4]) where they were used
for autocalibration of a camera. They represent the basic
constraint on camera calibration induced by image corre-
spondences in two or more views. Though these equations
were derived in [2], the lack of a simple explicit form has
been an impediment to research in this area. This note
provides a simple derivation and form for Kruppa’s equa-
tions, based on the Singular Value Decomposition of the
fundamental matrix.

II. The DIAC and calibration

Kruppa’s equations are intimately connected with the
absolute conic. The properties of this conic and its con-
nection with calibration are reviewed next, for the readers’
convenience. It is seen that knowledge of the image of the
absolute conic is equivalent to calibration of the camera
that took the image. A camera mapping is represented
([5]) by a 3×4 matrix P = K[R | −Rt], where K is an up-
per triangular matrix of internal parameters of the camera,
and R and t represent the orientation and position of the
camera with respect to the world coordinate system. The
camera maps a point x in homogeneous coordinates to the
point u = Px in an image. Calibration of the camera refers
to the determination of the matrix K.
The absolute conic is a conic lying on the plane at in-

finity, having equation x2 + y2 + z2 = 0; t = 0, where
(x, y, z, t)� are coordinates of a point in 3-dimensional
space. The absolute conic does not contain any points with
real coordinates – it is composed entirely of complex points.
The image of the absolute conic in an image is however rep-
resentable by a real symmetric 3×3 matrix, as will be seen
next.
Define a vector x = (x, y, z)�. A point (x, y, z, 0)� is

on the absolute conic if and only if x�x = 0. Consider
a camera matrix P = K[R | −Rt]. A point (x, y, z, 0)�

on the absolute conic maps to u = P (x, y, z, 0)� = KRx.
Thus, x = R�K−1u, and the condition x�x = 0 becomes

The author is with G.E. CRD, Schenectady, NY, 12301., E-mail
hartley@crd.ge.com

u�K−�RR�K−1u = u�K−�K−1u = 0. Thus, a point
u is on the image of the absolute conic if and only if it
lies on the conic represented by the matrix K−�K−1. In
other words, K−�K−1 is the matrix representing the im-
age of the absolute conic. Taking inverses (dual conics,
[6]) reveals that KK� is the dual of the image of the ab-
solute conic. We will denote KK� by C. If C is known
then the calibration matrixK may be retrieved by Choleski
factorization. Specifically, any symmetric positive-definite
matrix (such as C) may be uniquely factored as a product
KK� such that K is an upper triangular matrix with pos-
itive diagonal entries ([7]). For an algorithm for Choleski
factorization, see [8].
Since we will be considering the absolute conic in subse-

quent pages, we adopt the following abbreviations :

AC means the absolute conic.
IAC means the image of the absolute conic.
DIAC means the dual of the image of the absolute conic.

We have shown how the calibration matrix K may be
retrieved if the matrix C representing the DIAC is known.
Conversely, if K is known, then C = KK� is determined.
This shows the intimate link between the IAC and cali-
bration. An important point to note is that the formula
C = KK� for the DIAC depends only on the calibration
matrix, and not on the orientation R or the position t of
the camera. The IAC is fixed under Euclidean motions of
the camera.

III. Kruppa’s Equations

Given two views of a scene taken with two different cam-
eras, one may compute a projective reconstruction of the
scene. If one has additional information that the cameras
used to image the two scenes have the same internal cali-
bration, then this implies a certain restriction on the class
of possible reconstruction. This in turn implies a restric-
tion on the internal calibration of the camera. This restric-
tion may be expressed by Kruppa’s equations, which will
be derived in this section. Kruppa’s equations will be for-
mulated here in terms of simple conditions on the DIAC,
which we have just seen is equivalent to internal calibra-
tion. The purpose of this section is to give a specific form
for Kruppa’s equations in terms of the Fundamental ma-
trix. Kruppa’s equations can be written explicitly in terms
of the Singular Value Decomposition [7] of the fundamental
matrix.
Consider two camera matrices P and P ′ with the same

calibration. Let C be the DIAC as imaged by these two
cameras. As was shown in section II the image of the abso-
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lute conic (IAC) is independent of the pose of the camera,
and so it is the same for the two cameras in question.
Let F be the fundamental matrix for the pair of cameras.

For reasons to become apparent later, we wish to apply pro-
jective transformations represented by 3×3 transformation
matrices A and A′ to the two images. After the transforma-
tions, the effective camera matrices will be AP and A′P ′,
corresponding to the camera projection followed by pro-
jective transformation of the image. This will of course
change the DIAC to some new conic envelopes, which we
will call D and D′. Since A and A′ may be different, we
can no longer assume that D = D′.
Suppose that A and A′ are chosen so that the fundamen-

tal matrix for the two new camera matrices AP and A′P ′

has the special form

E =



0 −1 0
1 0 0
0 0 0


 . (1)

This is a very special fundamental matrix having the
property that the two epipoles are at the origin and that
corresponding epipolar lines are identical in the two images.
Now, consider a plane passing through the two camera

centres, tangent to the absolute conic. Such a plane will
project to a pair of corresponding epipolar lines in the two
images, and these two lines will be tangent to the IAC.
Since there are two such tangential planes, there are two
pairs of corresponding epipolar tangents.
We recall that corresponding epipolar lines in the two

images are identical. Let (λ, µ, 0)� be a tangent to the
IAC. Since D is the DIAC in the first image, this tangential
relationship may be written as

(λ, µ, 0)D(λ, µ, 0)� = 0

and similarly, (λ, µ, 0)D′(λ, µ, 0)� = 0. Writing these two
equations out explicitly gives

λ2d11 + 2λµd12 + µ2d22 = 0

and
λ2d′11 + 2λµd

′
12 + µ2d′22 = 0

where D = [dij ] and D′ = [d′ij ], both of which are symmet-
ric.
Since the two tangent lines to the IAC must be the same

two lines in the two images, these two equations must have
the same pair of solutions for λ and µ. This means that
they must be identical equations (up to scale), and so

d11

d′11

=
d12

d′12

=
d22

d′22

. (2)

Next, we determine the form of the coefficients dij and
d′ij in terms of the DIAC, C and the two transformations
A and A′. Consider a transformation A. How does this
transformation transform lines ? Well, a point u lies on
a line λ if and only if λ�u = 0. This can be written as
λ�A−1Au = 0. Thus, u lies on λ if and only if Au lies on

A−�λ. Thus, A−�λ is the transformed line. Now, a line
λ belongs to a conic envelope C if and only if λ�Cλ =
0. This can be written as (λ�A−1)(ACA�)(A−�λ) = 0.
Thus, the transformation A maps the conic envelope C to
D = ACA�, and similarly A′ maps C to D′ = A′CA′�.
Now, we want to compute dij , where D = [dij ]. Let

A =




a1
�

a2
�

a3
�




where ai is the i-th row of A. Then, from D = ACA� we
compute dij = ai�Caj . A similar formula holds for d′ij .
Then (2) leads to the following explicit formula :

a1
�Ca1

a′1
�Ca′1

=
a1
�Ca2

a′1
�Ca′2

=
a2
�Ca2

a′2
�Ca′2

(3)

These are the Kruppa equations.
We conclude the derivation by finding an explicit form

for the matrices A and A′ in terms of the Singular Value
Decomposition of the fundamental matrix F . Let F be
written as F = UWV �, where U and V are orthogonal,
and W = diag(r, s, 0) is a diagonal matrix. We may write
this as follows:

F = U



r

s
1





0 −1 0
1 0 0
0 0 0






0 1 0
−1 0 0
0 0 1


V � .

We write

A′ =



r

s
1


U�

and

A =




0 1 0
−1 0 0
0 0 1


 V � .

Then, we see that F = A′�EA with A and A′ non-singular.
For a pair of matching image points u′ ↔ u we have
u′�Fu = 0. Thus, u′�A′�EAu = 0. Setting û = Au
and û′ = A′u′, we see that û′�Eû = 0. Thus, A and A′

are the two transforms that we require.
Matrix A′ can be written as

A′ =




a′1
�

a′2
�

a′3
�


 =



ru1
�

su2
�

u3
�


 .

where ui is the i-th column of U .
For A we have

A =




a1
�

a2
�

a3
�


 =




v2
�

−v1
�

v3
�


 .

where vi is the i-th column of V .
From (3) we obtain

v2
�Cv2

r2u1
�Cu1

=
−v2

�Cv1

rsu1
�Cu2

=
v1
�Cv1

s2u2
�Cu2

(4)

This is the promised explicit form for the Kruppa equa-
tions.
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A. Consequences of Kruppa’s Equations

Since the numerator and denominator of (3) or (4) are
linear expressions in the entries of the matrix C, the re-
sulting equations are quadratic. From (4) one obtains two
independent quadratic equations in the entries of C. Since
C is symmetric, and defined only up to a scale, it has 5
degrees of freedom. A single pair of views is clearly not
sufficient to determine C. However from three views, one
obtains three fundamental matrices, one for each of the
pairs of views. Now we have six quadratic equations in five
unknowns. It is not clear, of course that the six equations
are independent. However, as demonstrated empirically by
Luong ([4]) they are sufficient (at least with noise-free data)
to determine C. Direct determination of the calibration by
the solution of these simultaneous quadratics is possible, as
Luong showed. Solution is difficult because of the existence
of multiple solutions to non-linear equations, and the dif-
ficulties involved with solving redundant systems. Luong’s
method was to solve subsets of five equations, giving up to
25 = 32 solutions, and then to select solutions common to
all subsets of equations.
Special cases of the Kruppa equations are of interest, as

considered below.

Calibrated Cameras. If we assume that the calibra-
tion matrix of the cameras is the identity matrix K = I
in both cases, then the matrix C = KK� representing the
DIAC is also equal to the identity. In this case, Kruppa’s
equations (4) reduce to the form

1/r2 = 0/0 = 1/s2

where r and s are the singular values of the fundamental
(or essential) matrix. This implies r = s. In other words if
the calibration matrix is the identity, then the two non-zero
singular values of the fundamental matrix are equal. This
is an easy proof of a result of Huang and Faugeras ([9]).

Camera with known principal point. If the prin-
cipal point of the camera is known, then by a suitable
change of image coordinates one may assume that the prin-
cipal point is at the origin. If it is further assumed that
there is no skew parameter, then the calibration matrix
is a diagonal matrix of the form diag(ku, kv, 1). In this
case, C = diag(k2

u, k
2
v, 1) and the Kruppa equations (4) are

quadratic in the variables k2
u and k2

v. From two images we
have a pair of quadratic equations in two variables – suffi-
cient to solve for k2

u and k
2
v in a relatively straight-forward

manner. Thus under assumptions of known principal point,
and no skew one may solve for k2

u and k
2
v, and hence for

ku and kv. There may be up to four solutions, but only
positive solutions for k2

u and k
2
v need be considered. This

result may be derived also from the work of Luong, and is
generally known.

Translatory motion. In the case of pure transla-
tory motion of the camera, the fundamental matrix F is
skew-symmetric. This may be seen in a variety of ways.
For instance, if K[I | 0] and K[I | t] are the two cam-
eras, then (as follows immediately from [10], Lemma 2) the

fundamental matrix is given by F = K−�[t]×K−1, where

[t]× =




0 −t3 t2
t3 0 −t1
−t2 t1 0




is a skew-symetric matrix. Thus, F is skew-symmetric and
its Schur decomposition ([7]) is F = UEU� where U is
orthogonal and E is as given in (1). The two matrices A
and A′ required to transform F to the simple form (1) are
both equal. Thus both numerator and denominator are
equal in the form (3) of the Kruppa equations. Then equa-
tions (3) takes the simple form 1 = 1 = 1. Although this
is a significant fact1, it is not a useful constraint on cam-
era calibration. Thus, a translatory motion of the cameras
does not impose any constraint on camera calibration. It is
interesting that affine scene reconstruction is nevertheless
possible from translatory motions ([11]).
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1Attributed to Gertrude Stein


