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Abstract. We describe a method for determining a�ne and metric cal-

ibration of a camera with unchanging internal parameters undergoing

planar motion. It is shown that a�ne calibration is recovered uniquely,

and metric calibration up to a two fold ambiguity.

The novel aspects of this work are: �rst, relating the distinguished objects

of 3D Euclidean geometry to �xed entities in the image; second, showing

that these �xed entities can be computed uniquely via the trifocal tensor

between image triplets; third, a robust and automatic implementation of
the method.

Results are included of a�ne and metric calibration and structure recov-

ery using images of real scenes.

1 Introduction

From an image sequence acquired with an uncalibrated camera, structure of 3-

space can be recovered up to a projective ambiguity [5, 7]. However, if the camera

is constrained to have unchanging internal parameters then this ambiguity can

be reduced to metric by calibrating the camera using only image correspon-

dences (no calibration grid). This process is termed \self-calibration" [5, 11].

Previous attempts to make use of the constraint for image pairs have generated

sets of polynomial equations that are solved by homotopy continuation [8] or it-

eratively [8, 17] over a sequence. In this paper we demonstrate the advantages of

utilizing image triplets directly in the case of planar motion, both in the reduced

complexity of the equations, and in a practical and robust implementation.

To reduce the ambiguity of reconstruction from projective to a�ne it is nec-

essary to identify the plane at in�nity, �1, and to reduce further to a metric

ambiguity the absolute conic 
1 on �1 must also be identi�ed [4, 13]. Both �1

and 
1 are �xed entities under Euclidean motions of 3-space. The key idea in

this paper is that these �xed entities can be accessed via �xed entities (points,

lines, conics) in the image.

To determine the �xed image entities we utilise geometric relations between

images that are independent of three dimensional structure. The fundamental

geometric relation between two views is the epipolar geometry, represented by

the fundamental matrix [3]. This provides a mapping from points in one image

to lines in the other, and consequently is not a suitable mapping for determining

�xed entities directly. However, between three views the fundamental geometric



relation is the trifocal tensor [6, 14, 15], which provides a mapping of points to

points, and lines to lines. It is therefore possible to solve directly for �xed image

entities as �xed points and lines under transfer by the trifocal tensor.

In the following we obtain these �xed image entities, and thence the camera

calibration, from a triplet of images acquired by a camera with unchanging

internal parameters undergoing \planar motion". Planar motion is the typical

motion undergone by a vehicle moving on a plane | the camera translates in a

plane and rotates about an axis perpendicular to that plane. This extends the

work of Moons et al. who showed that a�ne structure can be obtained in the

case of purely translational motion [12]. We show that

1. A�ne structure is computed uniquely.

2. Metric structure can be computed up to a one parameter family, and this

ambiguity resolved using additional constraints.

Section 2, describes the �xed image entities and their relation to �1 and


1, and describes how these are related to a�ne and metric structure recov-

ery. Section 3 gives an algorithm for computing the image �xed points and lines

uniquely using the trifocal tensor. Section 4.1 describes results of an implemen-

tation of this algorithm, and section 4.2 results for a�ne and metric structure

recovery based on these �xed points from image triplets. All results are for real

image sequences.

Notation We will not distinguish between the Euclidean and similarity cases,

both will be loosely referred to as metric. Generally vectors will be denoted by

x, matrices as H, and tensors as T
jk
i . Image coordinates are lower case 3-vectors,

e.g. x, world coordinates are upper case 4-vectors, e.g. X. For homogeneous

quantities, = indicates equality up to a non-zero scale factor.

2 Fixed Image Entities for Image Triplets

Planar Motion Any rigid transformation of space may be interpreted as a rota-

tion about a screw axis and a simultaneous translation in the direction of the

axis [2]. There are two special cases { pure translation and pure rotation. In this

paper we consider the latter case. A planar motion of a camera consists of a

rotation and a translation perpendicular to the rotation axis. This is equivalent

to a pure rotation about a screw axis parallel to the rotation axis, but not in

general passing through the camera centre. The plane through the camera centre

and perpendicular to the rotation axis is the plane of motion of the camera. We

consider sequences of planar motions of a camera, by which we mean a sequence

of rotations about parallel but generally distinct rotation axes. The plane of

motion is common to all the motions. For visualisation, we assume the plane of

motion is horizontal and the rotation axes vertical.

3D �xed entities The plane at in�nity and absolute conic are invariant under

all Euclidean actions. These are the entities that we desire to �nd in order



to compute respectively a�ne or metric structure. These entities can not be

observed directly, however, so we attempt to �nd them indirectly. To this end

we consider �xed points of a sequence of planar motions. A single planar motion

has additional �xed entities, the screw axis (�xed pointwise), and the plane

of motion (�xed setwise). In fact, any plane parallel to the plane of motion is

�xed. The intersection of this pencil of planes with the plane at in�nity is a line

(�xed setwise). Although this line is �xed only as a set, its intersection with the

absolute conic, 
1, consisting of two points, is �xed pointwise by the motion.

These two points are known as the circular points, denoted I and J , and lie

on every plane parallel to the plane of motion. Knowledge of these two circular

points is equivalent to knowing the metric structure in each of these planes ([13]).

The two circular points are �xed for all motions in a sequence of planar

motions with common plane of motion. This is not true of the �xed screw axes,

since we assume in general that the screw axis is not the same for all motions.

However, since the screw axes are parallel, they all intersect at the plane at

in�nity at a point which we shall denote by V . The points I, J and V and

their relation to 
1 is shown in �gure 1. They are �xed by all motions in the

sequence.

V
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Fig. 1. The �xed entities on �1 of a sequence of Euclidean planar motions of 3-space.

V is the ideal point of the screw axis, and L the ideal line of the pencil of planes,

orthogonal to the screw axis. I and J are the circular points for these planes, de�ned

by the intersection of L with 
1. V and L are pole and polar with respect to the
absolute conic.

If by some means we are able to �nd the locations of the points I, J and V in

space, then we are able to determine the plane at in�nity �1 as the unique plane

passing through all three of them. This is equivalent to determining the a�ne

structure of space. Although we do not know 
1, and hence can not determine

metric structure, we at least know two points on this absolute conic, and hence

know the Euclidean geometry in every plane parallel to the plane of motion.



Fixed image entities Our goal is to �nd the three points I, J and V . Since

they are �xed by the sequence of motions, their images will appear at the same

location in all images taken by the moving camera (assuming �xed internal

calibration). We are led to inquire which points are �xed in all images of a

sequence. A �xed point in a pair of images is the image of a point in space that

appears at the same location in the two images. It will be seen that apart from

the images of I, J and V there are other �xed image entities. We will be led to

consider both �xed points and lines.

The locus of all points in space that map to the same point in two images

is known as the horopter curve. Generally this is a twisted cubic curve in 3-

space passing through the two camera centres [10]. One can �nd the image of

the horopter using the fundamental matrix of the pair of images, since a point on

the horopter satis�es the equation x>Fx = 0. Hence, the image of the horopter

is a conic de�ned by the symmetric part of F, namely Fs = F+ F
>.

In the case of planar motion, the horopter degenerates to a conic in the plane

of motion, plus the screw axis. The conic passes through (and is hence de�ned

by): the two camera centres, the two circular points, and the intersection of the

screw axis with the plane of motion. It can be shown that for planar motion

Fs is rank 2 [10], and the conic x>Fx = x>Fsx = 0, which is the image of

the horopter, degenerates to two lines. These lines are the image of the screw

axis and the image of the plane of motion | the horizon line in the image [1].

The epipoles and imaged circular points lie on this horizon line. The apex (the

vanishing point of the rotation axis) lies on the imaged screw axis. These points

are shown in �gure 2a. Although the lines can be computed from Fs, and the

imaged circular points and apex lie on these lines, we have not yet explained

how to recover these points.
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Fig. 2. Fixed image entities for planar motion. (a) For two views the imaged screw

axis is a line of �xed points in the image under the motion. The horizon is a �xed line

under the motion. (b) The relation between the �xed lines obtained pairwise for three
images under planar motion. The image horizon lines for each pair are coincident, and

the imaged screw axes for each pair intersect in the apex. All the epipoles lie on the

horizon line.



We now consider �xed points in three views connected via planar motions.

To do this, we need to consider the intersection of the horopter for cameras 1

and 2 with that for cameras 2 and 3. Each horopter consists of a conic in the

plane of motion, plus the vertical axis. The two vertical axes, supposed distinct,

meet at in�nity at the point V . The two conics meet in 4 points, namely the

circular points I and J , the centre of the second camera, plus one further point

that is �xed in all three views. The horopter for cameras 1 and 3 will not pass

through the second camera centre. Thus we are left with 4 points that are �xed

in all three images. These are the circular points I and J , a third point X lying

on the plane of motion, and the ideal point V .

Any two �xed points de�ne a �xed line, the line passing through them. Since

three of the points, namely the images of points I, J and the third point are

collinear, there are just 4 �xed lines. There can be no others, since the intersection

of two �xed lines must be a �xed point. We have sketched a geometric proof of

the following theorem.

Theorem For three views from a camera with �xed internal parameters undergo-

ing general planar motion, there are four �xed points, three of which are collinear:

1. The vanishing point of the rotation axes, v (the apex).

2. Two complex points, the images of the two circular points I; J on the horizon

line.

3. A third point x on the horizon line and peculiar to the image triplet.

There are four �xed lines passing through pairs of �xed points.

3D Structure Determination A method for determining a�ne and metric struc-

ture is as follows. One determines the �xed points in the three images using the

trifocal tensor as described in the following section. The third real collinear �xed

point x can be distinguished from the complex circular points, the images of I

and J . This third point is discarded. The 3-D points I, J and V corresponding

to these �xed image points may be reconstructed. These three points de�ne the

plane at in�nity, and hence a�ne structure. Planar metric structure is deter-

mined by the circular points I and J . Thus, in the absence of other constraints,

3D structure is determined up to a Euclidean transformation in planes paral-

lel to the plane of motion, and up to a one dimensional a�ne transformation

perpendicular to the plane of motion.

Following Luong and Vieville [9] an additional constraint is provided by as-

suming the skew parameter is zero i.e. that the image axes are perpendicu-

lar. This is a very good approximation in practice. This constraint results in a

quadratic polynomial giving two solutions for the internal calibration matrix,

and hence for the recovery of metric structure. Alternatively, an assumption of

equal scale factors in the two coordinate axis directions will allow for unique

metric reconstruction.

We have now described the structure ambiguity once the �xed image entities

are identi�ed. The next section describes a method of identifying the �xed image

entities using the trifocal tensor.



3 Fixed image entities via the trifocal tensor

Suppose the 3 � 4 camera projection matrices for the three views are P, P0 and

P
00. Let a line in space be mapped to lines l, l0 and l00 in three images. A trilinear

relationship exists between the coordinates of the three lines, as follows :

li = l
0

j l
00

kT
jk
i (1)

where T
jk
i is the trifocal tensor [6]. Here and elsewhere we observe the convention

that indices repeated in the contravariant and covariant positions imply summa-

tion over the range (1; : : : ; 3) of the index. A similar relationship holds between

coordinates of corresponding points in three images.

The trifocal tensor can be computed directly from point and line matches

over three views. It can also be directly constructed from the camera projection

matrices P, P0 and P
00 as follows. Assuming that P = [I j 0], we have the formula

T
jk
i = p

0j
i p

00k
4 � p

0j
4 p

00k
i (2)

where p
0i
j and p

00i
j are the (ij)-th entry of the respective camera matrices, index

i being the contravariant (row) index and j being the covariant (column) index.

Now in order to �nd �xed lines, we seek solutions l to the equations (from (1))

li = lj lkT
jk
i (3)

In (1) as well as (3) the equality sign represents equality up to a non-zero scale

factor. We may remove the unknown scale factor in (3) by taking the cross

product of the two sides and equating the result to the zero vector. This results

in three simultaneous homogeneous cubic equations for the components of l. In

the following we discuss methods for obtaining the solutions to these cubics.

First we describe the general case, and then show that this can be transformed

to a special case where the solution reduces to a single cubic in one variable.

The transformation required is a plane projective transformation of the images.

Finally, we arrive at a two step algorithm, tailored to real images, for determining

the �xed image points and lines.

3.1 General Planar Motion

We consider three views taken by a camera undergoing planar motion. Without

loss of generality, we may assume that the camera is moving in the plane Y = 0.

The rotation axes are perpendicular to this plane, and meet at the point at in�n-

ity (0; 1; 0; 0)> . We assume that the camera has �xed, but unknown calibration.

The origin of coordinates may be chosen at the location of the �rst camera,

which means that the camera has matrix P = H[I j 0], for some matrix H. The

other two camera di�er by a planar motion from this �rst camera, which means

that the three camera have the form

P = H[I j 0] P
0 = H[R0 j t0] P

00 = H[R00 j t00] (4)



where R
0 and R

00 are rotations about the Y axis, and t0 and t00 are translations

in the plane Y = 0.

One may solve for the �xed lines using the trifocal tensor T
jk
i . Denoting a

�xed line l for convenience as l = (x; y; z) instead of (l1; l2; l3), the �xed line

equation li = lj lkT
jk
i may be written as

0
@x

y

z

1
A �

0
@ h

(2)(x; y; z)

h
0(2)(x; y; z)

h
00(2)(x; y; z)

1
A (5)

where the superscript (2) denotes the degree of the polynomial. Setting the cross-

product of the two sides of this equation to zero, one obtains a set of three cubic

equations in x, y and z. By the discussion of section 2, there should be four �xed

lines as solutions to this set of equations.

The �rst thing to note, however, is that the three equations derived from

(5) are not linearly independent. There are just two linearly independent cubics.

Inevitably, for a trifocal tensor computed from real image correspondences, the

solutions obtained depend on just which pair of the three equations one chooses.

Furthermore, if there is noise present in the image measurements, then the num-

ber of solutions to these equations increases. In general, two simultaneous cubics

can have up to 9 solutions. What happens is that one obtains a number of dif-

ferent solutions close to the four ideal solutions. Thus, for instance, there are a

number of solutions close to the ideal horizon line. Generally speaking, proceed-

ing in this way will lead into a mire of unpleasant numerical computation.

3.2 Normalized Planar Motion

One can simplify the problem by applying a projective transformation to each

image before attempting to �nd the �xed lines. The transformation to be applied

will be the same for each of the images, and hence will map the �xed lines to

�xed lines of the transformed images. The transformation that we apply will

have the e�ect of mapping the apex point v to the point at in�nity (0; 1; 0)>

in the direction of the y-axis. In addition, it will map the horizon line to the

x-axis, which has coordinates (0; 1; 0)>. The transformed images will correspond

to camera matrices

~P = GH[I j 0] ~P
0 = GH[R0 j t0] ~P

00 = GH[R00 j t00]

where G represents the applied image transformation. We considering now the

�rst camera matrix ~P. This matrix maps (0; 1; 0; 0)>, the vanishing point of the

Y axis, to the apex (0; 1; 0)> in the image. Furthermore the plane Y = 0 with

coordinates (0; 1; 0; 0) is mapped to the horizon line (0; 1; 0)> as required. This

constrains the camera matrix ~P = [GH j 0] to be of the form

~P = [GH j 0] =

2
4� 0 � 0

0 � 0 0

� 0 � 0

3
5 (6)



where 0 represents a zero entry and � represents a non-zero entry.

Consider now the other camera matrices ~P
0 and ~P

00. Since R
0 and R

00 are

rotations about the Y axis, and t0 and t00 are translations in the plane Y = 0,

both [R0 j t0] and [R00 j t00] are of the form [16]

2
4� 0 � �

0 � 0 0

� 0 � �

3
5 (7)

Premultiplying by GH, we �nd that both ~P
0 and ~P

00 are of the same form (7).

This particularly simple form of the camera matrices allows us to �nd a simple

form for the trifocal tensor as well. In order to apply formula (2), we require

matrix P to be of the form P = [I j 0]. This can be achieved by right multiplica-

tion of all the camera matrices by the 3D transformation matrix

�
(GH)�1 0

0 1

�
. It

may be observed that this multiplication does not change the format (7) of the

matrices ~P0 and ~P
00. Now, for i = 1 or 3, we see that ~p0i and ~p

00

i are of the form

(�; 0;�)>, whereas for i = 2, they are of the form (0;�; 0)>. Further, ~p04 is of

the form (�; 0;�)>. One easily computes the following form for ~T��i .

~T��i =

2
4� 0 �

0 0 0

� 0 �

3
5 for i = 1; 3 ~T��2 =

2
4 0 � 0

� 0 �

0 � 0

3
5 (8)

Using this special form of the trifocal tensor, we see that (3) may be written

as 0
@x

y

z

1
A =

0
@ a1x

2 + b1xz + c1z
2

d2xy + e2yz

a3x
2 + b3xz + c3z

2

1
A (9)

where l = (x; y; z)> represents a �xed line. This set of equations has eight

parameters fa1 : : : c3g. The �xed lines may be found by solving this system of

equations. One �xed point in the three views is the apex, v = (0; 1; 0)>. Let us

consider only lines passing through the apex �xed in all three views. Such a line

has coordinates (x; 0; z). Thus, we may assume that y = 0. The equations (9)

now reduce to the form �
x

z

�
�

�
a1x

2 + b1xz + c1z
2

a3x
2 + b3xz + c3z

2

�
(10)

Cross-multiplying reduces this to a single equation

z(a1x
2 + b1xz + c1z

2) = x(a3x
2 + b3xz + c3z

2) (11)

This is a homogeneous cubic, and may be easily solved for the ratio x : z. The

solutions to this cubic are the three lines passing through the apex joining it

to three points lying on the horizon line. These three points are the images of

the two circular points, and the third �xed point. The third �xed point may

be distinguished by the fact that it is a real solution, whereas the two circular



points are a pair of complex conjugate solutions. The third �xed point is of no

special interest, and is discarded.

This analysis is an example of a generally useful technique of applying geo-

metric transformations to simplify algebraic computation.

3.3 Algorithm Outline

We now put the parts of the algorithm together. The following algorithm de-

termines the �xed lines in three views, and hence the apex and circular points

on the horizon line. The �rst four steps reduce to the case of normalized planar

motion. The �xed points and lines are then computed in steps 5 to 7, and the

last step relates the �xed points back to the �xed points in the original images.

1. Compute the fundamental matrix for all pairs of image, and obtain the

epipoles.

2. Find the orthogonal regression line �t to the epipoles. This is the horizon

line l.

3. Decompose the symmetric part of the F's into two lines, this generates the

image of the screw axis for each pair. Find the intersection of the imaged

screw axes, or in the presence of noise, the point with minimum squared

distance to all the imaged screw axes. This determines the apex v.

4. Find a projective transformation G taking the horizon line to the line (0; 1; 0)

and the apex to the point (0; 1; 0). Apply this projective transform to all

images.

5. For three views, compute the trifocal tensor from point and line matches,

enforcing the constraint that it be of the form described in (8).

6. Compute the cubic polynomial de�ned in (9) and (11), and solve for the

ratio x : z. There will be two imaginary and one real solution. Discard the

real solution. The imaginary solutions will be lines with coordinates (1; 0; z)

and (1; 0; �z) passing through the apex and the two circular points on the

horizon line.

7. Compute the intersection of the horizon line (0; 1; 0) and the line (1; 0; z).

This is the point (�z; 0; 1). Do the same for the other solution (1; 0; �z).

8. Apply the inverse transform G
�1 to the two circular points to �nd the image

of the two circular points in the original images.

4 Results

Numerical results are improved signi�cantly by enforcing that both F and Fs are

rank 2 during the minimization to compute the fundamental matrix. Implemen-

tation details of the algorithms are given in [18].

4.1 Fixed image points and lines

In this section we describe the results of obtaining the �xed points/lines over

image triplets. These points are used for a�ne and metric calibration, which is

described in section 4.2.



The image sequences used are shown in �gure 3 (sequence I) and �gure 4

(sequence II). The �rst sequence is acquired by a camera mounted on an Adept

robot, the second by a di�erent camera mounted on an AGV. The latter sequence

has considerably more camera shake, and consequently is not perfect planar

motion.

Figure 5 shows the two view �xed lines obtained from the seven sequential

image pairs from sequence I. The trifocal tensor is computed for the six sequen-

tial image triplets, and the circular points computed from the �xed points of

the tensor. The results are given in table 1a. The circular points are certainly

stable, but it is di�cult to quantify their accuracy directly because they are

complex. In the next section the circular points are used to upgrade projec-

tive structure to a�ne and metric. The accuracy of the circular points is hence

measured indirectly by the accuracy of the recovered structure. For comparison,

the estimated circular points, based on approximate internal parameters, are

(400� 1100i;�255; 1)>.

The camera undergoes a smaller rotation in sequence II and the images are

noisier due to camera shake. Superior results are obtained by using fundamen-

tal matrices from image pairs which are separated by 2 time steps (i.e. pairs

f1,4g,f1,5g,f2,4g,...), rather than sequential image pairs. Figure 6 shows these

results. The tensor is calculated using image triplets separated by one time step

(i.e. triplets f1,3,5g,f2,4,6g,...). The circular points computed are shown in ta-

ble 1b. The estimated circular points, based on approximate internal parameters,

are (257� 800i; 196� 45i; 1)>.

4.2 Structure Recovery

Section 4.1 obtained the 3 �xed points of image triplets using the algorithm of

section 3.3. These points de�ne the position of the plane at in�nity �1, which

allows a�ne structure to be recovered. In this section we describe the results

of an implementation of a�ne and metric structure recovery, and assess the

accuracy by comparing with ground truth.

A�ne Structure Using the image sequence in �gure 3, and the circular points

listed in table 1a, a�ne structure is recovered. We can quantify the accuracy of

Fig. 3. Image sequence I: four images from an eight image sequence acquired by a

camera mounted on an Adept robot arm. Planar motion with the rotation axis at
approximately 25o to the image y axis and perpendicular to the image x axis. 149

corners are automatically matched and tracked through the 8 images. The Tsai grids

are used only to provide ground truth, not to calibrate.



Fig. 4. Image sequence II: four images from a nine image sequence. Planar motion

with the rotation axis approximately aligned with the image y axis. 75 corners are
automatically matched across the 9 images. The sequence was acquired by a camera

mounted on an AGV.
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Fig. 5. The �xed points and lines obtained from all 7 possible sequential image pairs

from sequence I (�gure 3), with axes in pixels. � are the epipoles, dashed and solid

lines are the screw axes and the horizon respectively, � is the apex at (394,2370). The

horizon line is at y = �255.

the a�ne structure by comparing the values of a�ne invariants measured on the

recovered structure to their veridical values. The a�ne invariant used is the ratio

of line segment lengths on parallel lines. The lines in the scene are de�ned by the

corners on the partially obscured calibration grid shown in �gure 3. The veridical

value of these ratios is 1.0, and the results obtained are shown in table 2. Clearly,

the projective skewing has been largely removed.

Metric Structure Metric structure in planes parallel to the motion plane (the

ground plane here) is recovered for the sequence in �gure 3. The accuracy of the

metric structure is measured by computing an angle in the recovered structure

with a known veridical value. We compute two angles for each image triplet.

First is the angle between the planes of the calibration grid. We �t planes to 23

and 18 points on the left and right faces respectively and compare the interplane

angle to a veridical value of 90o. Second is the angle between the three computed

camera centres for each image triplet which is known from the robot motion. The



Image Triplet Circular points

123 (415� 1217i;�255; 1)>

234 (393� 1229i;�255; 1)>

345 (407� 1225i;�255; 1)>

456 (445� 1222i;�255; 1)>

567 (372� 1274i;�255; 1)>

678 (371� 1232i;�255; 1)>

Image Triplet Circular points

135 (301� 698i; 199� 39i; 1)>

246 (244� 866i; 196� 48i; 1)>

357 (265� 714i; 197� 40i; 1)>

468 (583� 747i; 214� 42; 1)>

579 (302� 691i; 199� 39; 1)>

a b

Table 1. The circular points obtained (complex conjugates) for (a) sequence I (�gure 3)

and (b) sequence II (�gure 4). Note, the stability of the points estimated from di�erent

triplets.
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Fig. 6. The �xed points and lines sequence II, �gure 4, with axes in pixels. � are the
epipoles, dashed and solid lines are the screw axes and the horizon line respectively, �

is the image apex at (1430,4675). The horizon line passes through (0,182).

camera centres are computed from the camera projection matrices.

Table 2 shows the computed angles for the 6 image triplets from sequence I,

while �gure 7 shows a plan view of the recovered metric structure from the �rst

image triplet.

5 Conclusions and extensions

We have demonstrated the geometric importance of �xed points and lines in an

image sequence as calibration tools. These �xed entities have been measured,

and used to recover a�ne and partial metric structure from image sequences of

real scenes. There are a number of outstanding questions, both numerical and

theoretical:

1. We have demonstrated that estimates of the plane at in�nity and camera

internal parameters can be computed from image triplets. It now remains

to derive the variance of these quantities. Then a recursive estimator can



A�ne Invariants Metric Invariants

standard Plane angle Motion Angle

Image Triplet max min average deviation (90o � 1o) Actual Computed

123 1.156 0.938 1.034 0.070 86.6 63.8 52.4

234 1.113 0.896 0.994 0.072 90.7 139.1 137.8
345 1.080 0.872 0.980 0.070 92.3 75.0 81.4

456 1.112 0.948 1.015 0.049 85.7 101.7 92.3

567 1.072 0.938 1.010 0.040 89.1 33.0 28.5
678 1.100 0.976 1.022 0.037 88.7 76.1 66.0

Table 2. A�ne Invariants The ratio of lengths of parallel lines measured on the re-

covered a�ne structure of the calibration grid. The veridical value is unity. Metric

Invariants Angles measured in the ground plane. The interplane angle for the calibra-

tion grid, and the angle between the computed camera centres.

Fig. 7. Plan view of the structure recovered from the �rst image triplet of sequence

I. The �rst three camera centres are marked with �. The calibration grid and other

objects are clearly shown.

be built, such as an Extended Kalman Filter, which updates the plane at

in�nity and camera calibration throughout an image sequence.

2. The image of the absolute conic is a �xed entity over all images with un-

changing internal parameters. The study of �xed image entities opens up the

possibility of solving for this directly as the �xed conic of a sequence.
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