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Abstract

A common practice when carrying out self-calibration of a
camera from one or more views is to start with a guess at the
principal point. The general belief is that inaccuracies in the
estimation of the principal point do not have a significant ef-
fect on the other calibration parameters. It is the purpose of
this paper to refute that belief. Indeed, it is demonstrated that
the determination of the focal length of the camera is tied up
very closely with the estimate of the principal point. Small
changes in the estimated (sometimes merely guessed) princi-
pal point can cause very large changes in the estimated focal
length. In fact, the relative uncertainty in the focal length is
inversely proportional to the distance of the principal point
to the epipolar line. This analysis is geometric and exact,
rather than experimental.

1 Introduction

We are concerned throughout with natural pinhole cameras,
that is cameras with zero skew and unit (or known) aspect
ratio. First, we consider calibration of a camera from a sin-
gle view, in which a horizon line and a vertical direction, or
vertical vanishing point may be identified. Given knowledge
of the principal point, the focal length may be determined by
an easy geometric construction, from which the dependence
of the focal length on the principal point estimate is easily
seen.

This single-view case is next extended to the two-view
case, in which the focal lengths of each camera may be de-
termined from the fundamental matrix alone. It is shown that
this problem may be reduced to the previous case of single-
view calibration, by considering the horizon line and perpen-
dicular vanishing direction of the plane formed by the base
line and one of the camera’s principal rays. The sensitivity of
this process to variations in the principal point then becomes
evident.
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Figure 1: Three orthogonal vanishing points are found from
the image. The principal point lies at the orthocentre of the
triangle formed by the vanishing points. Consequently, it lies
on the perpendicular line from the apex to the horizon.

2 Calibration from a single image

Throughout this paper, we assume that the skew of the cam-
era is zero, and the aspect ratio is equal to one. Thus, the
only remaining parameters of the camera are the focal length
and the principal point.

We consider calibration of the camera (determination of
the focal length and principal point) from a single view.
Clearly this can not be done without some scene informa-
tion, and many ways have been proposed to do this. It is not
within the scope of this paper to investigate the sensitivity
of all methods, and in fact, we will concentrate on one cali-
bration approach. The method investigated here is related to
the work of [LZ98], also considered in [HZ00]. Vanishing
points of parallel lines are used to determine the calibration.
In particular, if the vanishing points in three orthogonal di-
rections are known, then the principal point may be identified
as the orthocentre of the triangle that has the three orthogonal
vanishing points as its vertices ([LZ98]). See Fig 1, which
illustrates this point. As will be seen below, the focal length
of the camera may be uniquely determined once the principal
point is known.

If the vanishing points of all three orthogonal directions
are known, then the camera may be completely calibrated.
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Figure 2: An example of an image for which it is possible to
compute the focal length of the camera, assuming knowledge
of the principal point. To do this, it is sufficient to identify the
horizon and a vertical vanishing direction. In this image, the
exact position of the horizon can be established with the aid
of the vanishing points of the ground markings and shadows.
The image of the apex may be computed as the intersection
of the edges of the two flag-poles. Focal length may then be
computed using (1).

Thus, the focal length and the principal point are completely
determined, and in particular, the focal length may be de-
termined without any extra assumptions about the principal
point. Therefore, we consider a calibration problem in which
there is a little less information available. Accordingly, we
assume that the horizon line and the vertical vanishing point
(henceforth known as the apex) are identified in an image.
An example of such an image is given in Fig 2. The prin-
cipal point in the image must lie on the perpendicular from
the apex to the horizon. Thus, the principal point has a sin-
gle remaining degree of freedom. Suppose that the principal
point is the point p in the image, v is the vertex, and h is
the foot of the perpendicular from the apex to the horizon.
In this case, the focal length may be computed by a simple
formula:

f2 = −d(p,h)d(p,v) (1)

where f is the focal length, and d(·, ·) represents the (signed)
Euclidean distance. The negative sign in this expression ex-
presses the fact that d(·, ·) is a signed quantity, and that the
direction vectors from the principal point to the horizon and
the apex must be in opposite directions in order for f 2 to be
positive, as given by this formula. In other words, the prin-
cipal point must lie between the horizon and the apex. Proof
of this formula is given in Fig 3.

The focal length may be computed by a simple geomet-
ric construction, as follows. Let C be the circle with the
line from apex v to horizon h as diameter. The line in
the image through the principal point p meets the circle C
in two points a and b. By elementary geometry of a cir-
cle, d(p,a)d(p,b) = d(p,v)d(p,h), and since d(p, a) =

v

h

p O
f

Figure 3: The diagram shows the vertical plane containing
the principal ray of the camera. The two rays to the horizon
and the apex are perpendicular to each other, meeting the
focal plane at points h and v respectively. The focal length
is the distance from the camera centre to the focal plane. By
similar triangles, f 2 = −d(p,h)d(p,v).

−d(p,b) it follows that f = d(p, a). The circle constructed
with centre p passing through a and b is the 45◦ circle in
the image. This is illustrated in Fig 4, and on a real im-
age in Fig 5. Since f is the distance from p to the circle C
along a line drawn perpendicular to the diameter vh, the way
f varies as a function of the presumed principal point loca-
tion is easily visualized. In particular, as the principal point
moves towards the horizon, or the apex in the image, the cor-
responding value of the focal length f diminishes towards
zero.

If an image is taken with a camera aimed directly at the
horizon, the principal point corresponds with the point h on
the horizon, and so d(p,h) = 0. In this case, however, the
distance to the apex will be infinite, and hence f 2 = 0×∞,
and the computed value of f will be indeterminate. From
this, we see that it is impossible to compute f from this con-
figuration if the camera is pointed directly at the horizon, or
the apex.

2.1 A different formula.

It is sometimes difficult to measure the distance of the prin-
cipal point to the apex, particularly if the apex is far away
from the visible area of the image. A simple modification
of the image takes care of that problem. Suppose that l is
a line from the apex to the horizon, not passing through the
principal point. This can be the image of a vertical object in
the scene. Let s1 = d(p,h) be the orthogonal distance from
the principal point to the horizon, and let s2 = d(p, l) be the
orthogonal distance from the principal point to the line l. Let
θ be the angle between line l and the horizon. Then

f2 = s1s2/cosθ (2)
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Figure 4: A circle (black) is drawn with diameter the perpen-
dicular line between the apex v and the horizon PQ. The
principal point must lie on this line. A line is drawn through
p perpendicular to vh. This meets the circle in two points a
and b. The focal length equals the distance d(p,a), and the
circle with diameter ab is the 45◦ circle in the image (shown
in red).

The proof of this is immediate from Fig 6.

Sensitivity of f . In terms of (2) it is easy to write down
an expression for the uncertainty of the focal length in terms
of small errors in the three parameters s1, s2 and θ. Since
df = ∂f/∂s1ds1 +∂f/∂s2ds2 +∂f/∂θdθ, simple calculus
leads to the following formula for the relative change in f .

df/f = 1/2 (ds1/s1 + ds2/s2 + tanθdθ) (3)

From this we see that f is sensitive to small changes in the
measurements of s1, s2 and θ when s1 or s2 are small, or
θ is close to 90◦. In particular, it is impossible to estimate
f accurately when the principal point is close to the horizon
line, since in this case s1 is small, and the angle θ will be
close to 90◦.

Dependence of f on the principal point. It was seen
above that if the horizon and apex are identifiable in an im-
age, then the principal point position may vary with one de-
gree of freedom, along the line through the apex perpendic-
ular to the horizon. If there is only one vertical line feature
visible in the image, then the apex may not be identified, but
instead may lie anywhere along the image of the vertical line.
The principal point may now vary with two degrees of free-
dom anywhere in the image. Figure 7 gives an example of
such an image. For a choice of the principal point, the focal
length may be computed using (2), or by direct geometric
construction, as shown previously. However, because of the
added degree of freedom, the computed focal length depends
more dramatically on the assumed position of the principal

Figure 5: This image shows the computation of the focal
length of the camera assuming a principal point at the cen-
tre of the image. The original image is shown above, and the
construction below. Since the horizon line (blue) is not di-
rectly visible in this image, it is computed as the line joining
two horizontal vanishing points, computed from the right-
hand wall and the grid on the door (green lines). Note that
these are not orthogonal vanishing points. The vertical van-
ishing point is given by the sides of the door and the door
frame (red lines). The red circle is the 45◦ circle, with radius
f , assuming the principal point is placed as shown (at the
centre of the red circle).

point. It may vary from near zero, when the principal point
is assumed to be close to the intersection of the horizon and
vertical line, to large values when the principal point is far
from both these lines.

3 Calibration from two views

Next, the calibration methods for a single view discussed
above will be extended to consideration of calibration from
two views. This problem was first addressed in [Har92]
where an algorithm for computing the two focal lengths was
given. This algorithm was quite complicated, and the prob-
lem was later considered by several authors. The most com-
pact solution was found by Bougnoux in [Bou98], where a
simple formula was given for the two focal lengths in terms
of the fundamental matrix and the two principal points (see
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Figure 6: Since d(p,v) = s2/cosθ, it follows from (1) that
f2 = −s1s2/cosθ.

equation (5) below). This formula will be rederived here in a
way that sheds light on its geometric meaning, and its sensi-
tivity to variations in the assumed positions of the principal
point. It will be shown that Bougnoux’s formula is closely
related to (2), and has a simple geometric interpretation.

First, we note that in order to compute the focal lengths,
the positions of the two principal points need to be known.
The geometry of two views may be summarized in Fig 8.
The two camera centres O1 and O2 are joined by a baseline
O1O2 and the view direction of each camera is defined by the
principal rays, R1 and R2 of the cameras. Of most interest
is the case where these three lines are not coplanar; in other
words, the principal rays of the two cameras do not meet.
The principal ray R1 and the baseline O1O2 define a plane,
which will be denoted byR1O1O2. In addition, letA1 be the
ray through the camera centre O1 perpendicular to the plane
R1O1O2. This plane, and the ray A1 form an orthogonal
pair in space. If their projections into the second image can
be identified, then we may use the methods of section 2 to
compute the focal length of the second camera.

First of all, consider the first (left) image taken from cam-
era centre O1. We want to identify the projection in this im-
age of the plane R1O1O2 and the ray A1. The projection of
the plane is easily identified as the epipolar line through the
principal point, namely [e1]×p1 = e1 × p1. Since the ray
A1 is perpendicular to the plane containing the principal ray,
it projects to a point at infinity in the image, in the direction
perpendicular to the line [e1]×p1. This infinite point may be
written as I(e1 × p1), or I[e1]×p1, where I is the 3 × 3
matrix diag(1, 1, 0).

Note that Il represents the point at infinity in the direction
perpendicular to l for any line l. For example, (a, b) is the
vector perpendicular to the line ax+ by+ c = 0, represented
by coordinates (a, b, c)�, and (a, b, 0) is the vanishing point
in this direction. This relation will be used often in this paper,
so we emphasize it:

Figure 7: In this image, the apex is unknown, but is con-
strained to lie somewhere along the vertical direction shown
in the image (green). The principal point has two degrees
of freedom, but once a position of the principal point is as-
sumed, the focal length of the camera may be computed. The
red circles represent various estimates of the focal length for
different assumed principal points. Each circle is the locus
of all directions 10◦ from the principal point, which is at the
centre of the circle. Thus, the radius of each circle is equal to
0.176f = tan(10◦)f . The focal length has been computed
in each case using (2).

3.1. If p is a point in an image, and e is the epipole, then
I[e]×p represents the point at infinity in the direction normal
to the epipolar line [e]×p = e× p.

This formula may be applied repeatedly. For instance
I[e]×I[e]×p is the point at infinity on the line e× p.

It is now easy to compute the epipolar lines in the sec-
ond image corresponding to the plane R1O1O2 and the ray
A1. This is done simply by transferring the epipolar lines
from the first image to the second, using the fundamental ma-
trix. First, consider the vanishing line of the plane R1O1O2.
Since this plane passes through the camera centre O2, it is
viewed edge-on in the second image. Consequently, its van-
ishing line is nothing more than the image of any line lying
in the plane R1O1O2. Since the principal ray of the first
camera is just such a line we see:

3.2. The vanishing line in the second image of the plane
R1O1O2 is the epipolar line Fp1 corresponding to the prin-
cipal point of the first camera. Here F is the fundamental
matrix.

Secondly, the image of the ray A1 is easily computed by
transferring its vanishing point using the fundamental ma-
trix:

3.3. The image of the ray A1 in the second image is the
epipolar line FI[e1]×p1.

Thus, we may conclude:

4



O1 O2

p1

R1
A1

e1
e2

Figure 8: The plane defined by the principal ray R1 and
the base-line O1O2 is imaged as an epipolar line in the sec-
ond (right-hand) image. The ray A1 is perpendicular to this
plane, and also projects to an epipolar line in the second
image. The two epipolar lines are the images of an orthog-
onal plane/line pair. Assuming a position for the principal
point p2, the focal length f2 of the second camera may be
computed using the method of section 2.

3.4. Given the fundamental matrix F for two images, and as-
sumed positions of the principal points p1 and p2 in the two
images, the focal length f2 may be computed as follows.

1. Compute the two epipolar lines Fp1 and FI[e1]×p1 in
the second image.

2. Apply equation (2) where s1 and s2 are the distances
from the principal point p2 to these two lines, and θ is
the angle between them.

An explicit formula is possible. Let l and l ′ be the two
epipolar lines computed in ( 3.4). The distance from a point
p = (x, y, 1)� to a line l is l�p/α where α = (l21 + l22)1/2,
and li here represents the i-th component of the vector l. Fur-
thermore, the angle between two lines l and l ′ satisfies the
relation cos θ = l′�Il)/αα′. Now, writing (2) in terms of
the homogeneous coordinates for the two lines l2 and l′2 in-
volved, yields

f2
2 = − (l′2

�p2)(l2�p2)
l2�Il′2

(4)

since the factors α and α′ cancel top and bottom.
Substituting the formulas ( 3.2) and ( 3.3) for the lines l 2

and l′2 finally gives the formula

f2
2 = − (p1

�[e1]×IF�p2)(p1
�F�p2)

p1
�([e1]×IF�IF)p1

. (5)

In this formula, e2 is the epipole in the second image, and p1

and p2 are homogeneous 3-vectors representing the principal
points in the two images. It is required however, that p1 =
(x, y, 1)�, with last coordinate equal to 1.

The formula for the second focal length may be obtained
by interchanging the role of the first and second cameras in
this formula.

Figure 9: A pair of images from which one wishes to compute
the focal lengths. It is assumed that the principal point p1

in the first image is the centre of the image. Shown overlaid
on the first (left-hand) image are the epipolar line e1 × p1

corresponding to the principal ray, R1, and the perpendic-
ular epipolar line e1 × I[e1]×p1. Overlaid on the second
(right-hand) image are the corresponding epipolar lines Fp 1

and FI[e1]×p1. From these latter two lines one may com-
pute the focal length f2. Computation of the focal length f2

will be very imprecise in this case, since the angle θ between
these two lines is close to 90◦, and also because one of the
lines (actually Fp1) passes very close to the centre of the im-
age, and hence (presumably) close to the principal point p 2.
Relative accuracy of the focal length f 2 is given by (3), and
is proportional to the distance of p2 from each of these two
epipolar lines.

4 Effect of varying the principal
points

We consider now the effect of varying the principal point
in either or both the images. Without loss of generality, let
us restrict attention to (5), and computation of f 2

2 . Since
the left hand side of (5) is the square of the focal length, it
is necessary that the right hand side be positive, otherwise,
no solution exists. To analyze this further, we note that the
expression for f 2

2 may be split into parts as follows:

A(p1,p2) = p1
�[e1]×IF�p2

B(p1,p2) = p1
�F�p2

D(p1) = p1
�([e1]×IF�IF)p1

Thus, f 2
2 = −A(p1,p2)B(p1,p2)/D2(p1). Note that the

estimated value of the focal length becomes zero where the
numerator (that is, either A or B) vanishes, and goes to in-
finity where the denominator D vanishes. The value of f 2

2

will change sign on the union of the vanishing sets of A, B
and D. We look at each of these terms independently.

4.1 Varying the principal point p2

This situation has been explored in section 2. The denomi-
nator D(p1) does not depend on p2, and so is constant. We
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look at the vanishing sets of the two terms A(p1,p2) and
B(p1,p2). As discussed above, p1

�F� and p1
�[e1]×IF�

represent the epipolar lines in the second image, correspond-
ing to the principal ray in the first image, and a ray perpen-
dicular to it. When p2 lies on one of these epipolar lines,
the numerator of (5) vanishes. Consequently, the zero set of
A(p1,p2)B(p2,p2) for fixed p1 and varying p2 consists of
a pair of epipolar lines in the second image. The image plane
is divided into four sections by the images of the principal
ray R1 and the line A1 orthogonal to the plane R1O1O2.
The principal point must lie in the acute-angled region of the
plane. This is illustrated in Fig 10.

4.2 Varying the principal point p1

Next we consider the effect of varying the principal point p 1

on the estimate of the focal length f2. In this section we will
assume that the principal point p2 of the second camera is
known and fixed at a given value. As p1 varies, formula (5)
give an estimate for the focal length f2.

Vanishing set of A(p1,p2)B(p1,p2). Since F is the fun-
damental matrix, Fp1 is the epipolar line corresponding to
the point p1. Thus the set of points p1 at which B(p1,p2)
vanishes is precisely the set of points on the epipolar line
F�p2.

On the other hand, p1
�[e1]×I is a point at infinity ly-

ing on the epipolar line perpendicular to the one through p 1.
Hence A(p1,p2) vanishes when p1 lies on an epipolar line
perpendicular to F�p2.

4.5. For a given value of p2, the set of points p1 such that the
numerator A(p1,p2)B(p1,p2) of (5) vanishes consists of
the epipolar line F�p2 and the epipolar line perpendicular
to it.

Vanishing set of D. We now turn to the denominator of
(5), namely D(p1) = p1

�([e1]×IF�IF)p1. Note that this
is independent of p2. From the form of this expression, it
is easily seen that the vanishing set is a conic. It will be
shown that in fact it is a degenerate conic, consisting of two
perpendicular lines through the epipole e1.

First of all one observes (by simple substitution and us-
ing the fact that Fe1 = 0) that the epipole e1 belongs to this
vanishing set. If p1 is any point such that D(p1) = 0, then
D(p1 + αe1) = 0 for any α, and hence the vanishing set is
made up of lines passing through e1, epipolar lines.

Now let p1 be a point at infinity, and let p′1 be the point
at infinity on the epipolar line normal to [e1]×p1. By sym-
metry, p′′1 = (p′1)′ = p1. By ( 3.1), p′1 = I[e1]×p1, and
so D(p1) = p′1

�(F�IF)p1. Substituting p′1 for p1 in this
expression gives

D(p′1) = p′′1
�(F�IF)p′1

= p1
�(F�IF)p′1

= p′1
�(F�IF)p1 (by transposing)

= D(p1) .

Thus, D(p′1) vanishes if and only if D(p1) does. Conse-
quently, the zero set ofD(p1) consists of a pair of orthogonal
epipolar lines.

Summarizing this complete discussion.

4.6. For a given value of p2, the set of points p1 for which
the estimated value of f 2

2 changes sign consists of two pairs
of orthogonal epipolar lines in image 1. The value of f 2

2

tends to zero at one pair of lines, and to infinity at the other
pair of lines.

This is illustrated in Fig 11.

5 Varying both principal points

The previous sections have assumed that one of the principal
points was fixed, and the other was allowed to vary. In some
instances it may be more realistic to assume that the principal
point is the same in both images, albeit not known exactly.
Therefore, in this section, we assume that p1 = p2 = p,
and examine how the focal length estimate depends on the
position of this common principal point. In this case, the
formula for f2 is as follows.

f2
2 = − (p�[e1]×IF�p)(p�F�p)

p�([e1]×IF�IF)p
=
A(p,p)B(p,p)

D(p)
.

(6)
We have seen already that the zero-set of D(p) consists of
a pair of orthogonal epipolar lines through the epipole e 1.
The zero sets of the expressions A(p,p) = p�F�p and
B(p,p) = p�[e1]×IF�p are conics. It is easy to see that
each of these expressions vanishes at both epipoles e1 and
e2, hence the conics pass through the two epipoles. In addi-
tion, it may be verified that the tangents to these two conics
at the epipole e1 are orthogonal. To see that, recall that the
tangent at a point x on a conic defined by matrix C is the line
(C+C�)x. Applying this, one finds that the tangents to these
two conics at the point e1 are F�e1 and [e1]×IF�e1, which
are easily seen to be orthogonal lines.

Summarizing this gives the following result.

5.7. As the position of the principal point p1 = p2 = p
varies, the singular set where the value of the focal length
f2

2 changes sign has the following components.

1. Two orthogonal epipolar lines passing through the
epipole e1. As the assumed position of p approaches
these lines, the value of f 2

2 tends to infinity.

2. Two conics passing through the two epipoles e1 and e2.
The conics are orthogonal at e1. As p approaches these
conics, the estimated value of f 2

1 tends to zero.
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These lines divide the plane into regions. The value of f 2
2

is negative on alternate regions, which therefore represent
impossible positions for the principal point.

For an illustration of this, see Fig 12.

6 Conclusion

We have argued that the assumed position of the principal
point may have a large effect on the estimated focal length of
the cameras for certain single-view and two-view calibration
scenarios. The two-view calibration method analyzed here
has been shown previously ([NHBP96]) to have degenerate
configurations when the principal rays of the cameras meet.
We have given here a simple analysis of how the quality of
the focal length estimate degenerates when the principal ray
of one camera lies close to the epipolar line corresponding to
the other principal point. It is shown that in fact, the relative
uncertainty in the the focal length estimated by this method
is inversely proportional to the distance of the principal point
to this epipolar line. Because of this sensitivity, the practi-
cality of estimating focal lengths from two views is doubtful.
Figure 13 shows a selection of images that have been used to
compute the fundamental matrix, in all of which computa-
tion of the focal lengths will be quite inaccurate.

The method and analysis of this paper apply to other
imaging scenarios, such as planar motion ([AZH96] in which
it is also possible to compute the image positions of the hori-
zon and apex. A new interpretation of Bougnoux’s focal
length formula, is also given here, relating it to the geom-
etry of the principal rays.
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Figure 10: Pair of images of a museum, and the estimated
value of the focal length f 2

2 . The principal point p1 is as-
sumed to be in the centre of the first image. The fundamental
matrix is computed from point correspondences between the
images. For each assumed position of the principal point
p2 = (x, y) in the second image, formula (5) gives an es-
timate of the focal length f 2

2 . The image at the right shows
the focal length f 2

2 as a function of (x, y). The focal length
is represented by the intensity of the image. For points (x, y)
in the black region of the image, the estimated value of f 2

2

is negative, meaning that the assumptions on position of the
principal point are not viable (impossible situation).

The image is divided into four regions by the two epipolar
lines corresponding to the principal ray R1 and its perpen-
dicular A1 in the first image. For p2 in the light region, the
value of the focal length may be computed by (2), and its un-
certainty by (3). In this example, one of the epipolar lines
passes close to the centre of the image, and hence probably
close to the principal point p2. Hence, according to (3) the
estimate of f2 will be very sensitive to variation in the posi-
tion of p2.

Figure 11: Assuming p2 is fixed, and p1 is varying, the sin-
gular set for estimation of f2 consists of points p1 lying on
two pairs of orthogonal epipolar lines. The estimated value
of f2, according to (5) tends to 0 and∞ as p1 approaches
the alternating epipolar lines. The value of f2 is only defined
for p1 in alternating sectors of the image as shown, since f 2

2

is negative for p1 in the other (dark) sectors.

Figure 12: Museum images : the geometry of the allowable
positions of the principal point, assuming that it is the same
in both images (shown at left). The plane is divided into
regions by three conics (one of them degenerate). Black re-
gions represent impossible locations for the principal point.
Inside the allowable (white) regions, the focal length ap-
proaches infinity at the pair of orthogonal lines (degenerate
conic), and zero at the non-degenerate conics. At right is an
enlargement of the bottom right-hand corner, showing the
conic corresponding to the denominator of (6).
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Figure 13: This is the same as Fig 9 for other image pairs.
In some cases, the epipoles are outside of the image area,
and so only one of the epipolar lines is visible. Nevertheless,
in all cases, the epipolar line lies close to the centre of the
image, and it may be seen that computation of f2 will be very
dependent on the precise position of the principal point.
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