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Abstract

We consider the problem of Euclidean reconstruction from
two perspective images. This problem is well studied for
calibrated cameras, and good algorithms are known. On the
other hand, if the cameras are known to have square pix-
els (no skew and unit aspect ratio) then the problem is also
theoretically solvable, provided an estimate of the principal
point is provided. The focal lengths of the cameras may be
computed from the fundamental matrix, and then a calibrated
reconstruction algorithm applied. In reality, however, it has
been shown that this process is quite sensitive to the com-
puted fundamental matrix and the assumed position of the
principal point. In fact, sometimes the estimate of the focal
length fails, and so Euclidean reconstruction is impossible
using this method. In this paper, we investigate the cause
of this problem, and suggest an algorithm that more reliably
leads to a reconstruction. It is unnecessary to know the exact
location of the principal point, provided weak bounds on the
principal point locations, and the focal lengths of the cam-
eras are provided. The condition that points must lie in front
of the cameras gives a further constraint. It is shown that
by suffering only a very small degradation in residual point-
reprojection error, it is possible to compute a fundamental
matrix that always leads to a plausible focal length estimate,
and hence Euclidean reconstruction.

1 Introduction

Scene reconstruction from a number of perspective images of
a scene is one of the fundamental problems of computer vi-
sion, and reconstruction from two views is the simplest case
of this problem. Earliest work in this area concentrated on
calibrated cameras, from which it is in principle possible to
obtain a Euclidean (sometimes called metric) reconstruction
of the scene. Such a reconstruction is unique apart from
a choice of the Euclidean coordinate frame, and an over-

all scale, which it is impossible to determine. Notable al-
gorithms for obtaining a reconstruction from two calibrated
views include [LH81, Hor90, Hor91].

With a shift of interest towards uncalibrated cameras, it
was natural to ask whether Euclidean reconstruction was
possible from uncalibrated cameras, leading to a well-known
negative result ([HGC92, Fau92]) showing that for arbitrary
uncalibrated views, the best one can achieve is projective re-
construction. On the other hand, it was shown in [Har92] that
given reasonable assumptions about the calibration, it is still
possible to achieve Euclidean reconstruction. Specifically, if
the pixels are assumed to be square, and the principal point
known, then the focal lengths of the two cameras may be
computed from the fundamental matrix. All camera parame-
ters now being known, the problem is reduced to a calibrated
reconstruction problem, which may be solved by the previ-
ously mentioned techniques. The method of reconstruction,
therefore is as follows:

1. From point correspondences between the two images
compute the fundamental matrix.

2. Assume square pixels, and guess the position of the
principal point (usually the centre of the image).

3. Compute the focal lengths of the two cameras (the only
remaining unknown internal camera parameters).

4. Now, knowing the calibration matrix for each camera,
compute the essential matrix E = K2

�FK1, and carry
out reconstruction from calibrated cameras.

In [Har92] step 3 of this algorithm was done by a compli-
cated technique, but a simple formula for the focal lengths
was subsequently found by Bougnoux ([Bou98]).

This algorithm suffers from various deficiencies.

1. Computation of the focal lengths is not possible if the
principal axes of the two cameras intersect ([NHBP96]).
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2. In most cases, the computation of the focal lengths is
sensitive to the computed fundamental matrix, and the
assumed positions of the principal points ([nwxx]);

Indeed, the sensitivity is so severe that computation of the
focal lengths can not be relied upon at all, and this algorithm
is of doubtful practical value.

The need to provide an estimate of the principal points in
the two images is a further problem with this algorithm, par-
ticularly since it strongly affects the computed focal lengths.
Furthermore, it is not commonly appreciated that a funda-
mental matrix, (even those computed by the best known
methods) may in fact be incompatible with any reasonable
choice of the principal point. The most common problem is
that the focal lengths found by the above technique will be
imaginary (hence impossible) values for most positions of
the principal point. Such a fundamental matrix must be con-
sidered as wrong. This point will be expanded in this paper.

The goal of this paper is to show that Euclidean recon-
struction is possible from two views, even without exact
knowledge of the principal point, provided some assump-
tions are admitted concerning the position of the principal
points, and the focal lengths of the images. For instance, in
the examples discussed below, an assumption that the prin-
cipal point is weakly constrained to be near the image centre
(let us say plus or minus half the image radius), and that
the focal lengths of the two cameras are approximately equal
(maybe within 5%), is sufficient for Euclidean reconstruction
to succeed. Other assumptions are possible, as will be seen.

As part of this reconstruction process, a fundamental ma-
trix is found that is compatible with reasonable estimates
of the principal point. Thus, incorporation of this a priori
knowledge of the probable principal points and focal lengths
leads to an improved estimate of the fundamental matrix.

2 Impossible fundamental matrices

In this section, it will be shown that some fundamental matri-
ces, even those computed from good quality data by the best
algorithms (such as a Maximum Likelihood algorithm) are
nevertheless incompatible with the data, and hence wrong.
This is actually quite a common phenomenon, as the exam-
ples will show, particularly when the principal rays of the
two cameras come close to intersecting. This situation oc-
curs when the cameras are pointing approximately towards a
common point in space, which must be so if they are to share
matched points.

For a fundamental matrix to be accepted as being compat-
ible with a set of matched points x2i ↔ x1i, three conditions
are necessary.1

1Recall that we are making an assumption of square pixels (that is zero
skew and unit aspect ratio) for both cameras.

1. The point correspondences must satisfy the coplanarity
condition x2i

�Fx1i, with a small residual error.

2. For at least some assumed locations of the principal
points p1 and p2, the values of f 2

1 and f 2
2 computed

from (1) are positive.

3. Given such assumed principal point positions, and cor-
responding focal length values, a calibrated reconstruc-
tion is possible, for which the reconstructed 3D points
(apart from a small percentage of possible outliers) lie
in front of the reconstructed cameras.

This last condition is related to the concept of “cheirality”
discussed in [Har98], where it is shown that satisfying the
coplanarity condition for some fundamental matrix is not
sufficient for the set of matches to be realizable.

A set of matched points will often contain a small propor-
tion of outliers, or false matches. Normally, these outliers
must be eliminated from the matched-point set before the
fundamental matrix is computed, otherwise the results will
be bad. Nevertheless, we allow the possibility that some out-
liers may remain, which may cause 3D points to be displaced
and end up behind the cameras.

It is important to understand the role of cheirality in cal-
ibrated reconstruction. It is well known (see for instance
[May93, Har92, HZ00]) that based on the essential matrix
alone there are four possible choices of camera pairs. How-
ever, a single matched point is sufficient to disambiguate the
situation, since the reconstructed point will lie in front of
both cameras for only one of the four pairs. If the estimated
essential matrix is correct, then this will lead to a choice
of the correct pair of camera matrices, and hence all recon-
structed points (derived from correct point matches) will lie
in front of the two cameras. However, if the essential matrix
is estimated inaccurately, then it is possible for this condi-
tion to fail. Not all the reconstructed points will lie in front
of both the reconstructed cameras. This may happen, for in-
stance, if the assumed or computed calibration matrices for
the two cameras are wrong.

This discussion is illustrated by the examples given in
Fig 1. There a fundamental matrix is used, computed using
a bundle-adjustment method (the Gold-standard method of
[HZ00]), which is as good as any known method. The set of
matched points used for this computation are of high quality,
outliers having been previously removed, and the residual er-
ror from estimation of F being very small (see Fig 13). Nev-
ertheless, it is seen that the possible positions for the princi-
pal point are very constrained.
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Figure 1: At the top are a pair of images used for computing a fundamental matrix. The fundamental matrix was computed
using the Gold-standard algorithm of [HZ00]. For this example it is assumed that the principal point is the same in both
images. In the lower set of figures, the possible positions for the principal point are shown. White shows possible positions of
the principal point, and black impossible. The criteria used for the three diagrams are: f 2

1 positive (left), f 2
2 positive (centre)

and < 10% points behind cameras. The graph on the right shows those positions for the principal points where all three
conditions are satisfied. As seen, there are very few possible positions for the principal points consistent with this fundamental
matrix – certainly not the centre of the image.

The third row of figures shows the same results for the fundamental matrix computed using the method described in this paper.
The obtained fundamental matrix is consistent with the assumption of principal point near the centre of the image.
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Figure 2: This figure shows the same diagrams for a different set of images. At the top the images, in the middle possible
principal points for the fundamental matrix found using the Gold-standard algorithm, and at the bottom the diagrams found
using the algorithm of this paper.
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Figure 3: This figure shows the possible principal point positions compatible with fundamental matrices computed using sev-
eral different methods. The methods used are (from left to right, top to bottom) : normalized 8-point algorithm, gold-standard
algorithm, algebraic distance algorithm, Sampson-error algorithm, algorithm of this paper, and calibrated reconstruction
algorithm (see text for description).
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Figure 4: This figure shows the possible principal point positions compatible with fundamental matrices computed using
several different methods (same as Fig 3 with a different image. The methods used are (from left to right, top to bottom) :
normalized 8-point algorithm, gold-standard algorithm, algebraic distance algorithm, Sampson-error algorithm, algorithm of
this paper, and calibrated reconstruction algorithm (see text for description).
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3 Using a priori knowledge to com-
pute the fundamental matrix

It is often said that the computation of the fundamental ma-
trix is unstable, and to an extent this is true. This is a charac-
teristic of the problem itself, and not the algorithms used,
since many algorithms that obtain close to the Maximum
Likelihood estimate are known.

The fundamental matrix is however basically a projective
object, suitable for applying in situations where the cam-
era calibration is unknown. However, it has been used in
many situations in which partial calibration of the camera is
known, at least approximately. There are many examples of
this.

1. In reconstruction from two views, the camera calibra-
tion is usually not completely unknown. For instance,
the pixels are usually square, or at least rectangular with
known aspect ratio. The principal point is usually near
the centre of the image, and the focal length is at least
known within some reasonable bounds. In addition the
projective reconstruction algorithm based on the funda-
mental matrix has been used in cases where the cali-
bration of the camera is known. Oliensis [Oli00] has
undertaken a study of this, and argues that sometimes
calibrated camera algorithms give better results.

2. The fundamental matrix has been used in self-
calibration from two views ([Bou98, Har92]). To do
this, it is necessary to assume square pixels, and to
make an estimate of the principal point in the two im-
ages. Unfortunately, the estimate of the focal lengths
is quite strongly dependent on the assumed locations of
the principal points.

In this paper, we concentrate particularly on this second
scenario, in which the focal lengths of the cameras may be
computed from the fundamental matrix. However, we are in-
terested in the inverse problem of using a priori estimates of
the focal lengths of the cameras and also the principal points
to improve the estimate of the fundamental matrix, and hence
the 3D reconstruction. This method, therefore lies between
two extremes – computation of the fundamental matrix for
totally uncalibrated cameras, and for completely calibrated
cameras (in which case it is the essential matrix that is com-
puted). In this case, we compute the fundamental matrix
for the case where the camera calibration is approximately
know.

A simple formula for the focal lengths, given the funda-
mental matrix and principal point has been given by Boug-
noux ([Bou98]):

f2
2 = − (p1

�[e1]×IF�p2)(p1
�F�p2)

p1
�([e1]×IF�IF)p1

(1)

where I is the diagonal matrix diag(1, 1, 0). A similar for-
mula for f 2

1 is obtained by interchanging the roles of the two
images.

However, this method has an important failure configu-
ration, when the principal rays of the two cameras meet in
space ([NHBP96]). In this case, the principal points of the
two cameras satisfy the coplanarity constraint p2

�Fp1 = 0.
For many image pairs this condition is nearly satisfied. Thus,
being close to a critical configuration, one might expect that
the results will be quite unstable. A stability analysis for
estimation of f in this instance was undertaken in [nwxx],
in which it was verified that focal length estimate is indeed
often unreliable. It will be shown here that for many im-
age pairs, the estimates of the focal length are effectively
useless. Worse, the algorithm often fails entirely. This is be-
cause the formula of Bougnoux gives an expression for f 2

1 or
f2

2 , the squares of the focal lengths of the two images. In the
presence of noise, or an inaccurate estimate of the principal
point, the value of f 2 so obtained is negative, and so f is an
imaginary (hence impossible) value. Note that this is intrin-
sic to the problem as formulated, and is not just an artefact
of Bougnoux’s formula. In this failure case, the given funda-
mental matrix is just not compatible with the assumed values
of the two principal points. Either the fundamental matrix or
the principal point assumption is wrong.

The idea of this paper is to take advantage of this fact to
obtain a better estimate of the fundamental matrix, and at
the same time a better estimate of the focal lengths of the
cameras. The way this is done is to add additional terms
in a cost function used to estimate F. These weight terms
discriminate against improbable, or impossible values of the
principal points of focal lengths of the cameras. Thus, a very
small, or (worse) negative value of f 2 incurs a high cost,
which makes it very unlikely to be accepted. If the weights
are related to a probability distribution for principal point or
focal length, then the new estimate of F may be thought of
as a maximum a priori (MAP) estimate of the fundamental
matrix.

4 A cost function

Given a set of point correspondences x2i ↔ x1i, our ob-
ject is to estimate the fundamental matrix subject to prior
assumptions about the distribution of the focal lengths and
principal points of the two cameras. The method is applica-
ble easily to any assumed distributions, but most commonly
a normal (Gaussian) distribution will be assumed. An iter-
ative (Levenberg-Marquardt) method is used to minimize a
cost function of the following form:

Cost(F, f2
1 , f

2
2 ,p1,p2) = CF(F)+Cf (f2

1 , f
2
2 )+Cp(p1,p2) .

(2)
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Thus the total cost is the sum of three cost functions, mea-
suring the cost of estimates of the fundamental matrix F, the
squared focal lengths f 2

1 and f 2
2 , and the principal points re-

spectively. The reason for expressing the second cost func-
tion in terms of the squared focal lengths is because of the
form of Bougnoux’s formula (1), as will be seen later. We
want to define a cost (very high) for a negative value of f 2.

The cost functionCF(F) is also a function of the point cor-
respondences. Although various cost functions are possible,
we prefer to use the Sampson cost function

∑
i

(x2i
�Fx1i)2

(Fx1i)2
1 + (Fx1i)2

2 + (F�x2i)2
1 + (F�x2i)2

2

. (3)

This cost function is a first-order approximation to the cor-
rect geometric (or Maximum Likelihood) cost function.

This cost function is minimized over a set of parameters
by a parameter-minimization algorithm (LM). The set of pa-
rameters is divided into two parts.

1. A set of parameters parametrizing the fundamental ma-
trix F, and

2. A set of 4 (or 2) parameters defining the positions of
the principal points. Two parameters may be used if it
is assumed (and enforced) that the principal point is the
same in both images.

The minimization algorithm is as follows.

1. Given F and pi, compute f 2
1 and f 2

2 using Bougnoux’s
formula (1).

2. Compute the cost function Cost(F, f 2
i ,p

2
i ).

3. Vary the parameters of F and the pi to minimize the cost
function.

Form of Cp and Cf . The specific form of the cost func-
tions for pi and f 2

i may be chosen in various ways, and it
is not the purpose of this paper to undertake a detailed in-
vestigation of all possible cost functions. However, a natural
form for Cp is the squared Euclidean distance of the esti-
mated principal point from the nominal value. Thus

Cp(pi) = w2
pd(pi, p̄i)2 (4)

where p̄i) represents the nominal position of the principal
point, and wp is a weight. There is a cost term of this form
for each of the two principal points.

The form of the cost function Cf may be a little more
complicated, since we want to ensure that the value of f 2

does not end up negative. In addition, it may be appropri-
ate to enforce a condition that the two focal lengths are the
same (or approximately so). Accordingly, the cost function

Cf (f2
1 , f

2
2 ) used in our implementation of the algorithm has

several components:

Cf (f2
1 , f2

2 ) = w2
1(f2

1 − f̄2
1 )2 + w2

2(f2
2 − f̄2

2 )2

+ w2
d(f2

1 − f2
2 )

+ w2
z1(f2

min − f
2
1 )2 + w2

z2(f2
min − f

2
2 )2 (5)

Recall here that f 2
i is the value returned by Bougnoux’s

formula (1), and may be negative. The final two terms of
this equation involve a “minimum” value fmin for the fo-
cal length, and are only included if f 2

i < f2
min. (That is

wz1 and wz2 are zero unless f 2
i is small, or negative.). This

term grows rapidly for small or negative values of f 2
i , and

effectively prevent f 2
i taking on negative values. A reason-

able minimum value of fmin can be deduced from the size
of the image. The field of view of the camera is equal to
2 arctan(dim/f), where dim is the radius of the image. For
small values of f , this becomes unrealistically large. Most
images encountered (except for extreme wide angled views)
do not have field of view exceeding 75◦.

The choice of the weight values may be chosen according
to taste. The values of wzi are not critical, and normally it is
sufficient to apply quite weak weights for the other values.

5 Initialization

The input data for the reconstruction problem includes an es-
timate of the focal length and principal point of the cameras.
Therefore, it makes sense to use these estimates to carry out
a calibrated reconstruction to obtain an initial estimate of the
fundamental matrix.

Thus, given a set of point correspondences, x2i ↔ x1i

and initial estimates p̄i and f̄i of the principal points and
focal lengths, an initial value for the fundamental matrix is
found as follows. Let K1 and K2 be the initial calibration
matrices for the two images. Thus,

K1 =


 f̄1 0 x̄1

f̄1 ȳ1

1


 K2 =


 f̄2 0 x̄2

f̄2 ȳ2

1


 (6)

where p̄i = (x̄i, ȳi) are the principal points. Let F be an esti-
mate of the fundamental matrix computed from the point cor-
respondences using any desired method. We used a method
([HZ00]) that minimizes algebraic error. The essential ma-
trix E may then be computed as

E = K2
�FK1 .

This value of the essential matrix will not generally be quite
correct for the assumed calibration matrices, since it will not
satisfy the necessary condition for a essential matrix, namely
that it have two equal singular values. To correct this, the
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singular value decomposition of E is computed as E = UDV�,
and a corrected essential matrix is computed, by setting Ê =
UIV�, where I = diag(1, 1, 0). Finally a corrected value of
the fundamental matrix is computed by setting

F̂ = K2
−�ÊK−1

1 .

The resulting fundamental matrix F̂ is the best approximation
to F, compatible with the assumed calibration matrices.

Iteration will start with this estimate F̂ for the fundamen-
tal matrix, and the assumed values p̄1 and p̄2 for the two
principal points. The cost function CF(F̂) will be slightly
greater thanCF(F), but usually the difference is not too great.
However, because of the way F̂ is defined, the cost func-
tions Cp(p̄1, p̄2) and Cf (f2

1 , f
2
2 ) will both have initial val-

ues zero.
The alternative is to start iteration with fundamental ma-

trix F, and the two principal point estimates. In this case,
CF(F) will have a smaller value than CF(F̂), but the value of
Cf (f2

1 , f
2
2 ) will often be quite high, particularly if the values

of f 2
1 or f 2

2 are negative. Thus, the initial cost can be very
high, and we are starting far from the minimum. This can
lead to problems with correct convergence.

Notice the difference between the two initial methods.
Recall that the values of f 2

1 and f 2
2 are derived from the for-

mula (1) from the current (in this case the initial) estimates
of F and pi. Since F̂ is a correct fundamental matrix for the
calibration matrices given in (6), it follows that (1) applied
to F̂ and p̄i will give values of f 2

i = f̄2
i , and so the cost

will be zero. However, (1) applied to F and the initial values
of p̄i can give values of f 2

i that differ very greatly from the
nominal values f̄2

i .

6 Experiments

The algorithm was carried out on both synthetic and real
data. The algorithms used for computing the fundamental
matrix were as follows. For details of these algorithms, the
reader is referred to [HZ00].

1. A normalized 8-point algorithm.

2. The gold-standard algorithm (bundle adjustment).

3. Iterative minimization of algebraic error (algebraic min-
imization algorithm).

4. Iterative minimization of Sampson error, (3).

5. The algorithm of this paper (denoted by a-priori in the
graphs and tables).

6. Calibrated reconstruction, given fixed assumed values
of the principal points and focal length.

The final algorithm is the one described in section 5,
which is used as an initial point for the a-priori algorithm.

6.1 Synthetic image experiments

Evaluation of the method was carried out on two sets of data.
In the first set, a set of scattered points on the surface of a
cube were used, and data were generated by projecting the
points into a pair of nominal cameras. In the second set, a
pair of images were used to build a realistic-looking model
of a house (using the images in Fig 8). The model was then
projected back into two images, approximating the original
images. This data was the synthetic data, corresponding to a
realistic imaging setup, that was used for experiments.

For each synthetic data set, noise was added in varying
degrees, and Euclidean reconstruction was carried out. The
results are shown in figures 5 – 7, which give the reconstruc-
tion errors in each case.

The experiments were carried out with two different a-
priori estimates for the principal point and focal length. In
the first set, the exact values were given. This of course
gives a significant advantage to the calibrated reconstruction
algorithm, since it is provided with exact values for these pa-
rameters. In the second set of experiments, the value of the
principal point is shifted by 30 pixels in each dimension (in a
512×512 image), and a slightly modified value for the focal
length is given. This is perhaps more realistic, since these
parameter values may not be known exactly in advance.

Choice of weights. The a-priori algorithm was run with
very weak weights, in order to place minimal constraints on
principal point and focal length. The value of wp was equal
to 0.01, which means that a variation of 100 pixels (in a
512 × 512 image) was given as much weight as one pixel
reprojection error for a single matched point. The principal
point was, however, assumed to be the same in both images.

As for the focal length, the weights w1 and w2 were set
to zero, which means that no constraint was placed on these
parameters individually. However, a value of 0.001 was cho-
sen for wd. This means that a value of 1000 for f 2

1 − f2
2

was equivalent to one pixel reprojection error. Since f i was
around 500, this means approximately 2 pixels difference
f1 − f2.

As stated, the values of wzi are not very critical. A value
of fmin = 100 was taken, and a weight wzi = 0.01 was
chosen.

Findings. Perhaps because of the controlled nature of the
synthetic algorithms, in no case did the values of f 2

i turn out
to be negative. As a result, the reconstruction results were
good for all the algorithms used. The a-priori algorithm per-
formed significantly better than the calibrated reconstruction
algorithm, except in the case where exact parameters were
given, and for high noise values.
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Noise Cube Shed
Level gold-standard a-priori gold-standard a-priori

0.0 43.82 4.40 20.01 42.77
0.1 43.99 5.00 25.52 45.22
0.2 44.18 6.31 51.76 43.82
0.3 44.38 7.99 71.68 47.66
0.5 44.81 15.27 102.9 82.06
0.7 45.33 35.79 127.8 74.83
1.0 46.46 47.56 148.6 90.86
1.5 51.42 55.35 171.2 117.5
2.0 60.73 66.00 177.9 125.4
3.0 85.50 97.36 191.6 161.0
4.0 117.3 123.0 203.1 186.8
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Figure 5: Mean errors for synthetic data. This graph shows the average reconstruction error for the two synthetic data
set, cube and shed images. For this example, four algorithms are used to estimated the fundamental matrix, gold-standard
algorithm, algebraic distance algorithm, algorithm in this paper, and calibrated For the middle two graphs, an incorrect initial
principle point (225.5,225.5) and focal length (590) are given to the algorithm. For the lower pair of graphs, the true initial
principle point (255.5,255.5) and focal length (500) are given.
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Noise Cube Shed
Level gold-standard a-priori gold-standard a-priori

0.0 43.82 4.40 20.01 42.77
0.1 43.12 4.47 22.38 42.46
0.2 42.40 5.42 37.28 43.82
0.3 41.70 6.40 57.84 43.01
0.5 40.27 10.19 93.17 39.74
0.7 38.88 14.98 166.8 37.07
1.0 37.00 23.44 168.2 43.78
1.5 34.49 33.98 170.234 59.21
2.0 35.88 43.62 169.6 60.8
3.0 68.46 76.68 170.7 131.2
4.0 111.0 86.18 172.7 187.8
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Figure 6: Median errors for synthetic data. This gives the same results as in Fig 5 except that median error is given, instead
of average.
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Figure 7: Reconstructed models. This figure shows the reconstruction result of the synthetic shed images derived from the
images in Fig 8. On the top row, a reconstruction from noise-free data is shown. On the second row a reconstruction using the
gold-standard algorithm for noise levels of 0.4, 1.0 and 2.0 pixels (left to right). The third row shows the recontruction with
algebraic distance algorithm. The last row shows the reconstruction with the algorithm in this paper.
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Figure 8: Pair of images used to create the synthetic shed data.

6.2 Real image experiments

Experiments were also carried out on real images, for which,
however, no ground truth structure was known. The image
pairs used were the ones used in [HZ00] for evaluation of
fundamental matrix computation, and kindly supplied to us
(see Fig 9). They may be taken as reasonably representative
of real image sets. The experiments were carried out with
the same weight values and a-priori parameter estimates as
the synthetic images. The results are given in the following
figures 10 – 13.

Findings. Most of the algorithms used gave values for
the fundamental matrices for which the focal length values
f2
i were negative, under the reasonable assumption that the

principal points were in the centre of the images. Thus, in
this case it was not possible to proceed with Euclidean recon-
struction. For each of the images, calibrated reconstruction
algorithm was also used to compute the fundamental matrix.
Since the calibration was only guessed at, understandably
the residual reprojection error in this case was much worse
than for the present a-priori method. The consequence of
this will be a significantly degraded reconstruction, since the
3D points will not be estimated accurately. In addition, in
one case (the statue example, see Fig 12), the calibrated re-
construction resulted in points being found behind the cam-
era. This also occured for some other algorithms and image
sets, but not for the a-priori algorithm. The consequence of
points ending up behind the camera will be a severely dis-
torted Euclidean reconstruction.

It is important to note that the residual projection error is
only very slightly greater for the a-priori algorithm than it
is for the gold-standard algorithm (or the other algorithms).
Despite this, the a-priori algorithm gives fundamental matri-
ces that are much more realistic, in fact usable for subsequent
3D reconstruction.

7 Conclusion

This paper points out some of the difficulties involved in Eu-
clidean reconstruction from two views. It is shown that most
of the standard algorithms for computing the fundamental
matrix will result in matrices that are wrong, and in fact un-
usable for 3D reconstruction. However, adding some weak
constraint terms to the cost function used to compute the fun-
damental matrix can lead to vastly improved results, partic-
ularly as far as estimation of the focal lengths, and subse-
quent 3D reconstruction is concerned. The effect is far more
noticeable for real images than synthetic ones. The cost of
adding these constraint terms is very small in terms of in-
creased reprojection residual.

In our experiments, we did not attempt to add any extra
cost terms to ensure that the reprojected points lie in front of
the cameras. In all the cases shown here, the new algorithm
resulted in points being reconstructed in front of the cameras.
This is not guaranteed, however, and we occasionally found
cases in which this condition was violated.

Further work in this area can include determination of the
best weight functions for principal point and focal-length er-
rors, and an investigation of adding terms to the cost function
to ensure points lie in front of the cameras.

References

[Bou98] S. Bougnoux. From Projective to Euclidean
space under any practical situation, a criticism
of self-calibration. In Proc. 6th International
Conference on Computer Vision, Bombay, India,
pages 790–796, January 1998.

[Fau92] O. D. Faugeras. What can be seen in three di-
mensions with an uncalibrated stereo rig? In

13



Figure 9: Images used for the real image experiments.

Method normalized 8-points, gold-standard, algebraic distance, a-priori
Image Samson error, calibrated
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Figure 10: Estimated principal points. In the experiment, the principle points are assumed to be (255.5,255.5) for both
images for normalized 8-points algorithm, gold-standard algorithm, algebraic distance algorithm, and Sampson error algo-
rithm. For algorithm in this paper an initial estimated for principle points are the same (255.5,255.5). The algorithm in this
paper has moved the principle points away from the initial estimates in some image pairs.

Method normalized gold algebraic Sampson a-priori calibrated
Image 8-points standard distance error

Basement X/X X/X X/X X/X 503.3/503.4 707.1/707.1
Calibration 872.3/864.3 510.7/509.2 X/X X/X 279.9/279.7 707.1/707.1

House X/X X/X X/X X/X 451.6/451.5 707.1/707.1
Museum X/X X/X X/X 2964/3001 654.8/654.8 707.1/707.1

Statue X/X X/X X/X X/X 1167/1167 707.1/707.1

Figure 11: Estimated focal lengths. This table shows the estimated focal length for each image pair calculated from 5
algorithms. Note that some well known algorithms such as normalized 8-points algorithm and gold standard algorithm may
give an impossible answer (imaginary focal length, denoted by X).
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Method normalized gold algebraic Sampson a-priori calibrated
Image 8-points standard distance error

Basement 0/0 0/0 0/100 0/0 100/100 100/100
Calibration 100/100 100/100 100/0 100/100 100/100 100/100

House 91.7/91.7 100/0 100/0 100/0 100/100 100/100
Museum 0/0 0/100 0/100 94.9/94.9 100/100 100/100

Statue 100/100 100/0 100/0 100/100 100/100 52.4/52.4

Figure 12: Percentage points in front of cameras. This table shows the percentage of points that lie in front of each
camera in each image pair. It is clear that the algorithm in this paper gives a better result in that the estimated fundamental
matrix yields estimated points in front of the camera. When wrong principle points and focal length are used in the calibrated
reconstruction algorithm some points may end up behind the cameras, as seen for the statue pair.

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Image: 1/Basement, 2/Calibration, 3/House, 4/Museum, 5/Statue

E
rr

or

RMS error

normalized 8−points
gold−standard
algebraic distance
Sampson−error
a−priori
calibrated−reconstruction

Figure 13: Residuals. This figure summarizes the residual rms error of the estimated fundamental matrix obtained from 5
algorithms: normalized 8-points algorithm, gold-standard algorithm, algebraic distance algorithm, Sampson error algorithm,
algorithm in this paper, and algorithm in this paper with constraints on the focal length and principle point. It is clear that
the algorithm in this paper gives a similar level of residual RMS error when compared with the other uncalibrated algorithms.
However, using a calibrated reconstruction algorithm gives significantly higher residual, because the internal parameters may
not have been guessed correctly.
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