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Abstract

An algorithm is given for computing projective struc-
ture from a set of six points seen in a sequence of many
images. The method is based on the notion of duality be-
tween cameras and points first pointed out by Carlsson and
Weinshall. The current implementation avoids the weak-
ness inherent in previous implementations of this method in
which numerical accuracy is compromised by the distortion
of image point error distributions under projective transfor-
mation. It is shown in this paper that one may compute the
dual fundamental matrix by minimizing a cost function giv-
ing a first-order approximation to geometric distance error
in the original untransformed image measurements. This is
done by a modification of a standard near-optimal method
for computing the fundamental matrix. Subsequently, the
error measurements are adjusted optimally to conform with
exact imaging geometry by application of the triangulation
method of Hartley-Sturm.

1 Introduction

An idea of Carlsson and Weinshall ([1, 12, 2]) allows
the possibility of computing projective structure from a set
of several images of a small number of points. In this pa-
per the case of six points in many views is discussed (the
three-view case is solved in [8]), and a practical, relatively
simple algorithm is given. This algorithmic method was dis-
cussed in a previous paper ([4]) where it was mentioned that
a straight-forward implementation of the Carlsson method
suffers from instability because of the skewing of noise
characteristics by application of a projective transformation
to each image. In this paper, a method is given that largely
avoids this problem. The central strategy of this paper, so-
called Sampson iteration, minimizes a cost function that re-
lates back to untransformed image measurements.

The Sampson method is named after the author of a well-
known paper on conic fitting ([9]). It has been used (though
not under this name) as one of the most succesful method
for computation of the fundamental matrix ([13]). The idea

behind the Sampson method is to minimize a first-order ap-
proximation to error in image measurements while satisfy-
ing the necessary constraints imposed by the imaging ge-
ometry. It is one of the principal observations of this paper
that one can do this for the error measurement in the orig-
inal untransformed images, while still working in the dual
domain of transformed image coordinates necessary for the
duality-based algorithmic method.

The value of a method in which one treats small num-
bers of points in many views is that it allows us to com-
pute the camera motion for long sequences in a single al-
gorithm. Previous methods with projective cameras have
used various strategies such as pasting reconstructions from
blocks of three views together, or factorization method
([10]) which require fundamental matrices to be computed
for pairs of views. The method is also useful for cases where
one has long sequences with relatively few matched points,
as shown in this paper.

2 General Algorithm Outline

The simple observation that leads to Carlsson Duality is
as follows. A camera of the form

P =



ai −di

bi −di
ci −di


 (1)

is called a reduced camera matrix. If X = (X, Y, Z, T)� is
a 3D point, then one verifies that



a −d

b −d
c −d







X

Y

Z

T


 =




X −T

Y −T

Z −T







a
b
c
d




(2)
One may denote the matrix in (1) by PA, where A is the
vector (a, b, c, d)�. With this notation (2) may be written
as PAX = PXA, and one sees that the roles of point and
camera are swapped.



Now, consider a set of image correspondences x ij , which
one should read as the image of a j-th point in an i-th
view1. A set of 3D points Xj and camera matrices Pi are
called a projective reconstruction of the correspondences if
xij = PiXj for all i, j. If all the matrices Pi are reduced
camera matrices, then the reconstruction is called a reduced
reconstruction. If such a reduced reconstruction is possible,
then the points xij are said to allow a reduced reconstruc-
tion.

Given a set of image correspondences xij , one defines

a dual or transposed set of correspondences x̂ji defined by
x̂ji = xij . Note that if i = 1, . . . , N and j = 1, . . . ,M , then
the original correspondences are for N views of M points,
whereas the dual correspondences are for a set of M views
of N points.

Now if a set of points xij allows a reduced reconstruction
xij = PAiXj , then the dual correspondences allow a recon-

struction x̂ji = PXjAi, since PXjAi = PAiXj = xij = x̂ji .
In brief :

2.1. If a set of correspondences xij allows a reduced recon-

struction, then so does the dual set of correspondences x̂ji .
Furthermore one may obtain one reconstruction from the
other by interchanging the roles of point and camera.

In solving for a reduced reconstruction from a set of point
correspondences that allow it, one may solve directly from
the original correspondences, or else transpose (dualize) the
correspondences and find a reduced reconstruction in terms
of the dual correspondences. To keep straight what we
are doing, the reduced camera matrices and points obtained
from the dual set of correspondences x̂ji will be called dual
cameras and dual points, together making up the dual re-
construction. As shown, dual cameras correspond to points
in a non-dual reconstruction, and dual points correspond to
cameras.

Transforming the data

A set of point correspondences that allow a projective
reconstruction will not in general allow a reduced recon-
struction. However, they may be transformed to such a set
by transformation of the data.

Let E1 = (1, 0, 0, 0)�, E2 = (0, 1, 0, 0)�, E3 =
(0, 0, 1, 0)� and E4 = (0, 0, 0, 1)� form part of a projective
basis for P3. Similarly, let e1 = (1, 0, 0)� e2 = (0, 1, 0)�

e3 = (0, 0, 1)� e4 = (1, 1, 1)� be a projective basis for the
projective image plane P 2.

Now, let xij = PiXj for i = 1, . . . , N and j = 1, . . . ,M
be a set of image points in M views. Let Ti be a set

1The index i will be used throughout the paper to index the view,
whereas j indexes the points. To remember this, observe that one views
with one’s eye (i). This is a pun – not a very good one but useful as a
mnemonic.

of 2D projective transformations chosen to map the last
four points in each view to the four canonical basis points
e1, . . . , e4. Let x′ij = Tixij for all i and j. One may for-
mulate the reconstruction problem in terms of these trans-
formed image points by seeking transformed camera matri-
ces P′i that satisfy x′ij = P′iXj for all i, j. In a solution to
the reconstruction problems, the cameras Pi and P′i will be
related by TiPi = P′i, since then

P′iXj = TiPiXj = Tixij = x′ij

as required.
Provided that no four of the 3D points X j are coplanar, it

may be assumed that in a projective reconstruction, the last
four 3D points are equal to Ej for j = 1, . . . , 4. It follows
that the camera matrices P′i are in reduced form (1) since
they must satisfy the condition P′iEj = ej for j = 1, . . . , 4.

One may summarize this discussion as follows:

2.2. Let xij be a set of image correspondences allowing
a projective reconstruction. For each view, indexed by
i = 1, . . . , N , let Ti be a projective transformation that
maps the last four points xij , j = M − 3, . . . ,M to the
canonical basis e1, . . . , e4. Then the points x′ij = Tixij for
i = 1, . . . , N and j = 1, . . . ,M − 4 allow a reduced re-
construction.

3 Six points in N views

Now, let us specialize to the case of 6 points observed
in N views. In this case the four last points xi3, . . . ,x

i
6 are

mapped to the canonical basis point. The remaining points
x′i1 = Tixi1 and x′i2 = Tixi2 must now allow a reduced re-
construction. After transposition, we obtain a set of points
x̂1
i ↔ x̂2

i that allow a reduced reconstruction. This is a set
of correspondences of N (dual) points in two (dual) views.
Such a reconstruction problem may (in principal) be solved
by known techniques involving the fundamental matrix to
obtain a dual reconstruction. From this a (non-dual) re-
duced reconstruction may be obtained by swapping points
and cameras. A reconstruction of the original data is then
obtained by applying the inverse transforms (T i)−1 to each
of the reduced camera matrices.

To be more specific, the algorithm proceeds in the fol-
lowing steps.

1. From the dual image correspondence x̂1
i ↔ x̂2

i one
computes a dual fundamental matrix F̂ by solving the
set of equations x̂2

i
�F̂x̂1

i = 0 for all i.

2. From the dual fundamental matrix, one may compute
a (dual) projective reconstruction in the usual manner
(for instance, see [3]). According to ( 2.2), a reduced
reconstruction is possible, namely points and reduced



camera matrices satisfying PX1Ai = x̂1
i and PX2Ai =

x̂2
i .

3. The reconstruction for the original points x ij consists

of the cameras Pi = Ti
−1

PAi for all i and points
X1,X6 where X1 and X2 were computed in the last
step, and X3, . . . ,X6 are the points E1, . . . ,E4. These
satisfy PiXj = xij as required.

More details of this procedure are to be found in [4],
and also [1]. The first two steps of this algorithm will be
considered in more detail in the following sections.

4 Difficulties with the dual method

The method suggested above for solution from N views
of six points may be thought of as consisting of three steps.

1. Apply a projective transformation Ti to the points in
each view to generate a set of point correspondences
allowing a reduced reconstruction.

2. Find a reduced reconstruction (P ′i,Xj) by solving in
the dual domain using the dual fundamental matrix.

3. Apply inverse transformations to the camera matrices
to obtain Pi = (Ti)−1P′i. These along with the recon-
structed points Xj form a projective reconstruction of
the original data.

The main difficulty with this method is the distortion of
points, and particularly their uncertainty regions by the pro-
jective transformations,Ti. Point measurements in an image
are usually (though not quite correctly) assumed to be mea-
sured with independent isotropic Gaussian distributions. It
is unusual for reconstruction algorithms to assume more
general distributions. The common methods for solution of
the two-view projective reconstruction problem, involving
the fundamental matrix, have no way of taking into account
a non-isotropic point distribution. The only way of doing
this is to use an iterative scheme, such as bundle adjust-
ment, that specifically accounts for non-isotropic error dis-
tributions. However circular (isotropic) error distributions
do not remain circular when subjected to a projective trans-
formation. Neither do they remain Gaussian. The projective
transformations Ti, chosen to map four points in each view
to a canonical basis may quite severely distort the error dis-
tribution. In applying a technique based on the fundamental
matrix to the dual reduced reconstruction problem, one nor-
mally is obliged to ignore the particular form of the trans-
formed error distribution and hope for the best. Frequently,
one may work very hard to obtain a small residual in the re-
duced reconstruction problem (step 2 of the above outline)
only to find that when one transforms back to the original

coordinate frame (step 3) the residual errors are very large
for some points.

What is needed is a way of solving the reduced recon-
struction problem while at the same time minimizing the
residual error in the original coordinate frame. This is what
is done in this paper.

5 The Reduced Fundamental Matrix

The fundamental matrix F̂ satisfying

x̂2
i
�F̂x̂1

i = 0 for all i .

for a set of transformed points x̂2
i ↔ x̂1

i is of a special
restricted form. Since the point correspondences allow a
reduced reconstruction, according to ( 2.2), the fundamen-
tal matrix must correspond to a pair of reduced cameras PX1

and PX2 . A formula for the fundamental matrix correspond-
ing to a pair of arbitrary camera matrices is given in [7]
which allows us to compute the form of F̂ when the camera
matrices are of this restricted form.

Since points X3, . . . ,X6 are the points E1, . . . ,E4 of a
projective basis, we may choose X1 = E5 = (1, 1, 1, 1)�.
If X2 = (X, Y, Z, T)�, then

F̂ =




0 −Y(Z − T) Z(Y − T)
X(Z − T) 0 −Z(X − T)
−X(Y − T) Y(X − T) 0


 . (3)

Note that this matrix is singular, and satisfies the further
constraint that the sum of its entries is zero. Such a matrix
is called a reduced fundamental matrix. A reduced funda-
mental matrix is conveniently parametrized by the four pa-
rameters X, Y, Z and T, or by three parameters setting T = 1.

Characterization of Reduced Fundamental Matrix

A reduced fundamental matrix is a fundamental matrix
(that is a singular matrix) that satisfies the additional condi-
tions ei�F̂ei = 0 for i = 1, . . . , 4. The condition ei�F̂ei =
0 for i = 1, . . . , 3, implies that the diagonal entries of F̂
are zero. The requirement that (1, 1, 1)F̂(1, 1, 1)� = 0
gives the additional condition that the sum of entries of F̂
is zero. A singular homogeneous 3 × 3 matrix has 7 de-
grees of freedom. The additional constraints e i�F̂ei = 0
for i = 1, . . . , 4 reduce the number of degrees of freedom
by 4, so that a reduced fundamental matrix has only 3 de-
grees of freedom.

Now, consider the reduced fundamental matrix of (3). It
may be verified that this matrix is singular (the left null-
vector is (X − 1, Y − 1, Z− 1)�). One may also verify that
the sum of its entries is zero, and so are the diagonals. Fi-
nally, the matrix of (3) has three degrees of freedom (being
defined by 3 parameters), and so one deduces that this is the
general form of a reduced fundamental matrix.



Linearly solution for the reduced fundamental ma-
trix

One may write F̂ in the form

F̂ =




0 a b
c 0 d
e −(a+ b+ c+ d+ e) 0




thereby parametrizing a fundamental matrix satisfying all
the linear constraints (though not necessarily the condition
det F̂ = 0). Now, a pair of points x2 and x2 satisfying
x2
�F̂x1 = 0 is easily seen to provide a linear equation in

the parameters a, . . . , f of F̂. Given at least 4 such corre-
spondences, one may solve for these parameters, up to an
inconsequential scale.

The matrix that results from the above method does not
in general satisfy the condition det F̂ = 0, which is required
for a fundamental matrix. To find a matrix that does we tried
various methods. An adaptation of the “algebraic” method
of [5] works well.

6 Minimization of Sampson Error

Under the assumption of isotropic Gaussian error distri-
bution, the Maximum Likelihood (usually considered the
optimal) estimate of the fundamental matrix involves mini-
mization of a cost function

Cost(F) =
∑
i

d(x1
i , x̄

1
i )

2 + d(x2
i , x̄

2
i )

2 (4)

where x̄1
i ↔ x̄2

i are estimated points that satisfy the funda-
mental matrix relationship x̄2

i Fx̄
1
i = 0 exactly, and d(·, ·)

represents Euclidean distance in the image. The cost func-
tion is to be minimized over all choices of F and points
x̄2
i ↔ x̄1

i . However, although optimal, this method is a little
complex to implement. A method that works almost as well
involves minimization of a first-order approximation to the
geometric distance ([13]). In the above cost function, the
cost of a given choice of F is found by minimizing (4) sub-
ject to the condition x̄2

i Fx̄1 = 0 – a sort of constrained min-
imization problem. The first-order approximation to this
cost is given by

Cost⊥(F) =
∑
i

(x2
i Fx1

i )
2

(Fx1
i )

2
1 + (Fx1

i )
2
2 + (F�x2

i )
2
1 + (F�x2

i )
2
2

(5)
where (·)1 and (·)2 mean the first and second components
of the vector. The general strategy is to parametrize the
fundamental matrix in some manner and then minimize this
cost function over all F by parameter minimization (usually
the Levenberg-Marquardt method). This method is theoret-
ically more sound than a commonly quoted method of min-
imizing symmetric epipolar distance, which has a similar-
looking cost function.

Application to reduced reconstruction

In the solution of the dual reduced reconstruction prob-
lem, one seeks a reduced dual fundamental matrix that sat-
isfies the equation x̂2

i
�F̂x̂1

i = 0 for all i. However, recall
that x̂ji = x′ij = Tixij . Thus, the dual fundamental matrix F
must satisfy

xi2(Ti�F̂Ti)xi1 = 0 . (6)

Note that this is expressed in terms of the original point
measurements. The cost associated with a given choice of
F is found by minimizing the distance

∑
i

d(xi1, x̄
i
1)2 + d(xi2, x̄

i
2)2 (7)

subject to the condition (6). Setting F(i) = Ti�F̂Ti the cost
function may be written simply as

Cost⊥(F̂) = (8)
∑
i

(xi2F
(i)xi1)2

(F(i)xi1)2
1 + (F(i)xi1)2

2 + (F(i)�xi2)2
1 + (F(i)�xi2)2

2

This cost function is (as before) a first-order approximation
to the geometric distance (7) in terms of the original un-
transformed data. To the extent that the first-order approx-
imation to geometric distance is a good approximation, this
error function is near-optimal in that it finds F̂ (and subse-
quently a reconstruction) that requires the smallest possible
variation to the original image points x i1 and x2

i . Note that
it is computed without actually transforming the points x ij ,
which refer to original image coordinates. To estimate the
near-optimal reduced fundamental matrix, therefore, one
proceeds to minimize this cost function by a Levenberg-
Marquardt process, using a parametrization of the reduced
fundamental matrix given in section 5.

For comparison, an inferior method that minimizes
residual error in the transformed data would minimize the
required variation in the points x̂1

i = Tixi1 and x̂2
i = Tixi2

would minimize the cost function

Cost⊥(F̂) = (9)
∑
i

(xi2F(i)xi1)2

(F̂Tixi1)2
1 + (F̂Tixi1)2

2 + (F̂�Tixi2)2
1 + (F̂�Tixi2)2

2

This cost function is subtly but importantly different.

7 Completing the reduced reconstruction

In the outline of a reconstruction algorithm given in sec-
tion 3, the second step involves computing the dual camera
matrices PXj and the dual points Ai once the reduced fun-
damental matrix is known. The first step is to find the dual



camera matrices from the reduced fundamental matrix. This
is easy, since the Sampson minimization involved iteration
over the coordinates of the point X2 while fixing the points
X1 = (1, 1, 1, 1)�. Thus the two dual camera matrices PXj

arise as the parameters that minimize the cost function.
To find the dual 3D points, Ai a triangulation method is

required to find the Ai that satisfy PXjAi = x̂ji for j = 1, 2.
The computation may be carried out separately for each i.
As in the usual projective reconstruction method, because
of noise in the measurements, such Ai do not exist pre-
cisely, the two ray from the two camera centres not inter-
secting in space. As expounded in [6], one should find the
3D point that minimizes image error – in fact a method is
give in the cited paper for doing just that. In the present
case, we want to minimize the error in the original image
measurements, and not in the transformed data. This may
be accomplished as follows. The method of [6] starts with
a point pair x ↔ x′ and a fundamental matrix F and finds
the pair of corrected points x̄ ↔ x̄′ that satisfy x̄′�Fx̄ = 0
exactly, while minimizing the distance from the estimated
points x̄ and x̄′ to the measured points x and x′. In the cur-
rent situation, the required corrected points must satisfy the
condition x̂2

i F̂x̂
1
i = 0. However, since x̂ji = x′ij = Tixij ,

this condition becomes xi1(Ti�F̂Ti)xi2 = 0. This leads to
the observation :

• To find the optimal corrected points x̄i1 and x̄i2, one
applies the Hartley-Sturm algorithm ([6]) to the orig-
inal measured points xij ; j = 1, 2 using Ti�F̂Ti for a
fundamental matrix.

Note that once more we are finding the optimally corrected
measurements using untransformed points in the original
images. Once the points have been corrected, triangulation
will be exact, and computation of the dual 3D space points
is easy. Alternatively, observe that the dual 3D space points
PAi are ultimately used to find the camera matrices Pi in the
third step of the algorithm of section 3. An alternative ap-
proach is to estimate the cameras Pi directly using the well
known DLT algorithm ([11]) in terms of the now known 3D
points Xj and corrected image points x̄ij . The solution is
guaranteed to be exact.

8 Results

The algorithm was tested on both synthetic and real data.
For the synthetic data, a set of six points were chosen at ran-
dom in a unit sphere, and a sequence of images were gen-
erated. The images parameters were chosen to approximate
those taken with a 35mm camera with a total width of the
image equal to 1000 pixels.

Five algorithms were compared

1. Minimization using transformed image coordinates.
The algorithm used was an adaptation of the method of

[5] adapted to estimation of reduced fundamental ma-
trix. The algorithm minimizes algebraic error instead
of geometric error. However for estimation of the usual
fundamental matrix it is one of the best algorithms we
know, usually performing within a few percent of op-
timal in terms of residual error. It is a non-iterative al-
gorithm, but the iteration is over the three coordinates
of an epipole only, and is very fast. This will be called
the algebraic method.

2. The results of the Sampson algorithm described in this
paper. This minimizes a first-order approximation to
geometric error in the original untransformed coordi-
nates. This is the Sampson method.

3. Bundle adjustment to minimize residual error in the
untransformed coordinates, initialized with the results
of the algebraic method. This is the refined algebraic
method.

4. Bundle adjustment initialized with the Sampson
method (the refined Sampson method).

5. The theoretical minimum achievable residual error,
computed based on the known amount of noise and the
number of degrees of freedom of the system (the ideal
method).

In all cases, the measured error residual is the residual
error in the original image coordinates resulting from the
reconstruction. This is true even in the algebraic method
which works with the transformed image coordinates, and
this is the essential weakness of all algorithms working in
the transformed domain. From the results the advantage of
the Sampson method is clear.

Although the Sampson method used here does not re-
quire the transformation of the point, it still requires the
computation of the transformation, and its use in obtain-
ing an initial estimate to use as a basis for the Sampson
transformation. In some cases such as where three of the
points are nearly collinear, this transformation will be un-
stable. As a result, the Sampson method still sometimes
fails. This failure is characterized by a large residual er-
ror, which is easily detected. Various strategies are being
developed for avoiding this failure. In particular, it is not
necessary to include all the views in the Sampson estimate.
We are experimenting with least-median squares methods
for eliminating critical views from those used to compute
the structure. Once the position of points X1 and X2 are
computed from the other views the omitted cameras can be
computed in a separate step. At present we are experienc-
ing a failure rate of less than 2% at a noise level of 1 pixel
in each coordinate. To avoid skewing of the results by these
failures, essentially outliers, the worst 2% of cases are omit-
ted from all the graphs shown here.
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Figure 1. Comparison of the algebraic and Sampson
algorithms. Because the algebraic algorithm (top)
carries out minimization with tranformed coordinates
it works quite poorly. Sampson method (middle) per-
forms quite close to the ideal result (bottom). Note
that we can not expect the Sampson method to achieve
the same residual error as the ideal, since in the
Sampson method the residual is concentrated in the
image of the last two points, whereas in the ideal case
it is spread over all points.

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5 3 3.5 4

R
es

id
ua

l E
rr

or

Inserted Noise

Figure 2. Results obtained by using the algebraic
and Sampson methods to initialize a bundle adjust-
ment. Notice that the refined Sampson method obtains
almost optimal results, whereas the refined algebraic
method performs quite poorly. The initial estimate
obtained from the algebraic method is just not good
enough to work effectively as an initial estimate for
full-scale bundle adjustment.

Figure 3. Frames from a sequence of images of a
model satellite rotating and moving in front of a cam-
era. The images were digitized at 352 × 240 pixels.
The result of the algorithm was a residual pixel er-
ror of 0.15 pixels. After reconstruction, a wireframe
model was reprojected onto the images, and observed
to align well. Shown in the images are the reprojected
points and solar panel reconstructed model.

Real image sequences

The algorithm was tested with a set of real images of a
model satellite. A 20-frame sequence was used to test the
algorithm. The sequence is shown in Fig 3.

9 Conclusion

Although the general outline of a method for comput-
ing projective structure from a sequence of six points in N
view has been known since the original papers of Carlsson
and Weinshall, a naı̈ve implementation of the algorithm has
been known to suffer from numeric difficulties because of
the necessity to apply a projective transformation to the im-
age points. This transformation can severely distort the er-
ror distribution of the image points. Any method that es-
timates structure by minimizing residual error in the trans-
formed image points will perform relatively poorly. The
present paper avoids minimization in the transformed do-
main by proposing methods for estimation of the reduced
fundamental matrix and subsequent correction of the image



measurements while minimizing error functions that are di-
rectly related to Euclidean distance in the original untrans-
formed image coordinates. The algorithm has been eval-
uated with both synthetic and real images and has been
shown to perform well.
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Appendix - Sampson error.

Given a fundamental matrix F and a pair of noisy cor-
respondences x′ ↔ x, generally the coplanarity condition
x′�Fx′ = 0 will not be satisfied exactly, but there will exist
a pair of points x̄′, x̄ close to x′,x that satisfy this equa-
tion precisely. We wish to find the points (x̄′, x̄) closest
to (x′,x) that satisfies this relation. For simplicity, let X

represent the 4-vector obtained by concatenating the inho-
mogeneous representations of x and x ′. Further denote by
CF(X) the value x′�Fx.

To first-order, CF may be approximated by a Taylor ex-
pansion

CF(X + δX) = CF(X) +
∂CF
∂X

δX . (10)

If we write δX = X̄−X and desire X̄ to satisfy CF(X̄) = 0,
then the result is CF(X) + (∂CF/∂X)δX = 0, which we
will henceforth write as JδX = −ε where J is the partial-
derivative matrix, and ε is the cost CF(X) associated with
X. The minimization problem that we now face is to find
the smallest δX that satisfies this equation, namely :

• Find the vector δX that minimizes ||δX|| subject to
JδX = −ε.

The standard way to solve problems of this type is to use
Lagrange multipliers. By a fairly straight-forward compu-
tation, one finds that

δX = −J�(JJ�)−1ε , (11)

The norm ||δX||2 is the Sampson error :

||δX||2 = δX
�δX = ε�(JJ�)−1ε . (12)

In the case of fundamental matrix estimation being con-
sidered here, JJ� is a scalar, equal to the denominator of
(5) and ε�ε is the numerator. Thus, the right hand side of
(12) is the same as (5). Furthermore, the left hand side of
(12) is the same as (4), and so (5) represents a first-order ap-
proximation to geometric error as claimed. This is already
known from the work of [13], but the above discussion has
been included to demonstrate that in just the same way (8)
minimizes geometric error up to first order in the minimiza-
tion of the dual fundamental matrix.
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