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Abstract

In this paper, a method of determining the essential matrix for uncalibrated
cameras is given, based on line matches in three images. The three cameras may
have different unknown calibrations, and the essential matrices corresponding
to each of the three pairs of cameras may be determined. Determination of the
essential matrix for uncalibrated cameras is important, forming the basis for
many algorithms such as computation of invariants image rectification, camera
calibration and scene reconstruction.

In the case where all the three cameras are assumed to have the same unknown
calibration, the method of Faugeras and Maybank ([3, 4]) may be used to cali-
brate the camera. The scene may then be reconstructed exactly (up to a scaled
Euclidean transformation). This extends previous results of Weng, Huang and
Ahuja ([12]) who gave a method for scene reconstruction from 13 line correspon-
dences using a calibrated camera. The present paper shows that the the camera
may be calibrated at the same time that the scene geometry is determined.

*The research described in this paper has been supported by DARPA Contract #MDA972-
91-C-0053



1 Introduction

A traditional approach to analysis of perspective images in the field of Computer
Vision has been to attempt to measure and model the camera that took the
image. A large body of literature has grown up seeking to calibrate the camera
and determine its parameters as a preliminary step to image understanding. The
papers [1] and [14] represent two of the latest approaches to camera calibration.
A recent view ([2]) is that camera calibration is not desirable or necessary in
many image understanding situations. Many authors have been led to consider
uncalibrated cameras. The study of projective invariants ([11]) is an example of
a growing field based on the philosophy of avoiding camera calibration. In fact,
study of uncalibrated cameras is intimately linked with the study of projective
invariants, for a result of Faugeras ([2]), Hartley et. al. ([6]) and Mohr shows that
under most conditions a scene can be determined up to a projective transform
of projective 3-space P>3by a pair of images taken by uncalibrated cameras.

Central to the study of pairs of images is the essential matrix, introduced by
Longuet-Higgins ([10]) for calibrated cameras, but easily extended to uncal-
ibrated cameras. The essential matrix encodes the epipolar correspondences
between two images. It has been shown to be a key tool in scene reconstruction
from two uncalibrated views ([2, 6]) as well as for the computation of invariants
([7]). The task of image rectification, which seeks to line up epipolar lines in
a pair of images as a preliminary step to finding image correspondences, can
be accomplished using the uncalibrated essential matrix ([9]) where previous
methods have relied on camera modelling. It is particularly interesting that the
essential matrix may be used for the calibration of a camera, and consequent
scene reconstruction, given three or more views ([3, 4]). This result provides a
strong argument for not assuming camera calibration a priori, and underlines
the central role or the essential matrix.

A recent paper Weng, Huang and Ahuja ([12]) gave an algorithm for recon-
structing a scene from a set of at least 13 line correspondences in three images.
They assumed a calibrated camera in their algorithm. It is the purpose of the
present paper to extend their result to uncalibrated cameras, showing that the
essential matrices can be computed from three uncalibrated views of a set of
lines. It is not assumed that the three cameras all have the same calibration.
In fact, the essential matrices corresponding to each of the three image pairs
may be computed. In the case where all three cameras are the same, however,
the result of Faugeras and Maybank ([3, 4]) may be applied to obtain the com-
plete calibration of the three cameras and reconstruct the scene up to a scaled
FEuclidean transformation. Thus, it is shown that the assumption of calibrated
cameras is unnecessary in [12], for the cameras may be calibrated at the same
time that the scene is reconstructed.

One unfortunate aspect of the algorithm [12] is that 13 line correspondences
in three images are necessary, compared with eight point correspondences (and
with some effort only six, [8]). Although nothing can be done with two views
or fewer (see [12]), a counting argument shows that as few as nine lines in three
views may be sufficient, although it is extremely unlikely that a linear or closed
form algorithm can be found in this case. It is shown in section 4 of this paper
that if four of the lines are known to lie in a plane, then a linear solution exists



with only nine lines.

2 Preliminaries

2.1 Notation

Consider a set of points {x;} as seen in two images. The set of points {x;}
will be visible at image locations {u;} and {u}} in the two images. In normal
circumstances, the correspondence {u;} < {u}} will be known, but the location
of the original points {x;} will be unknown. Normally, unprimed quantities
will be used to denote data associated with the first image, whereas primed
quantities will denote data associated with the second image.

Since all vectors are represented in homogeneous coordinates, their values may
be multiplied by any arbitrary non-zero factor. The notation ~ is used to
indicate equality of vectors or matrices up to multiplication by a scale factor.

Given a vector, t = (tg,ty, tz)T it is convenient to introduce the skew-symmetric
matrix

0 —t. i
[t = [ ¢ 0 —t, (1)
—ty  ty 0

This definition is motivated by the fact that for any vector v, we have [t]«v =
t x vand v[t]x =v x t.

The notation A* represents the adjoint of a matrix A, that is, the matrix of
cofactors. If A is an invertible matrix, then A* ~ (AT)~!.

2.2 Camera Models

Nothing will be assumed about the calibration of the two cameras that create
the two images. The camera model will be expressed in terms of a general pro-
jective transformation from three-dimensional real projective space, P3, known
as object space, to the two-dimensional real projective space P?known as image
space. The transformation may be expressed in homogeneous coordinates by
a 3 X 4 matrix P known as a camera matrix and the correspondence between
points in object space and image space is given by u; ~ PXx;.

For convenience it will be assumed throughout this paper that the camera place-
ments are not at infinity, that is, that the projections are not parallel projections.
In this case, a camera matrix may be written in the form

P = (M| —Mt)

where M is a 3 x 3 non-singular matrix and t is a column vector t = (t,,t,,t.) "
representing the location of the camera in object space.

2.3 The Essential Matrix

For sets of points viewed from two cameras, Longuet-Higgins [10] introduced a
matrix that has subsequently become known as the essential matrix. In Longuet-



Higgins’s treatment, the two cameras were assumed to be calibrated, meaning
that the internal cameras parameters were known. It is not hard to show (for
instance see[5]) that most of the results also apply to uncalibrated cameras of
the type considered in this paper.

The following basic theorem is proven in [10].

Theorem 2.1. (Longuet-Higgins) Given a set of image correspondences {u;}
{ul} there exists a 3 x 3 real matriz Q such that

u,"Qu; =0

for all .

The matrix @ is called the essential matrix. Next, we consider the question of
determining the essential matrix given the two camera transformation matrices.
The following result was proven in [5].

Proposition 2.2. The essential matrixz corresponding to a pair of camera ma-
trices P = (M | —M¢t) and P = (M’ | —M't’) is given by

Q~M*MTME —1t)]x .

For a proof of Proposition 2.2 see [5].

2.4 Computing Lines in Space

Lines in the image plane are represented as 3-vectors. For instance, a vector 1 =
(I, m,n) T represents the line in the plane given by the equation lu 4 mv +nw =
0. Similarly, planes in 3-dimensional space are represented in homogeneous

coordinates as a 4-dimensional vector = = (p, ¢, r, s)T.

The relationship between lines in the image space and the corresponding plane
in object space is given by the following lemma.

Lemma 2.3. Let A be a line in P3and let the image of X as taken by a camera
with transformation matriz P be 1. The locus of points in P>3that are mapped
onto the image line 1 is a plane, w, passing through the camera centre and
containing the line \. It is given by the formula 7 = PT1.

Proof. A point x lies on 7 if and only if it is mapped to a point on the line 1 by
the action of the transformation matrix. This means that Px lies on the line 1,
and so

1"Px=0 . (2)
On the other hand, a point x lies on the plane 7 if and only if 7'x = 0.
Comparing this with (2) lead to the conclusion that 77 =1TP or m = PT1 as
required. a



2.5 Degrees of Freedom

In this section, we compute how many views of a set of lines are necessary to
determine the positions of the lines in space. Suppose that n unknown lines are
visible in k views with unknown camera matrices. Suppose that the images of
the lines in each of the k views are known. Each line in each view gives rise to
two equations. In particular, suppose A is a line in P3and 1 is the image of that
line as seen by a camera with camera matrix P. Let x be a point on A, then
as shown in (2) 1T Px = 0. Since the line A can be specified by two points, two
independent equations arise. The total number of equations is therefore equal
to 2nk.

On the other hand, each line in P3has four degrees of freedom, so up to pro-
jectivity, n lines have a total of 4n — 15 degrees of freedom, as long as n > 5.2
Furthermore, each camera matrix has 11 degrees of freedom. In summary :

# D.O.F = 4n—-15+ 11k |,
# equations = 2nk .
To solve for the line locations,
2nk > 4n + 11k — 15 . (3)

In particular for 6 lines at least 9 views are necessary. On the other hand, for
just 3 views, at least 9 lines are necessary.

Once the lines are known, the camera matrices may be computed using (2), and
the essential matrices of each pair may be computed using Theorem 2.2.

The bounds given by (3) are minimum requirements for the computation of the
essential matrices of all the views. The necessity for at least 9 lines in 3 views
just demonstrated should be compared with section 3 in which a linear method
is given for computing @ from 13 lines in 3 views. Also, compare with section 4
in which a linear method is given for computing () under the assumption that
four of the lines are coplanar.

3 Determination of the Essential Matrix from
Line Correspondences

This section will investigate the computation of the essential matrix of an uncal-
ibrated camera from a set of line correspondences in three views. As discussed
in [12], no information whatever about camera placements may be derived from
any number of line-to-line correspondences in two views. In [12] the motion
and structure problem from line correspondences is considered. An assumption
made in that paper is that the camera is calibrated, so that a pixel in each im-
age corresponds to a uniquely specified ray in space relative to the location and
placement of the camera. It will be shown in this section that this assumption
is not necessary and that in fact the same approach can be adapted to apply to
the computation of the essential matrix for uncalibrated cameras.

2As shown in [7] four lines have two degrees of freedom



It will be assumed that three different views are taken of a set of fixed lines in
space. That is, it is assumed that the cameras are moving and the lines are fixed,
which is opposite to the assumption made in [12]. It will not even be assumed
that the images are taken with the same camera. Thus the three cameras
are uncalibrated and possibly different. The notation used in this section will
be similar to that used in [12]. Since we are now considering three cameras,
the different cameras will be distinguished using subscripts rather than primes.
Consequently, the three cameras will be represented by matrices

(Mo | 0) , (My|—Mity) and (Ms | —DMats)

where t; and t, are the positions of the cameras with respect to the position of
the zero-th camera, and M; is a non-singular matrix for each i. For convenience,
the coordinate system has been chosen so that the origin is at the position of
the zero-th camera, and so to = 0.

Now, consider a line in space passing through a point x and with direction given
by a vector £. Let N; be the normal to the plane passing through the center of
the i-th camera and the line. Then, IV, is given by the expression

Nl':(X—tl')XKZXXK—tiXK .
Then for : =1, 2,

Nox N; = (xx)x(xxl—t;x{)
= —(xx€)x(t;x¥) (4)
= —((xx0).0t;, — ((xx{0).t;)0)

However, for i =1, 2,

Ni.ti = ((X — ti) X €) .t
= (X X é) .t — (ti X €) .t
= N().tl'

Combined with the result of (4) this yields the expression
NQ X Ni = (Nltl)é (5)
for i = 1,2. From this it follows, as in [12] that

(NQ.tQ)NO X N1 = (Nl.tl)NO X NQ (6)

Now, let n; be the representation in homogeneous coordinates of the image of
the line ¢ in the i-th view. According to Lemma 2.3, N; is the normal to the
plane (M; | —M;t;) "n;. Consequently,
Ni = MiTni .
Applying this to (6) lead to
(DQTMQtQ)(MOTn() X MlTIll) = (anMltl)(M()Tn() X MQTHQ) (7)

We now state without proof a simple formula concerning cross products :



Lemma3.4. If M is any 3 X 3 matriz, and u and v are column vectors, then
(Mu) x (Mv)=M*"(uxv) . (8)

Applying (8) to each of the two cross products in (7) leads to
My (no " Mats)(ng x MyM; "ny) = My (ng " Mity)(ng x MiMz"ns) . (9)

Now, cancelling M, ! from each side and combining the two cross products into
one gives

ng X ((DQTMQtQ)ME;MlTnl — (IllTMltl)MgMngg) =0 . (10)
As in [12], we write
B = (DQTMQtQ)ME;MlTnl — (anMltl)MgMngg (11)
then ng x B = 0. Now, writing
1'1—r
MM, T = ro!
1‘3T
T
S1
ME;MQT — ( SQT (12)
T
s3
Mty =t
Mgtg = u
vector B can be written in the form
n; ' (rju’ —ts;")ny n; ' Ens
B=| n; (rou’ —tsy )ny = | n; Fn, . (13)
n; " (rzu’ —ts3 ' )ny n; ' Gng

Where E, F and G are defined by this formula. Therefore, we have the basic
equation

n; | Ens

ng X anFl’lg =0 . (14)

anGHQ
This is essentially the same as equation (2.13) in [12], derived here, however, for
the case of uncalibrated cameras. As remarked in [12], for each line ¢, equation
(14) gives rise to two linear equations in the entries of E, F and G. Given 13
lines it is possible to solve for E, F' and G, up to a common scale factor.

We now define a matrix Qg by

Qo1 = (t X r1,t X, t X 13)

This may be written as Qo1 = [t]x (r1,r2,r3). Then, we see that

and in view of the definitions of r; and t given in (12), we have

Qo1" = MiM; T[Mitq]«



from which it follows, using Proposition 2.2 that Q1 is the essential matrix
corresponding to the (ordered) pair of transformation matrices (Mo | 0) and
(My | —Mqtq).

From the definition of E = rju' —ts; | it follows that ET (t xr1) = 0. If E has
rank 2, then (t x r1) can be determined up to an unknown scale factor. If the
same way, if F' and G have rank 2, then (t x r;) can be similarly determined.
Since these three vectors are the columns of the essential matrix Qg1, it means
that Qo1 can be determined up to individually scaling its columns. How to
handle the case where E, F' or G does not have rank 2 is discussed in [12].

Now, by interchanging the roles of the first and second cameras in this analysis,
it is possible to determine the matrix 19 up to individual scalings of its columns.
However, since Qo1 = Q10! the matrix Qg can be determined up to scale.

4 Computation from 9 lines

If the lines are known to satisfy certain geometric constraints, then it is possible
to compute the essential matrix using fewer lines in three views. The general idea
is that if the projective geometry of some plane in the image can be fixed, then
the determination of the epipolar geometry is simplified. This observation was
applied to the determination of @ from point correspondences in [13]. Instead of
considering the configuration of 9 lines of which four are coplanar, we consider
four points in a plane and five lines not in the plane. From four lines in a plane
it is easy to identify four points as the intersections of pairs of lines. Thus,
let X1,...%x4 be four points lying in a plane 7 in P3. Let the images of these
points as seen in three images be u;, u; and u}. We suppose for convenience
that the images have been subjected to appropriate projective transforms so
that u; = u} = u for all . Then, a necessary and sufficient condition for any
further point x to lie in the plane 7 is that x projects to the same point in all
three images.

This observation may be viewed in a different way. We may assume that the
image planes of the three images are all identical with the plane 7 itself, since
by an appropriate choice of projective coordinates in each of the image planes,
it may be ensured that the projective mapping from plane 7 to each of the
image planes is the identity coordinate map. The projective mapping associated
with each camera maps a point x in space to the image point u in which the
line through x and the camera centre pierces the image plane. Coordinates for
P3may be chosen so that the plane 7 is the plane at infinity and the first camera,
is placed at the point (0,0,0,1)". Let the other two cameras be placed at the

1 1
P=(I]0),P =(I|—-a)and P” = (I | —b). If we can compute the vectors
a and b, then the essential matrices can be computed using Theorem 2.2.

. b . .
points < 2 ) and . The three camera transformation matrices are then

Now consider a line A in P3which does not lie in the image plane. Let the
projections of A with respect to the three cameras be £, £’ and £”. Since A does
not lie in the image plane, its three images will be distinct lines. However, lines
£, £ and £” must all meet at a common point, namely the point at which A



meets the image plane.

Given £, £ and £” the line A may be retrieved as the intersection of the three
planes defined by each line and its corresponding camera centre. Each such
plane may be computed explicitly. In particular from (2) the three planes are

T £ 1T pt 4 aw 4
equal to P' £ = , Pe = al e ,and P"'¢" = The

0 bTe//
fact that these three planes meet in a common line implies that the 4 x 3 matrix

e 2/ e//
A= < 0 e/Ta e//Tb )
has rank 2. Hence, there must be a linear dependency between the columns of
A.

As remarked above, the lines £, £’ and £” are coincident, so there is a relationship
al+ € +~v€" = 0. This gives a linear dependency between the first three rows
of A. Since £, £’ and £” are known, the weights a;, # and v may be computed
explicitly. Since A has rank 2, this dependency must also apply to the last row
as well which means that

BETa+~"Tb=0 .

This is a single linear equation in the coordinates of the two vectors a and b.
Given five such equations, arising from five lines not lying in the plane 7, it is
possible to solve for a and b up to an unknown (but insignificant) scale factor.

Summary of the algorithm The algorithm for determining the essential
matrices from four coplanar points and five lines in three images is as follows.
We start with coordinates u;, u} and u, the images of the points in the three
images and also £, £’ and £, the images of the lines. The steps of the algorithm
are as follows.

1. Determine two-dimensional projective transformations represented by
non-singular 3 x 3 matrices K’ and K” such that for each i = 1,...4
we have u; = K'uj = K"u/.

2. Replace each line £; by the transformed line K"*£}, and each £; by K¢/ .

K3

3. Foreach i =1,...,5 find coefficients «;, 5; and 7; such that a;€; + 5;£, +
%ﬂg’ = 0.

4. Solve the set of five linear equations 3;€;"a + £/ Tb = 0 to find the
vectors a and b, up to an indeterminate scale.

5. The three essential matrices are K'T [a]x, K" T[b]x and K" T[b —a]. K'.

The above discussion was concerned with the case in which the plane 7 was
defined by four points. Any other planar object which uniquely defines a pro-
jective basis for the plane may be used just as well, for example four coplanar
lines (as already noted). This shows that four coplanar lines plus five lines not
in the plane are sufficient (in 3 views) to determine the essential matrices.



5 Conclusion

The two algorithms given above can be used to determine the essential ma-
trices for the purposes of invariant computation, scene reconstruction, image
rectification or some other purpose.

Most interesting would be the case in which the three cameras are assumed to be
the same. Then the cameras can be calibrated and the entire scene reconstructed
up to scaled Euclidean transform from line correspondences in three views. In
order to implement this method, an efficient implementation of the calibration
algorithm of Faugeras and Maybank ([3, 4]) would be required. At the present
time, no such implementation is available, so the calibration method described
in this paper also remains unimplemented. This paper, therefore represents a
contribution to the theory of calibration and scene reconstruction. It seems
likely, however, that an efficient implementation of the algorithms of this paper
and [3, 4] will become available in the future.
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