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Abstract

It is known that a set of points in 3 dimensions is determined up to projectivity from two views with
uncalibrated cameras. It is shown in this paper that this result may be improved by distinguishing
between points in front of and behind the camera. Any point that lies in an image must lie in front
of the camera producing that image. Using this idea, it is shown that the scene is determined from
two views up to a more restricted class of mappings known as quasi-affine transformations, which
are precisely those projectivities that preserve the convex hull of an object of interest. An invariant
of quasi-affine transformation known as the cheiral sequence of a set of points is defined and it is
shown how the cheiral sequence may be computed using two uncalibrated views. As demonstrated
theoretically and by experiment the cheiral sequence may distinguish between sets of points that
are projectively equivalent. These results lead to necessary and sufficient conditions for a set of
corresponding pixels in two images to be realizable as the images of a set of points in 3 dimensions.

Using similar methods, a necessary and sufficient condition is given for the orientation of a set
of points to be determined by two views. If the perspective centres are not separated from the point
set by a plane, then the orientation of the set of points is determined from two views.

1 Introduction

Consider a set of points {x;} lying in a plane in space and let {u;} and {u}} be two images of these
points taken with arbitrary uncalibrated perspective (pinhole) cameras. It is well known that the
points u; and u} are related by a planar projectivity, that is, there exists h a projectivity of the
plane such that hu; = u} for all . This fact has been used for the recognition of planar objects.
For instance in [13] planar projective invariants were used to define indexing functions allowing
look-up of the objects in an object data-base. Since the indexing functions are invariant under plane
projectivities, they provide the same value independent of the view of the object.

In a similar way, it has been shown in [1] and [3] that a set of points in 3-dimensions is determined
up to a 3-dimensional projectivity by two images taken with uncalibrated cameras. Both these
papers give a constructive method for determining the point configuration (up to projectivity). This
permits the computation of projective invariants of sets of points seen in two views. An experimental
verification of these results has been reported in [2] and is summarized in this paper.

The papers just cited make no distinction between points that lie in front of the camera and those
that lie behind. The property of a point that specifies that it lies in front of or behind a given camera
will be termed the cheirality of the point with respect to the camera. This word is derived from the
Greek word : xerp meaning hand or side. It is well know that cheirality is valuable in determining
scene geometry for calibrated cameras. Longuet-Higgins [7] uses it to distinguish between four



different possible scene reconstructions from two views. More recently, Robert and Faugeras ([12])
have used it for the construction of convex hulls of three-dimensional point sets. No systematic
treatment of cheirality for uncalibrated cameras has previously appeared, however. Investigation of
this phenomenon turns out to be quite fruitful, as is seen in the present paper. Cheirality is valuable
in distinguishing different point sets in space, especially in allowing projectively equivalent point
sets to be distinguished.

Projective transforms have the property of swapping points from the front to the back of the
camera. We will say that a transform is cheirality-reversing for a given point if it swaps the point from
the front to the back of the camera, or vice-versa. Otherwise it is called cheirality-preserving. The
use of the word cheirality differs slightly from the conventional usage in topology where it refers to
local spatial orientation. In topology, a cheirality reversing transform is one that reverses orientation,
such as a mapping that takes a point set to its mirror image. For instance, knots that are the same
as their mirror image are called amphicheiral ([5]). It will be seen in this paper that for affine spatial
transforms our definition of cheirality-preserving corresponds with the topological definition in that
an orientation preserving transformation preserves the front and back of the cameras. For arbitrary
projective transforms the two concepts are distinct.

Summary of major results of the paper. In Definition 4.5 a class of projectivities called
quasi-affine transformations is defined, consisting of those that preserve the convex hull of a set of
points of interest. Theorem 5.14 strengthens the result of [1, 3] by showing that a 3-dimensional
point set is determined up to quasi-affine transformation by its image in two uncalibrated views.
This sharpening of the theorem of [1, 3] results from a consideration of the cheirality of the cameras.
This result leads naturally to the concept of a quasi-affine reconstruction of a scene, which is one
that differs by at most a quasi-affine transformation from the true geometry. A practical algorithm
for computing a quasi-affine reconstruction of a scene seen in two (or more) views is given in section
8.

Consideration of cheirality leads to a necessary and sufficient condition for a set of image cor-
respondences to be derived as projections of points in a real scene. This is discussed in section
6.

In section 7 the concept of quasi-affine transformation is applied to orientation of point sets,
explaining why some point sets allow two differently oriented quasi-affine reconstructions from two
views, whereas some do not. The relationship of this result to human visual perception of 3D scenes
is briefly mentioned, noting that the brain is able to reconstruct differently oriented quasi-affine
models of a scene.

Sections 9 and 10 consider the application of cheirality to view synthesis in which a new view of
a scene is constructed from a set of given images.

In section 11.1 a quasi-affine invariant is defined — the cheiral sequence. In section 12 an example
of computation of the cheiral sequence for 3D point sets shows that it is useful in distinguishing
between non-equivalent point sets. This invariant may be seen as formalizing and extending to three
dimensions the thesis and paper of Morin [9, 10] on distinguishing planar shapes.

2 Notation

We will consider object space to be the 3-dimensional Euclidean space R® and represent points in
R3 as 3-vectors. Similarly, image space is the 2-dimensional Euclidean space R? and points are
represented as 2-vectors. Euclidean space, R? is embedded in a natural way in projective 3-space
P3by the addition of a plane at infinity. Similarly, R? may be embedded in the projective 2-space
P2by the addition of a line at infinity. The simplicity of considering projections between P3and
P2has led many authors to identify P3and P2as the object and images space. This sometimes leads
one to forget that real points and cameras lie in Euclidean and not in projective space. Where
convenient we will consider points in R? and R? as lying in P?and P>respectively, via the natural



embedding. However, in this case the line (or plane) at infinity will be considered to be a special
distinguished line (or plane).

Vectors will be represented as bold-face lower case letters, such as x. Such a notation represents
a column vector. The corresponding row vector will be denoted by x'. The notation x usually
denotes a homogeneous 4-vector representing an element in P3, whereas u represents a vector in P2.
The notation X represents a non-homogeneous 3-vector representing an element of R3. Similarly, @1
is a non-homogeneous 2-vector. The notation X represents a vector with final coordinate equal to
1, sometimes meant implicitly to represent the same point as a homogeneous vector x. Similarly
represents a vector of the form (u,v,1)".

The notation a = b means that a and b have the same sign. For instance a = 1 has the same
meaning as a > 0.

3 Projections in P?

A projection from P3into PZ?is represented by a 3 x 4 matrix P, whereby a point x maps to the
point u = Px. It will be assumed that P has rank 3. Since P has 4 columns but rank 3, there is a
unique vector ¢ such that Pc = (0,0,0) ". In other words, the projective transformation is undefined
at the point ¢, since (0,0,0)T is not a valid homogeneous 3-vector. The point ¢ will be called the
perspective centre of the camera. We will assume for the present that the perspective centre is not a

¢
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Now, the camera matrix P may be written in block form as P = (M | v) where M is a 3 x 3
block and v is a column vector. Then

point at infinity so we may write ¢ = ¢ = where c is the perspective center as a point in R>.

C

Pé:(M|v)(1

) =Mc+v=0,
and so v = —Me¢. Now since P has rank 3 and —M ¢ is a linear combination of the columns of M, it

follows that M must have rank 3. In other words, M is non-singular. Summarizing this discussion
we have

Proposition 3.1. If P is a camera transform matriz for a camera with perspective centre not at
infinity, then P can be written as P = (M | —M&) where M is a non-singular 3 x 3 matriz and €
represents the perspective centre in R3.

There exist points in P3that are mapped to points at infinity in the image. To find what they
are, we suppose that u = (u,v,0)" = Px. Letting p1 ', p2' and p3' be the rows of P, we see
that p3 'x = 0. In other words, a point x in P3that maps to a point at infinity in the image must
satisfy the equation x"ps = 0. Looked at another way, if p3 is taken as representing a plane in
P3, then it represents the plane consisting of all points mapping to infinity in the image. Since
Pc = 0, we see in particular that p3'c = 0 and so c lies on the plane p3. To summarize this
paragraph, the set of points in P>mapping to a point at infinity in the image is a plane passing
through the perspective centre and represented by ps3, where p3 ' is the last row of P. In conformity
with standard terminology, this plane will be called the principal plane of the camera.

Restricting now to R?, consider a point x in space, not lying on the principal plane. It is projected
by the camera with matrix P onto a point u where wa = Px for some scale factor w. The value
of w will vary continuously with x and the set of points where it vanishes is precisely the principal
plane. It follows that on one side of the principal plane w > 0 and on the other side, w < 0.

In a Euclidean context, the value of w can be given a precise metric interpretation as explained
next. The line perpendicular to the principal plane through the perspective centre is called the
principal ray. In general, the normal vector to a plane (q,r,s,t)" is given in non-homogeneous
coordinates as the vector (q,r,s)". Thus, if P = (M | —M&), then the principal ray is represented
by the last row of M, denoted ms .



For a point x in space, we see that

wa = PX
= orj-ar) Y )
= Mx— Mc
= Mx-¢),

and so w = m3' (X — €) As just remarked, m3 represents the direction of the principal ray, and
X — ¢ is the vector from the camera centre to the point x. If P is scaled by multiplication by an
appropriate factor so that ||mgs|| = 1 then, w is equal to the depth of the point x from the camera
perspective centre in the direction of the principal ray. This metric interpretation of w, though
useful in some applications, such as depth recovery ([14]) will not be used further in this paper.

Any real camera can only view points on one side of the principal plane, those points that are
“in front of” the camera. Points on the other side will not be visible. In order to distinguish the
front of the camera from the back, a convention is necessary.

Definition 3.2. A camera matrix P = (M | v) is said to be normalized if det(M) > 0. If P is a
normalized camera matrix, a point x is said to lie in front of the camera if Px = wh with w > 0.
Points x for which w < 0 are said to be behind the camera.

Any camera matrix may be normalized by multiplying it by —1 if necessary. The selection of which
side of the camera is the front is simply a convention, consistent with the assumption that for a
camera with matrix (I | 0), points with positive z-coordinate lie in front of the camera. This is the
usual convention in computer vision literature, used for instance in [7].

To avoid having always to deal with normalized camera matrices, we define the following param-
eter .

Definition 3.3. Suppose a point x = (,, z,t) " maps to an image point u = (u,v,w) " by a camera
with matrix P = (M | v). Thus, let (u,v,w)" = P(x,y,2,t)". We define

x(x; P) = (det M)/t /w
O

Note that the value of yx is unchanged if the point x is multiplied by a non-zero scale, since
the value of w is multiplied by the same scale. Similarly, if P is multiplied by a constant scale k,
then both det M'/? and w are multiplied by k, and the value of x is unchanged. Thus, x(x; P) is
independent of the particular homogeneous representation of x and P. If P is normalized and ¢t = 1
so that x = %, then x(x; P) = w. Thus, corresponding to Definition 3.2 we have

Proposition 3.4. The point x lies in front of the camera P if and only if x(x; P) > 0.

In fact, x is positive for points in front of the camera, negative for points behind the camera,
zero on the plane at infinity and infinite on the principal plane of the camera. If the camera centre
or the point x is at infinity, then x is still defined but is equal to zero. In this case, it is not well
defined whether the point lies behind or in front of the camera.

In general, we will only be concerned with the sign of x and not its magnitude. We may then
write x(x; P) = tdet M /w (remember that the symbol = indicates equality of sign). The quantity
sign(x(x; P)) will be referred to as the cheirality of the point x with respect to the camera P. The
cheirality of a point is said to be reversed by a transformation if it is swapped from 1 to —1 or vice
versa.



Note on the figures. In the figures included in this paper, a non-standard representation of
cameras is used. A camera is denoted by a line representing its principal plane, along with an arrow
pointing in the direction of the front of the camera. The tail of the arrow lies at the centre of
projection, on the principal plane. Generally, the figures contain one or two cameras. The diagrams
may be thought of as representing the projection of R? along the direction of the common line of
intersection of the two cameras’ principal planes. Thus, each principal plane projects to a line, and
their line of intersection projects to a point.

4 Quasi-Affine Transformations

A subset B of R™ is called convex if the line joining any two points in B also lies entirely within B.
The convex hull of B, denoted B is the smallest convex set containing B. We denote by Lo, the
(n — 1)-dimensional subspace (line, plane, etc) at infinity in P"™. For simplicity, we will refer to it
as the plane at infinity, except where we are specifically considering P2. The inverse image of Lo,
under a projective transformation h is denoted wo, = h™1(Ly).

Definition 4.5. Let B be a subset of R™ and let h be a projectivity of P™. The projectivity h is
said to be “quasi-affine” with respect to the set B if h™1(L,) does not meet B, where Lo, is the
plane at infinity.

A projectivity that is quasi-affine with respect to B is precisely one that preserves the convex
hull of B (as will be seen later).

It may be verified that if h is quasi-affine with respect to B, then h~! is quasi-affine with respect
to h(B). Furthermore, if h is quasi-affine with respect to B and ¢ is quasi-affine with respect to
h(B), then goh is quasi-affine with respect to B. Thus, quasi-affine projectivities may be composed
in this fashion. Strictly speaking, however, quasi-affine projectivities with respect to a given fixed
set of points do not form a group.

We will be considering sets of points {x;} and {x}} that correspond via a projectivity. When we
speak of the projectivity being quasi-affine, we will mean with respect to the set {x;}.

An alternative characterization of quasi-affine transformations is given in the following theorem.

Theorem 4.6. A projectivity h : P — P™ represented by a matriz H is quasi-affine with respect to
a set B ={x;} C R" — h™Y(Lo) if an only if there exist constants w;, all of the same sign, such
that HX; = w;X,
Proof. To prove the forward implication, we assume that h is a quasi-affine transformation. By
definition, constants w; exist such that H%; = w;X;. What needs proof is that they all have the
same sign. The value of w in the mapping wXx’ = Hx is a continuous function of the point x. If
w; > 0 for some point x;, and w; < 0 for another point x;, then there must exist some point x,, on
the line segment joining x; to x; for which w = 0. This means that x lies in B, but h(x) lies on
the line at infinity, contrary to hypothesis.

Next, to prove the converse, we assume that there exist such constants w; all of the same sign.
We need to show that h~!(Ls) does not meet B. Let S be the subset of R" consisting of all points
x satisfying the condition Hx = wx’ such that w has the same sign as all w;. The set S contains B
and it is clear that SN h~! (L) = 0. All that remains to show is that S is convex, for then S must
contain the convex hull of B. If x; and x; are points in S with corresponding constants w; and wj,
then any intermediate point x between x; and x; must have w value intermediate between w; and
w;j. To see this, consider a point X = ax; + (1- a)fcj where 0 < o < 1. This point lies between x;
and x;. Denote by hy " the last row of H. Then,

w = h4TX
= hy'(ax; + (1 - )%;)
= Ozh4T)A(i + (1 - Oé)h4T)A(j

= aw; + (1 — a)w,
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Figure 1: Picture of a comb and a non-quasi-affine resampling of the comb

which lies between w; and w; as claimed. Consequently, the value of w must have the same sign as
w; and w;, and so x lies in S also. This completes the proof. a

This theorem gives an effective method of identifying quasi-affine mappings. The question re-
mains whether quasi-affine mappings form a useful class. This question will be answered by the
following theorem.

Theorem 4.7. If B is a point set in a plane (the “object plane”) in R® and B lies entirely in front
of a projective camera, then the mapping from the object plane to the image plane defined by the
camera is quasi-affine with respect to B.

Proof. That there is a projectivity h mapping the object plane to the image plane is well known.
What is to be proven is that the projectivity is quasi-affine with respect to B. Let L be the line
in which the principal plane of the camera meets the object plane. Since B lies entirely in front of
the camera, L does not meet the convex hull of B. However, by definition of the principal plane
L = h™'(L), where L is the line at infinity in the image plane. Therefore, h is a quasi-affine
with respect to B. a

As an example to illustrate the difference between projective and quasi affine mapping, consider
Fig. 1. This figure shows an image of a comb and the image resampled according to a projective
mapping. Most people will agree that the resampled image is unlike any view of a comb seen by
camera or human eye. Nevertheless, the two images are projectively equivalent and will have the
same projective invariants. The projective mapping is not, however, quasi-affine with respect to the
comb.

Note that if points u; are visible in an image, then the corresponding object points must lie in
front of the camera. Applying Theorem 4.7 to a sequence of imaging operations (for instance, a
picture of a picture of a picture, etc), it follows that the original and final images in the sequence are
connected by a planar projectivity which is quasi-affine with respect to any point set in the object
plane visible in the final image.

Similarly, if two images are taken of a set of points {x;} in a plane, {u;} and {u}} being cor-
reponding points in the two images, then there is a quasi-affine mapping (with respect to the u;)
mapping each u; to ul, and so Theorem 4.6 applies, yielding the following proposition.



Proposition4.8. If {u;} and {u,} are corresponding points in two views of a set of object points
{x;} lying in a plane, then there is a matrix H representing a planar projectivity such that Ha; =
wiﬁg and all w; have the same sign.

This fact was previously discovered and exploited by Andrew Zisserman and Charles Rothwell
(private communication) and served as a starting point for the current investigation. They derived
this result using the methods of [14].

5 Three dimensional point sets

We now consider three-dimensional point sets seen in a pair of images. The 3D locations of the points
will be assumed unknown, but image point matches u; < u} will be known. It will be assumed that
sufficiently many point matches knowf for the matrix F' to be determined unambiguously, that is at
least 8 points ([7]). Under these conditions as shown in [3] and [1] it is possible to determine the
location of points x; and cameras P and P’ such that u; = Px; and u} = P’'x;, and furthermore,
the choice is unique up to projectivity of P3. Recalling the definition of y (definition 3.3) and
Proposition 3.4, if x(x;; P) and x(x;; P’) are both positive, then the point x; lies in front of both
cameras, and maps to points u; and u} in the two images. Normally, this will not be the case. It is
possible, however, that another choice of P, P’ and x; exists with the desired property.

We introduce some new terminology. A triplet (F,{u;},{u}}) is called an epipolar configuration
if F is a rank 2 matrix satisfying the epipolar constraint equation u;’ Fu; = 0 for all . A weak
realization of (F, {u;},{u}}) is a triplet (P, P’,{x;}), where P and P’ are a choice of camera matrices
corresponding to the fundamental matrix F and the points {x;} are object points satisfying the
equations u; = Px; and u, = P’x; for each i. A strong realization is such a triplet satisfying
the additional condition that x(x;; P) > 0 and x(x;; P) > 0 for all i. This condition implies that
the points and the camera centres are at finite points. The triplet (F, {u;}, {u}}) is called a feasible
configuration if a strong realization exists. The purpose of considering epipolar configurations, rather
than simply a set of point correspondences u; < u; is to avoid the problem of having insufficiently
many points, or critical configurations of points that make unique determination of the fundamental
matrix impossible. The fundamental matrix will be assumed known. Another common terminology
that expresses the same thing is that the cameras are “weakly calibrated”.

At this point, it is desirable to derive a slightly different form of the definition of the function y
defined in Definition 3.3. In this definition, and henceforth, we allow the possibility that the camera
is located at infinity. Let P be a camera matrix. The centre of P is the unique point ¢ such that
Pc = 0. One can write an explicit formula for ¢ as follows.

Definition 5.9. Given a camera matrix P, we define cp | to be the vector (ci1, co, c3,c4), where

¢i = (—1)"det PO
and P is the matrix obtained by removing the i-th column of P. 0
For convenience of typesetting, we introduce the notation (P/v ") to represent a 4 x 4 matrix made up

of a 3 x 4 camera matrix P augmented with an final row v . Definition 5.9 leads to a simple formula

for det(P/v ). Cofactor expansion of the determinant along the last row gives det(P/v') =v'cp

for any row vector v'. As a special case, if p; | is the i-th row of P, then
piTCp = det(P/piT) =0

where the last equality is true because the matrix has a repeated row. Since this is true for all 4, it
follows that Pcp = 0, and so cp is the camera centre, as claimed.

Note that submatrix P¥) is the same as matrix M in the decomposition P = (M | v), and so
det M = c4. This allows us to reformulate the definition of x as given in Definition 3.3, as follows.

X(x; P) = (es"x)(es" ) /w (1)



where ¢ = cp as defined in Definition 5.9, and e, " is the vector (0,0,0,1). It is significant to note
here that e4 is the vector representing the plane at infinity — a point x lies on the plane at infinity
if and only if e4 ' x = 0.

5.1 Effect of Transformations on Cheirality

We now consider a projective transformation represented by matrix H. Writing P’ = PH~! and
x’ = Hx one sees that Px = P'x’. So if u = Px then u = P’x’. Thus, the image correspondences
are preserved by this transformation. When speaking of a projective transformation being applied
to a set of points and to a camera, it is meant that a point x is transformed to Hx and the camera
matrix is transformed to PH 1.

In this section we will consider such projective transformations and their effect on the cheirality
of points with respect to a camera. First, we wish to determine what happens to cp when P is
transformed to PH~!. To answer that question, consider an arbitrary 4-vector v. We see that

viH 'cpy1 =det(PH ' /vTH ) =det(P/v )det H' = v cpdet H! .
Since this is true for all vectors v, it follows that H 'cpy-1 = cpdet H™ !, or
cpy—1 = Hepdet H™! (2)

At one level, this formula is saying that the transformation H takes the camera centre ¢ = cp
to the new location cpg-1 =~ Hc. However, we are interested in the exact coordinates of cpp—1
especially the sign of the last coordinate ¢, which appears in the formula (1). Thus, the factor H !
is significant.

Now, applying (2) to (1) gives

(es"Hx)(es cpy—1)/w
= (es Hx)(ey"Hc)det H ' /w

x(Hx; PH_l)

where ¢ = cp. Finally, denoting the fourth row of the transformation matrix H by hy ', and
sign(det H) by ¢, we obtain

x(Hx; PH™) = 6(hy "x)(hy Te)/w . (3)

This equation will be used extensively. Note that it may be considered to be a generalization
of (1) as will now be explained. A point x is mapped to the plane at infinity by H if and only if
h;"x = 0. Interpreting hy as the coordinates of a plane, this condition means that hy represents the
plane mapped to infinity by H. The factor § = det H ! represents the change of spatial orientation
effected by the transformation H, in that H is orientation-preserving if det H > 0 and orientation-
reversing if det H < 0. This point will be explained more fully in section 7. Thus, the terms in (3)
may be interpreted as follows : x are the point coordinates; ¢ are the coordinates of the camera
centre, as in Definition 5.9; hy are the coordinates of the plane at infinity and § is the spatial
orientation. Compare this with (1) in which e4 represents the plane at infinity.

We now consider the effect of different transformations on the cheirality of points with respect to a
camera. An affine transformation is one represented by a matrix H for whichh, " =es " = (0,0,0, 1).
The effect of an affine transformation may now be described.

Proposition 5.10. An affine transformation with positive determinant preserves the cheirality of
any point with respect to a camera. An affine transformation with negative determinant reverses
cheirality.

Proof. From (1) and (3) we see that x(x; P) = x(Hx; PH ') det H from which the result follows. O

We now determine how an arbitrary projective transformation affects cheirality.



Figure 2: Effect of a projective transform with positive determinant. The principal plane
of the camera and the plane 7o divide R® into four segments. One pair of opposite segments
(shown shaded) are transformed to points in front of the camera. The opposite pair of segments are
transformed to points behind the camera. In the local neighbourhood of the camera centre the front
and back of the camera are preserved. This consideration determines which pair of segments become
the front of the camera. Thus the two dark shaded sets of points lie in front of the camera after
transformation. For a transform with negative determinant the opposite pair of segments become the
front of the camera.

Proposition 5.11. Let H represent a projective transformation with positive determinant, and let
T be the plane in space mapped to infinity by H. The cheirality of a point x is preserved by H if
and only if x lies on the same side of the plane wo, as the camera centre.

Proof. Since det H > 0, we see from (1) and (3) that x(x; P) = x(Hx; PH~!) if and only if
(hy "x)(hy"c) = (e4"x)(es"c). Suppose the point x and the camera P are located at finite points
so that the cheirality is well defined, and let them be scaled so that x = x and ¢ = ¢. In this
case, (e4'x)(es' c) = 1 and we see that cheirality is preserved, if and only if (hy'%)(hs'¢) = 1,
or otherwise expressed hy % = hy'¢é. Since hy represents the plane 7., this condition may be
interpreted as meaning that the points ¢ and x both lie on the same side of the plane 7,. Hence,
the cheirality of a point x is preserved by a transformation H, if and only if it lies on the same side
of the plane 7., as the camera centre. O

Points x close to the camera centre will lie on the same side of wo, as the camera centre, and
hence, their cheirality will be preserved. Thus, Proposition 5.11 implies that cheirality is preserved
in a local neighbourhood of the camera centre. This is illustrated in Fig 2.

5.2 Quasi-affine invariance of strong realizations

For planar object sets, Theorem 4.7 established the existence of a quasi-affine mapping between the
object plane and the image plane. For non-planar objects seen in two views, strong realizations of
the epipolar configuration take the role played by sets of image points in the two dimensional case.



Theorem 5.12. Let (F, {u;},{u’}) be an epipolar configuration and let (P, P',{x;}) and (P, P',{%X;})
be two separate strong realizations of the configuration. Then the projectivity h mapping each point
X; to X; is quasi-affine.

Proof. If the projectivity is not quasi-affine, then there are points on both sides of 7o = h™1(Loo).
Since h preserves the cheirality of points lying on only one side of 7, it follows that A does not
preserve the cheirality of all points, Therefore at least one of the realizations can not be a strong
realization, and so the hypothesis that A is not quasi-affine is not tenable. a

The particular case where one of the two realizations is the “correct” realization is of interest.
It is the analogue in three dimensions of Proposition 4.7.

Corollary 5.13. If {x;} are points in R3, image coordinates {u;} and {u’} are corresponding image
points in two uncalibrated views from which the fundamental matriz F is determined uniquely, and
(P, P',{x;}) is a strong realization of the triple (F,{w;},{u}), then there is a quasi-affine mapping
taking each x; to X;.

From this corollary, we can deduce one of the main results of this paper.

Theorem 5.14. Let (P, P',{x;}) and (P, P',{X;}) be two different reconstructions of 3D scene ge-
ometry derived as strong realizations of possibly different epipolar configurations corresponding to
possibly different pairs of images of a 3D point set. Then there is a quasi-affine transformation
mapping each point X; to X;.

What this theorem is saying is that if a point set in R? is reconstructed as a strong realization from
two separate pairs of views, then the two results are the same up to a quasi-affine transformation.

Proof. By corollary 5.13 there exist quasi-affine transformations mapping each of the sets of re-
constructed points {x;} and {X;} to the actual 3D locations of the points. The result follows by
composing one of these projectivities with the inverse of the other. a

6 When are a Set of Image Correspondences Realizable ?

Given a set of image correspondences u; < u) one may ask under what conditions these corre-
spondences may arise from projection of points in a real scene into the two images. A well known
constraint is the epipolar constraint ugTF u; = 0 for some rank-2 matrix, the fundamental matrix.
It is shown here that that condition is not sufficient, and a necessary and sufficient condition will
be given.

As usual, we avoid the problem of critical point configurations, or insufficiently many point cor-
respondences by assuming that the images are “weakly calibrated” meaning that the fundamental
matrix is given. In the terminology already introduced, we assume that we have an epipolar configu-
ration (F, {u;},{u}}). It has been shown in [3, 1] that a realization (P, P’, {x;}) of this configuration
exists, and that further, all realizations may be reached from this realization by applying a projective
transformation.

Given a realization (P, P, {x;}) we write Px; = w;1; and P'x; = w/,. Suppose that there is a
transformation H that transforms this to a strong realization. This means that x(Hx;; PH~1) > 0
and x(Hx;; PPH™') > 0 for all i, from which it follows that x(Hx;; PH™') = yx(Hx;; P"H~!) for
all 4. Substituting the formula (3) gives

(h4TXi)(h4TC)5/’wi = (h4TX¢)(h4TC/)5/w; .
Cancelling common terms from both sides gives
(hyTc)/w; = (hyTc')/w) .

Now (hy Tc) and (hy"c’) must be non-zero, since x(Hx;; PH~') and x(Hx;; P"H~1) are non-zero.
Rearranging terms leads to w;w! = (hs'¢)(hy"c’). Since the right side does not depend on i, this
means that w;w] has constant sign for all ¢, which proves the following proposition.
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Proposition 6.15. Let (P, P’',{x;}) be a realization of a feasible epipolar configuration. Write
Px; = w;ii; and P'x; = wii,. Then w;w, has the same sign for all i.

Proposition 6.15 has a geometric interpretation as follows. The principal plane of a camera

separates R? into two regions. For points on one side of the principal plane Px; = w;; with w; > 0,
whereas on the other side, w; < 0. The two principal planes divide up R? into four quadrants. The
condition that sign(w;w}) is constant corresponds to the geometric condition that the points x; all
lie in a pair of opposite quadrants.
A Sufficient Condition Proposition 6.15 gives a necessary condition for an epipolar configuration
to be feasible. It will next be shown that this condition is also sufficient. This will be done by
explicitly showing how the weak realization may be transformed to a strong realization. To ensure
that this is possible, we need two extra conditions.

Condition 6.16.
1. The image coordinates of the points x; as seen by two cameras are bounded.

2. At least one of the camera centres is not a limit point of the point set X.

Since image coordinates are unchanged under transformation, the first condition is independent
of the particular weak realization considered. The second condition concerning limit points is un-
changed under continuous transformations. Since the transformations we consider are continuous in
a neighbourhood of the camera centres, this condition is also independent of the particular weak re-
alization considered. In any reasonable imaging situation, both these conditions will hold. For finite
point sets the two conditions are trivially satisfied. For infinite point sets, the image coordinates
of the points will still be limited by the extent of the image, so the first condition will hold. For a
topologically closed point set, the second condition will hold, since a point that coincides with the
camera centre can not be imaged. In general, for arbitrary point sets, it will not normally be the
case that the points can lie arbitrarily close to the camera centre.

This condition may be illustrated graphically as in Fig 3.

Now, we proceed to transform an arbitrary weak realization into a strong realization. We proceed
in steps. As a preliminary step, we need to ensure that neither of the two camera centres lies on the
plane at infinity. If this were to occur, then we would choose a new weak realization for which the
camera centres do not lie on the plane at infinity.

The principal planes of the two cameras must now meet in a line in space. Consider a plane 7r
containing that line, but not equal to either of the two principal planes. This plane will be contained
in two opposite quadrants of R3, except where it meets the two principal planes. Let this plane also
be chosen so that it passes through the two quadrants of space that do not contain any of the points
x;. This situation is shown in Fig 4. In this case the plane 7, separates the two point sets X
and X_ lying in opposite quadrants of space. Now consider the effect of a transformation mapping
the plane 74 to infinity. According to Proposition 5.11, the cheirality of one of the two sets X
and X_ (with respect to say the first camera) will be reversed and the cheirality of the other will
be preserved by this transformation. Since originally X and X_ have opposite cheirality, after the
transformation they will have the same cheirality. In other words, the whole set X = X U X_ will
lie on the same side of the first camera. The same argument holds for the other camera.

In invoking Proposition 5.11, it was assumed that neither of the camera centres lay on the line
of intersection of the two principal planes, and hence on the plane 7, chosen. If this were to occur,
then we would choose instead a plane 7, slightly displaced from this intersection line but still
separating the two sets X and X_. This is possible since conditions 6.16 ensure that the point set
X does not approach the line of intersection of the principal planes.

The case where the two principal planes are identical must also be handled specially. In this case,
the plane 7, is chosen slightly displaced from the cameras’ common principal plane, and separating
X, from X_.
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Figure 3: The point set X (dark shading) must lie inside a truncated cone (dark shading). The cone
represents the bounding of the image coordinates. The cone is truncated near the camera centre c

since points in X can not lie arbitrarily close to the camera centre. In the general case, points may
lie both behind and in front of the camera.



X+

Figure 4: Step 1 of transformation. We choose the plane at infinity to pass through the two
quadrants that do not contain the point set. After this transformation, all points will lie on one side
of each camera.

If after this first transformation step, the set X lies in front of both cameras, then we are done. If
on the other hand it lies behind both cameras, then applying an affine transformation with negative
determinant (for instance H = diag(—1, —1,—1,1)) will swap the set X to the front of both cameras.
There remains the possibility that X lies in front of one camera and behind the other.

To handle this remaining case, we need a further transformation. We wish to find a plane 7,
that separates the two camera centres, but does not separate the point set X. Assuming this is
possible, X will then lie on the opposite side of 7w from one of the camera centres (but not the
other). Now we apply a transformation that takes 7, to infinity. According to Proposition 5.11
the cheirality of X will be reversed with respect to one of the cameras, but not the other. Originally
the cheirality of X was opposite with respect to the two cameras, and so after the transformation
the cheirality will be the same. This means that X will lie on the same side of both cameras. By
applying, if necessary, a cheirality-reversing affine transformation it may be assured that X lies in
front of both cameras, and we are done.

It remains to explain how the required plane 7 is to be found. We suppose that the points X
lie in front of the first camera and behind the second camera. We wish to find a plane that separates
the two camera centers, but does not separate the point set X. The method for constructing this
plane is given in Figures 5, 6 and 7 corresponding to whether the second camera lies behind, in front
of, or on the principal plane of the first camera. Details of the construction are given in the captions
of the figures.

We can summarize this discussion in the following theorem.

Theorem 6.17. Let (F,{u;},{u}}) be an epipolar configuration and let (P, P',{x;}) be a realization
of that configuration. Suppose that conditions (6.16) are satisfied. Let Px; = w;u; and P'x; = wiy;.
Then (F,{u;},{u}}) is a feasible configuration if and only if w;w; has the same sign for all i.

Since an epipolar configuration always possesses a weak realization ([3]), Theorem 6.17 gives a
necessary and sufficient condition for an epipolar configuration to be realizable as a three dimensional
scene.
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Figure 5: Second camera behind the first camera We can separate the two camera centres c
and ¢’ with a plane oo lying just behind the principal plane of the first camera. Since all the points
lie in front of the camera, plane ™o, does not separate the point set X.

Figure 6: Second camera in front of the first camera We can separate the two camera centres
¢ and ¢’ with a plane 7o lying just in front of the principal plane of the first camera. The point set
X lies entirely inside the truncated cone (lightly shaded). The plane 7o can be chosen sufficiently
close to ¢ so as not to meet this cone. Consequently, it will not separate the point set X .
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Figure 7: Second camera lies on the principal plane of the first camera. We can separate
the two camera centres ¢ and ¢’ with an oblique plane 7o which crosses the principal plane of the
first camera. Plane s can be chosen so as not to meet the cone containing X, and consequently
will not separate X .

7 Orientation

We now consider the question of image orientation. A mapping h from R"™ to itself is called
orientation-preserving at points x where the Jacobian of h (the determinant of the matrix of partial
derivatives) is positive and orientation-reversing at points where the Jacobian is negative. Reflection
of points of R™ with respect to a hyperplane (that is mirror imaging) is an example of an orientation
reversing mapping. A projectivity h from P to itself restricts to a mapping from R™ — h=1(Ls)
to R™, where Lo, is the hyperplane (line, plane) at infinity. Consider the case n = 3 and let H be a
4 x 4 matrix representing the projectivity h. We wish to determine at which points x in R—h =1 (L)
the map h is orientation preserving. It may be verified (quite easily using Mathematica [16]) that if
Hx = wx’ and J is the matrix of partial derivatives of h evaluated at x, then det(J) = det(H)/w?.
This gives the following result.

Proposition 7.18. A projectivity h of P3represented by a matriz H is orientation preserving at any
point in R — h™ (L) if and only if det(H) > 0.

Of course, the concept of orientability may be extended to the whole of P2, and it may be shown
that h is orientation-preserving on the whole of P3if and only if det(H) > 0. The essential feature
here is that as a topological manifold, P3is orientable. The situation is somewhat different for P2,
which is not orientable as a topological space. In this case, with notation similar to that used above,
it may be verified that det(J) = det(H)/w3. Therefore, the following proposition is true.

Proposition 7.19. A projectivity h of P?is orientation preserving at a point u in R*> — h™'(Lso) if
and only if wdet(H) > 0, where Hi = wit'.

This theorem allows us to strengthen the statement of Theorem 4.6 somewhat.
Corollary 7.20. If h is a quasi-affine transformation of P?with respect to a set of points {u;} in

R?, then h is either orientation-preserving or orientation-reversing at all points u;. Suppose the
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matriz H corresponding to h is normalized to have positive determinant (by possible multiplication
by —1) and let HG; = w;,. Then h is orientation-preserving if and only if w; > 0 for all i.

An example where Corollary 7.20 applies is in the case where two images of a planar object are
taken from the same side of the object plane. In this case, an orientation-preserving quasi-affine
projectivity will exist between the two images. Consequently, all the w; defined with respect to a
matrix H will be positive, provided that H is normalized to have positive determinant.

The situation in 3-dimensions is rather more involved and more interesting. Two sets of points
{x;} and {X;} that correspond via a quasi-affine transformation are said to be oppositely oriented
if the projectivity is orientation-reversing. This definition extends also to two strong realizations
(P,P',{x;}) and (P, P’,{%X;}) of a common epipolar configuration (F,{u;},{u.}), since in view of
Theorem 5.12 the point sets are related via a quasi-affine transformation. Whether or not oppositely
oriented strong realizations exist depends on the imaging geometry. Common experience provides
some clues here. In particular a stereo pair may be viewed by presenting one image to one eye and the
other image to the other eye. If this is done correctly, then the brain perceives a 3-D reconstruction
of the scene (a strong realization of the image pair). If, however, the two images are swapped and
presented to the opposite eyes, then the perspective will be reversed — hills become valleys and vice
versa. In effect, the brain is able to compute two oppositely oriented reconstructions of the image
pair. It seems, therefore, that in certain circumstances, two oppositely oriented realizations of an
image pair exist. It may be surprising to discover that this is not always the case, as is shown in the
following theorem.

Theorem 7.21. Let (F,{u;},{u}}) be an epipolar configuration and let (P, P',{x;}) be a strong real-
ization of (F,{w;},{ul}). There exists a different oppositely oriented strong realization (P, P’, {X;})
if and only if there exists a plane in R such that the perspective centres of both cameras P and P’
lie on one side of the plane, and the points x; lie on the other side.

Proof. Consider one strong realization of the configuration. By definition, all the points lie in front of
both cameras. Suppose that there exists a plane separating the points from the two camera centres.
Let G be a projective transformation mapping the given plane to infinity and let A be an affine
transformation. Suppose further that det G > 0 and det A < 0. Let H be the composition H = AG.
According to Proposition 5.11 the transformation H is cheirality reversing for the points, since the
points are on the opposite side of the plane from the camera centres. According to Proposition 5.10
A is also cheirality reversing, since det A < 0. The composition H must therefore be cheirality
preserving, and it transforms the strong configuration to a different strong configuration. Since H
has negative determinant, however, it is orientation reversing, so the two strong realizations have
opposite orientations.

Conversely, suppose that two strong oppositely oriented realizations exist and let H be the
transformation taking one to the other. Since H is orientation reversing, det H < 0. The mapping
H is by definition cheirality preserving on all points, with respect to both cameras. If ., is the
plane mapped to infinity by H, then according to Propositions 5.11 the points X must lie on the
opposite side of the plane 7., from both camera centres. a

8 The Cheiral Inequalities

Several methods ([1, 3, 8]) have been proposed for computing a projective reconstruction (in our
terminology a weak realization) of a scene from a set of point matches. In section 6 a constructive
method was given for transforming a weak realization into a strong one. That method was not
very suitable for computer computation. Accordingly, in this section a straight-forward algorithm
will be given for computing a strong realization of an epipolar configuration. This will be done by
transforming a weak realization into a strong realization by finding an appropriate transformation.

We start with a weak realization (P, P, {x;}) of an epipolar configuration. Let w;; = Px; and
wit; = P'x;. We assume that w;w, has the same sign for all i. By multiplying the matrix P by
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—1 if necessary, we may ensure that w;w, > 0 for all . Furthermore, by multiplying x; by —1 if
necessary, we may ensure that w; > 0 and hence w; > 0 for all . We will assume that this has been
done.

Now, we seek a transformation H that will transform the weak realization to a strong realization.
After this transformation, all points will lie in front of both cameras. According to (3) this condition
may be written (for camera P)

x(xi; P) = (hy"x;)(hy Te)d >0
where § = sign(det H). Similarly, for the other camera, we have
x(xi; P') = (hy "x;)(hy T¢')5 > 0 .

Since we are free to multiply hy by —1 if necessary, we may assume that (hy " ¢)é > 0. From this it
follows from the first inequality that hy "x; > 0 for all . Then, from the second inequality, we have
(hsTc’)6 > 0. The total set of inequalities may now be written :

XiTh4 >0
(5CTh4 >0
5C/Th4 >0 (4)

These equations (4) may be called the cheiral inequalities. Since the values of each x;, ¢ and ¢’
are known, they form a set of inequalities in the entries of hy. The value of ¢ is not known a priori,
and so it is necessary to seek a solution for each of the two cases 6 =1 and § = —1.

To find the required transformation H, first of all we solve the cheiral inequalities to find a value
of hy, either for § = 1 or § = —1. The required matrix H is any matrix having hy ' as its last row
and satisfying the condition det H = §. If the last component of hy is non-zero, then H can be
chosen to have the simple form in which the first three rows are of the form £(I | 0).

Theorem 6.17 guarantees that there will be a solution either for § =1 or § = —1. In some cases
there will exist solutions of the cheiral inequalities for both § = 1 and § = —1. This will mean that
two oppositely oriented strong realizations exist. The conditions under which this may occur were
discussed in section 7.

Solving the Cheiral Inequalities Naturally, the cheiral inequalities may be solved using tech-
niques of linear programming. As they stand however, if hy is a solution, then so is ahy for any
positive factor «. In order to restrict the solution domain to be bounded, one may add additional
inequalities. For instance, if hy = (v1, v, vs, v4)T, then the inequalities —1 < v; < 1 serve to restrict
the solution domain to be a bounded polyhedron.

To achieve a unique solution we need to specify some goal function to be linearized. An ap-
propriate strategy is to seek to maximize the extent by which each of the inequalites is satisfied.
To do this, we introduce one further variable, d. Each of the inequalities ahy of the form (4) for
appropriate a is replaced by an inequality a"hy > d. We seek to maximize d while satisfying all the
inequalities. This is a standard linear programming problem, for which many methods of solution
exist, such as the simplex method ([11])!. If a solution is found for which d > 0 then this will be a
desired solution.

8.1 Quasi-affine reconstruction

A strong realization of an epipolar configuration is a quasi affine reconstruction, since it differs
from the true scene by a quasi-affine transformation (Corollary 5.13). Quasi-affine reconstructions

IThe Simplex algorithm given in [11] is not suitable for use as stands, since it makes the unnecessary assumption
that all variables are non-negative. It needs to be modified to be used for this problem
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of a scene have useful properties such as preservation of complex hull. Furthermore, computing a
quasi-affine reconstruction has been used in [6] as a preliminary step towards computing a Euclidean
reconstruction of a scene from three views with the same camera. A strong realization of an epipolar
reconstruction is a slightly more restrictive than a general quasi-affine reconstruction, however, as
will be shown now.

The inequalities (4) are seen to be of two types. The first inequality involves the points (one
inequality for each i) and the other two involve the camera centres. One sees that if only the first
inequality is satisfied (for all 4), but possibly not the ones involving the camera centres, then the
solution is less constrained. Instead of all points lying in front of both cameras, all points will lie on
the same side of each camera. Thus, if 6c'hy " < 0, then all points will lie behind the first camera,
since x(x;; P) < 0. Thus, solving the first inequality for all i is equivalent to the first step of the
construction given in section 6. Adding the other two inequalities as well is equivalent to carrying
out the second step of section 6. Note now that the transformation carried out in the second step
is itself quasi-affine. In fact, referring to Figs 5, 6 and 7 one sees that the plane m, does not
separate the point set X. Thus, just by solving the first inequality of (4) one obtains a quasi-affine
reconstruction of the point set. However, including the two inequalities for the camera locations
further constrains the reconstruction to bring it closer to the true Euclidean reconstruction, and so
is recommended in most cases.

If one is content with any quasi-affine reconstruction, however, then one can ignore the two last
inequalities in (4). An example of when this may be sufficient is when one is computing the cheiral
sequence of a set of points, to be described in section 11. In this case, there is a very simple means
of solution. The inequalities that we need to solve are of the form hy "x; > 0 for all i. Recall that
we are assuming that each w; > 0 and w, > 0. This being so, we see that w; = p3 ' x; > 0, where
p3 ' is the third row of the camera matrix P. Thus, we may choose hy = p3 as the solution to the
inequalities. More generally, for any « between 0 and 1, we may choose hy = aps + (1 — a)p%, where
p4 | is the third row of the other camera matrix P’. This corresponds precisely to the construction
of Fig 4.

In the case where the weak realization is carried out in a way such that P = (I | 0) (for instance,
see the method of [3]), then we have a very easy way to obtain a quasi-affine reconstruction. In this
case we choose hy = p3 = (0,0,1,0)T, and

oS oo
o o= O
— o O O
o= OO

Such an H simply swaps the two last components of any point x;, and the last two columns of each
camera matrix. This gives a very simple way of computing a quasi-affine reconstruction.

1. Carry out a projective reconstruction of the scene for which the first camera has matrix P =
(I]0).

2. Swap the last two coordinates of each point x; and the last two columns of each camera matrix.

Quasi-affine reconstruction using the cheiral inequalities or the simple algorithm just given ex-
tends naturally to reconstruction from several views. There is no analogue of Theorem 6.17 to ensure
a solution in the multi-view case, but of course if the input data is derived from real data of a real
scene, then a solution will exist.

9 Which Points are Visible in a Third View

Consider a scene reconstructed from two views. We consider now the question of determining which
points are visible in a third view. Such a question arises when one is given two uncalibrated views
of a scene and one seeks to synthesize a third view. This can be done by carrying out a projective
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Figure 8: Visibility. In the reconstruction as shown, the point set X lies entirely in front of the
first two cameras. Thus, this represents a strong realization of the scene with respect to the first two
cameras. As shown, the point set X lies in front of the third camera. However, if the configuration
is subjected to a projective transformation so that plane o, becomes the plane at infinity, then
according to Theorem 5.11 the set X will remain in front of the first two cameras, but will be
switched to lie behind the third camera. With no way of knowing where the plane at infinity lies, one
can not determine whether X lies in front of or behind the third camera.

reconstruction of the scene from the first two views and then projecting into the third view. In this
case, it is important to determine if a point lies in front of the third camera and is hence visible, or
not.

If the third view is given simply by specifying the camera matrix with respect to the frame of
reference of some given reconstruction, then it may be impossible to determine whether points are
in front of the third camera or behind it in the true scene. The basic ambiguity is illustrated in
Fig 8.

Knowledge of a single point known to be visible in the third view serves to break the ambiguity,
however, as the following proposition shows. By applying Proposition 6.15 to the first and third
views, one obtains the following criterion.

Proposition 9.22. Let points (P, P?,{x;}) be a realization of a set of correspondences u} < u?.
Let P3 be the camera matriz of a third view and suppose that w;ﬁi = Pix; fori=1,...,3. Then

wl

]w? has the same sign for all points x; visible in the third view.

In practice, it will usually be the case that one knows at least on point visible in the third view.
For instance, once a projective reconstruction has been carried out using two views, the camera
matrix of the third camera may be determined from the images of six or more points by solving
directly for the matrix Ps given the correspondences u? = P3x; where points x; are the reconstructed
points. This may be done by linear means ([15]).
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10 Which Points are in Front of Which

When we are attempting to synthesize a new view of a scene that has been reconstructed from
two or more uncalibrated views it is sometimes necessary to consider the possibility of points being
obscured by other points. This leads to the question, given two points that project to the same
point in the new view, which one is closer to the camera, and hence obscures the other. In the case
where the possibility exists of oppositely oriented quasi-affine reconstructions it may once again be
impossible to determine which of a pair of points is closer to the new camera. This is illustrated
in Fig 9. If a plane exists, separating the camera centres from the point set, then two oppositely
oriented reconstructions exist, and one can not determine which points are in front of which.

Moo

Figure 9: Which points are in front. In the reconstruction shown, point uy is closer to the third
camera than us. If, however, we apply an orientation-reversing projective transformation that maps
the plane s to infinity, then the two points will still lie in front of both cameras, but now point
uy will lie closer to the third camera. This is because locally the front and back of the cameras will
be reversed by the orientation-reversing transformation. In order to reach uy from the centre of the
third camera, without crossing ™o, it is necessary to pass through us first.

The sort of ambiguity shown in Fig 9 can only occur in the case where there exists a plane o,
that separates the camera centres from the set of all visible points. If this is not the case, then one
can compute a quasi-affine reconstruction and the problem is easily solved. To avoid the effort of
computing a quasi-affine reconstruction, however, we would like to solve this problem using only a
projective reconstruction of the scene. How this may be done is explained next.

The parameter x defined in Definition 3.3 is used to distinguish the front from the back of the
camera in a Euclidean or quasi-affine frame. It is also useful for determining which points lie in front
of which, as will be seen now. Recall that y is zero for points x on the plane at infinity, infinite for
points on the principal plane of the camera, positive for points in front of the camera and negative
for points behind the camera. Furthermore, given two points in front of the camera, projecting to
the same point in the image , the point with the greater value of x lies closer to the front of the
camera.

The value of x can be used to parametrize any line in P3through the camera centre. As one pro-
ceeds along the line in the direction of the front of the camera, the value of x decreases continuously
from infinity at the camera centre, through positive values. It reaches zero at the plane at infinity,
and continues to decrease through negative values eventually reaching —oo when the line returns to
the camera centre from the rear of the camera. This is illustrated in Fig 10.

Now, if the configuration undergoes a projective transformation H with positive determinant
taking the plane 7, to infinity, then the parameter x will be replaced by a new parameter x’ defined
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Figure 10: Preservation of order of points. This shows the effect of a transformation with
positive determinant taking the plane s to infinity. Both x (before the transformation) and X’
(after the transformation) decrease monotonically along any ray through the camera centre. We find

that X' (x1) > X (x2) if and only if x(x1) > x(xa).

by x'(x) = x(Hx; PH™'). Since the transformation is assumed to have positive determinant, it will
preserve the front of the camera locally near the camera centre (by Theorem 5.11). Now, as one
proceeds along the line in the same direction as before, the parameter x’ will decrease continuously
through positive values from infinity at the camera centre, reaching zero where the line crosses the
plane ., and then continuing to decrease through negative values until the line returns to the
camera centre. Since both y and x’ decrease monotonically as one proceeds along the line, one sees
that if x; and x5 are two points on the line, then x/(x1) > x/(x2) if and only if x(x1) > x(x2).

In the case where the projective transformation has negative determinant, then the front and
back of the camera are reversed locally. In this case the direction of increase of the parameter y’
will be reversed. In this case x/(x1) > x/(x2) if and only if x(x1) < x(x2).

If the case where the projective transformation transforms the scene to the “true” scene, of two
points that project to the same point in the image, the one with the higher value of x’ is closer to
the camera. This leads to the following proposition that allows us to determine from an arbitrary
projective reconstruction which of two points is closer to the front of the camera.

Proposition 10.23. Suppose that x1 and x2 are two points that map to the same point in an image.
Consider a projective reconstruction of the scene and let the parameter x be defined (by formula (1))
in the frame of the projective reconstruction. If the projective reconstruction has the same orientation
as the true scene, then the point that lies closer to the front of the camera in the true scene is the one
that has the greater value of x. On the other hand, if the projective transformation has the opposite
orientation, then the point with smaller value of x will lie closer to the front of the camera in the
true scene.

As remarked previously, unless there exists a plane separating the point set from the cameras
used for the reconstruction, the orientation of the scene is uniquely determined, and one can deter-
mine whether the projective transformation of theorem 10.23 has positive or negative determinant.
However, to do this may require one to compute a strong realization of the configuration by the linear
programming method as described in section 8. If differently oriented strong realizations exist, then
as illustrated by Fig 9, there is an essential ambiguity. However, this ambiguity may be resolved by
knowledge of the relative distance from the camera of a single pair of points.
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11 3D quasi-affine invariants

One of the important properties of quasi-affine transformations is that they preserve separation by
planes as will be explained next.

Proposition11.24. Let xg and x1 be two points in space and let 7 be a plane not passing through
either of the points. Let h be a quasi-affine transformation with respect to the two points taking x;
to x;; and mapping 7 to a plane w'. Then xo and X1 lie on the same side of 7 if and only if xo and
x1 lie on the same side of w'.

Proof. Let m be represented by a 4-vector v. The points lie on the same side of 7 if and only if
v %o = v'%;. Let H represent the projective transformation. Since H is a quasi-affine we have
%, = w; H%; where w; has the same sign for i = 0,1. The plane represented by v is mapped to the
plane represented by v’ such that v/ = v H=!. Then v/ "%} = (v H™1)(w; H%;) = w;v ' %;. Since
all w; have the same sign, it follows that v %o = v'%; if and only if v/ % = v/ "%}, whence the

result. O

Given a point set {x;} it results from this proposition that the set of planes that do not separate
the point set is preserved under quasi-affine transformations. Consequently, the convex hull of a set
of points is preserved by quasi-affine transformations as was claimed in section 4.

Proposition 11.24 may be used to define quasi-affine invariant properties of point sets. Let 7 be
a plane partitioning the point set into two subsets X, and X_. Applying a quasi-affine mapping the
transformed point set will be partitioned into the same two subsets by the transformed plane. Thus
for each plane 7 there exists an invariant partitioning of the set of points. If the partitioning plane is
defined in terms of the point set itself (such as a plane passing through three specified points), then
the resulting partition is invariant under quasi-affine transformation, and may be used for indexing
purposes.

11.1 An invariant sequence

A way of finding a better invariant plane than the one defined by three points in the set is now
described. We describe this method in general n-dimensional space.

Suppose we are given a set of N > n + 2 points {x;}, i = 1,...,N in R". Let ey,...e,412 be
points in R™ such that {e;} form a canonical projective basis for P™. For n = 2, the points (0,0) T,
(1,0)7, (0,1)T and (1,1)7 will do. Assume that the points x; are numbered in such a way that
the first n 4 2 of them are in general position (meaning that no n + 1 of them lie in a codimension
1 hyperplane). In this case, there exists a projectivity g (not in general quasi-affine) such that
g(x;)=e;fori=1,...,n+2. Let moo, = g~ (Loo) be the plane in R™ that is mapped to the plane
at infinity by this mapping, g. The invariant partition that we are interested in is the one defined
by the plane 7.

We can define the partition more specifically as follows. Let G be a matrix representing the
projective transformation g. For each i we may define points e; such that Gx; = n;é; where X, is
the image of x; under g. In particular for s = 1,...,n + 2 the points e; are our canonical projective
basis. In this way, the set {x;} is partitioned into those points for which 7; > 0 and those for which
n; < 0. In exceptional cases the point e; = g(x;) may lie on the plane at infinity, in which case we
set ; = 0. This invariant partitioning is of course dependent on the choice of canonical basis {e;}.

The cheiral sequence. We define sign(7;) to be +1, —1 or 0 according to whether 7; is positive,
negative or zero. The sequence of values sign(n;) for ¢ = 1,..., N is called the cheiral sequence of
the points x;. Except for a simultaneous change of sign of all 7;, the cheiral sequence is invariant
under quasi-affine transformations.

If desired, it is possible to code the values 7; into a single number according to the formula
N
S sign(n)3 5)
i=1

X(X1,X2,...,XN) =
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The value x(x;) is invariant under quasi-affine transformation of the ordered set of points x;.

We now make the assumption that n; # 0. In this case the cheiral sequence, along with the
projective invariants of the point configuration, constitute a complete quasi-affine invariant. This
may be stated as follows.

Theorem 11.25. Let x1,...,Xyx be a set of points in R"™, where N > n + 2. Suppose that the first
n+ 2 of these points form a basis for P™ D R™, so that the cheiral sequence sign(n;) may be defined
as above. Suppose further that for each i we have n; # 0. Let X4, ...,xy be another set of points
in R™, projectively equivalent to the points {x;} via a projective transformation h. Then h is a
quasi-affine mapping if and only n; = nie for some constant e = +1.

Proof. Let points e; be defined as in the definition of the cheiral sequence. Further, let g be a
projective transform represented by a matrix G and let 7; be defined by the equation G%; = n;€;.
Similarly, we may define projective transformation g’ represented by matrix G’ and values 7, such
that G'x; = 1é,.

Since the transformation g is defined uniquely by its action on the basis set x1,...,X,+2 we see
that g = g’h. Let h be represented by a matrix H, which may be chosen with the correct sign such
that G = G'H. We define constants w; such that H%; = w;X;. It follows that n; = njw;, since

~ ~ ~ ~/ ~
nie; = GXi = G/HXi = wiG’xi = wm{ei .

This situation is represented by the following commutative diagram.

Xj
nj
G
w;| H q
GI
] nll
X

Now, if H represents a quasi-affine transformation, then all w; have the same sign by Proposition
4.6. We may write w; = € from which one sees that n; = en, for all 7, and the cheiral sequences of
the points x; and x} differ at most by a sign change.

Conversely, suppose that 7; = en,. Then e = n; /7., since by hypothesis 7; # 0, and so 7, # 0. On
the other hand, from 7; = w;n; we deduce that w; = n;/n} = € and the w; all have the same sign, as
required. a

This theorem is not true without the assumption that 7; # 0, as the reader is left to discover. In
practice, because of measurement inaccuracies, it will (virtually) never be the case that a computed
value of 7; will equal exactly 0. Therefore, for readability in displaying cheiral sequences the practice
will be adopted of writing 0 instead of —1, so that the cheiral sequence becomes a sequence of 0 and
1 values, and may be interpreted as a binary integer if desired.

11.2 The cheiral sequence in two dimensions

To illustrate the principle of the cheiral sequence, we illustrate it for sets of 4 points in the plane.
The interpretation of the cheiral sequence in this way for 2-dimensional sets was suggested by
Charles Rothwell. We assume that no three of the points are collinear. Let the points be uy, ..., uy.
We define a particular line in the plane as follows. Denote the line through two points u; and
u; by < w;,u; >. Furthermore, denote the intersection of two lines by the symbol x. Thus
< up,us > X < ug,uy > is the intersection of the line through u; and us with the line through the
points uz and uy.

Now, construct the points pioz4 =< u, us > X < uz, Uy > and pigag =< U, Uz > X < Uz, Uy >.
Then construct the line m =< p1234, P1324 > joining these two points. This construction is shown
in Fig 11 for several configurations of four points.
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Figure 11: Cheiral sequence in two dimensions. The cheiral sequnece is the sequence &; for
i=1,...,4 where & is 0 or 1 according to whether the point u; lies on the same side or the opposite
side of weo from uy. Shown are the 7 distinct arrangements of 4 points in the plane.

If points u; are the points of a canonical basis with homogeneous coordinates (0,0, 1), (1,0, 1),
(0,1,1) and (1,1,1), then points p123s and pis24 are two points on the line at infinity, and so the
line 7r is the line at infinity, denoted L. If on the other hand, the points u; are not the points of
this canonical basis, but are mapped to that basis by a projective transformation h, then the line 7
is mapped to the line at infinity. Thus, we have ™ = mo, = h™1(Lw), and so 7 is the line defined
in the definition of the cheiral sequence. If we choose &; to be £1 according to which side of 7 the
point u; lies. The sequence of values &; is the cheiral sequence. It is invariant up to simultaneous
reversal of all signs. The invariant values are shown in Fig 11, where for readability the digit 0 is
used instead of —1. The values of §; are normalized in all cases so that & = 0.

As seen in the diagram (and proven by Theorem 11.25) the cheiral sequence distinguishes all non-
equivalent configurations of four points. These seven configurations of points in the plane were also
considered by Morin (/citemorin93a,morin94a) who found them very useful for helping distinguish
point sets in the plane using projective invariants. In that work it was shown that considering the
quasi-affine structure (using the present terminology) of the set of points significantly increased the

capability of distinguishing point sets in the plane as compared with using only projective geometric
techniques.

11.3 Computation of 3D invariants

Computation of the cheiral sequence of a set of points seen in a set of views is relatively straight-
forward. It takes place in four steps

1. Compute a projective reconstruction of the point set from the images.
2. Transform the projective reconstruction to a quasi-affine reconstruction.

3. Determine the mapping that maps the first five points to the canonical basis e;.

4. Project each point and compute the coefficients 7);.
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Many ways ([1, 3, 8]) have been given for carrying out the first step of projective reconstruction. It
will be easiest if one uses a method (for example [3]) that results in one of the cameras having matrix
(1] 0). Then one carries out the second step of quasi-affine reconstruction simply by swapping the
last two coordinates of each point. Otherwise, the method of section 4 is still fairly straight-forward.

One may ask how many quasi-affinely distinct configurations of five points in space exist, anal-
ogous to the seven configurations of four points in the plane. We ignore configurations in which
four points lie in a plane. In this case, the cheiral sequence of five points is of length five. Up to a
common sign change, there are therefore 16 distinct cheiral sequences for five points. This gives an
upper bound on the number of distinct configurations.

One may get an exact count by enumerating the different possible geometries of the convex hull
of the points. As in two dimensions, there are two different types of configuration — those in which
all five points lie on the convex hull, and those in which only 4 points lie on the convex hull. In this
second case the convex hull is a tetrahedron containing the fifth point in the interior. Corresponding
to the five possible choices of which point is in the interior, there are five possible such configurations.

We now analyze the configurations in which all five points lie on the convex hull. The convex
hull is a polyhedron, bounded by triangular faces, since no four points are coplanar. Let n be the
number of faces. Since each face has three edges, and each edge belongs to two faces, we see that
there are 3n/2 edges, and so the Euler characteristic of the polyhedron is 5 — 3n/2 +n = 2, since
the boundary of the convex hull is topologically a sphere. From this it follows that there are n = 6
faces and 9 edges. Since each edge meets two vertices, the sum of degrees of the vertices must equal
18. Since no vertex can have degree 5 (there are only five vertices in total), the only possibility is
that there are three vertices with degree 4 and two vertices with degree 3. The polyhedron must
have the shape of two tetrahedra joined along one face. There are 10 possible such configurations
corresponding to the 10 different ways of choosing the two vertices with degree 3.

In total therefore there are 15 = 5 + 10 quasi-affinely distinct configurations of five (numbered)
points in three dimensions. Proposition 11.25 shows that these configurations may be distinguished
by their cheiral sequences. Curiously enough, 15 is one less than the upper bound of 16 distinct
cheiral sequences. Just as in the two dimensional case, there is one cheiral sequence which can not
occur. Does this observation hold in higher dimensions also ? This question is left for the interested
reader to resolve.

12 Experimental results

In considering real images of 3-D configurations it is necessary to take into account the effects of
noise. In some cases, a value of 7; used in computing the cheiral sequence will lie so close to 0
variations due to noise can swap its sign. For robust evaluation of a cheiral sequence value, it is
necessary to select a noise model and determine how errors in the input data affect the sign of each
7;. In the following discussion, noise effects are ignored, however. As usual, cheiral sequences are
written using the digit 0 instead of 1, for readability.

In [4] projective invariants of 3D point sets were discussed. As an experiment in that paper, a
set of images of some model houses were acquired. Fig 12 shows the three images as well as certain
numbered vertices selected by hand from among those detected automatically.

Six sets of six points were chosen as in the following table which shows the indices of the points
as given in Fig 12.

S, = {1, 2, 3, 6 9, 10} ,
S, = {2, 4, 6, 8, 10, 12} ,
Sy = {1, 3, 5 7, 9 11} ,
S, = {1, 2,3 6, 7, 8} ,
Sy = {1, 4, 7, 10, 13, 12} |,
S¢ = {2, 5, 8 11, 12, 13}

From image correspondences in two views (the left two images of Fig 12) the fundamental matrix F’
was found and a weak realization (P, P’,{x;}) was computed. For each of the six sets of indices 4
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Figure 12: Three views of houses, and numbered selected vertices

shown above a complete projective invariant of the points {z;} was computed by mapping the first
five points onto a canonical basis. The coordinates of the mapped sixth point constitute a projective
invariant of the set of six points.

This computation was repeated with a different pair of views (right two images of Fig 12). Theory
predicts that the invariants should have the same value when computed from different views, and
should distinguish between non-equivalent point sets.

Table (6) shows the comparison of the computed invariant values.

0.026 0.970 0975 0.619 0.847 0.823
0.995 0.015 0.064 0.841 0.252 0.548
0.967 0.066 0.013 0.863 0.276 0.516 (6)
0.617 0.830 0.873 0.016 0.704 0.752
0.861 0.238 0.289 0.708 0.005 0.590
0.828 0.544 0.519 0.719 0.574 0.026

The (i, 7)-th entry of the table shows the distance according to an appropriate metric between
the invariant of set S; as computed from the first image pair with that of set S; as computed from
the second image pair. The diagonal entries of the matrix (in bold) should be close to 0.0, which
indicates that the invariants had the same value when computed from different pairs of views.

Although the projective invariants computed here are quite effective at discriminating between
different point sets, indicated by the fact that most off-diagonal entries are not close to zero, entries
(2,3) and (3, 2) are small indicating that the point sets numbered 2 and 3 are close to being equivalent
up to projectivity.

Next, the cheiral sequence for each of the point sets were computed from the weak realization
using the method described here. The computed values for each of the six point sets were as follows.
The binary integer interpretation of the cheiral sequence is given in brackets.

x(51) = 011100 = (28)10
Y(S2) = 110000 = (60)10
x(85) = 000100 = (4)50
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Y(Sy) = 111100 = (60)10
x(85) = 101010
x(Ss) = 100100 = (36)10

—
-~
NS

~—

=
o

As expected these invariant values were the same whether computed using the first pair of views or
the second pair. Note that the cheirality invariant clearly distinguishes point sets 2 and 3. Point
sets So and Sy have the same cheiral sequence, but these are well distinguished by their projective
invariants.

Conclusions : These results show that the cheiral sequence is quite effective at distinguishing
between arbitrary sets of points. Given the relative ease with which the cheiral sequence may be
computed, it may be extremely useful in grouping points. In addition, it may conveniently be
used as an indexing function in an object recognition system. It has been demonstrated that the
cheiral sequence gives supplementary information that is not available in projective invariants. As
a theoretical tool, the cheiral sequence provides conditions under which image point matches may
be realized by real point configurations.
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