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Abstract

A new practical method is given for the self-calibration of a camera. In this method, two
images are taken from the same point in space with different orientations of the camera
and calibration is computed from an analysis of point matches between the two images.
The method requires no knowledge of the orientations of the camera, nor the geometry of
the scene. Calibration is based on the image correspondences only. This method differs
fundamentally from previous results by Maybank and Faugeras on self-calibration using
the epipolar structure of image pairs. In the method of this paper, there is no epipolar
structure since all images are taken from the same point in space, and so Maybank and
Faugeras’s method does not apply. Since the images are all taken from the same point in
space, determination of point matches is considerably easier than for images taken with
a moving camera, since problems of occlusion or change of aspect or illumination do not
occur.

Keywords : camera calibration, self-calibration, projective transformation, camera
matrix.

1 Introduction

The possibility of calibrating a camera based on the identification of matching points
in several views of a scene taken by the same camera has been shown by Maybank and
Faugeras ([7, 4]). Using techniques of Projective Geometry they showed that each pair
of views of the scene can be used to provide two quadratic equations in the five unknown
parameters of the camera. For this, it is necessary that the two views be taken from
different viewpoints. Given three pairs of views, a method of solving these equations to
obtain the camera calibration has been reported in [7, 4, 6] based on directly solving
these quadratic equations using homotopy continuation. An alternative algorithm for
calibration of a moving camera has been given in [5], which works for any number of
views.

The applicability of these methods is complicated by the problem of finding matched
points in images taken from different viewpoints. This task can be difficult, because of
occlusion, aspect changes and lighting changes that inevitably occur when the camera
moves.
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Recently several other papers on self-calibration have appeared ([2, 1, 3]). These papers
all rely on known motions of the cameras. In [2] the motion of the camera is assumed to
be purely translational. In [1, 3] rotational motions of the camera are considered, but the
rotation must be through known angles. This simplifies the calibration task enormously.
For instance, in this case, the focal length of the camera can be estimated simply as
a ratio of feature displacement to incremental angle of rotation ([3]). In addition, the
methods of [1, 3] require tracing features in the image through many frames. In [1] an
approximate guess at the location of the principal point is also necessary. In an other
paper [?], a method of calibration of cameras has been reported which requires three or
more views taken from the same point in space. Calibration is carried out solely on the
basis of image content.

In this paper, it is shown that if certain natural common assumptions are made about
the camera, then it is possible to calibrate the camera from only two views. The two
views must be taken from the same location in space, with the camera rotated between
views. The calibration is carried out only on the basis of matched points in the two
images without any prior knowledge of the scene being viewed, and with only one simple
condition on the camera calibration. The method is based on analysis of the projective
distortion that an image undergoes when the camera is rotated, but is otherwise quite
different from the algorithm used with three or more views ([?]). Though verified in
practice, these results seem to be quite unexpected, and even counter-intuitive – subject
to common assumptions about the calibration, it is possible to calibrate a camera from
only two views of an unknown scene. It has generally been tacitly assumed in the
past that epipolar geometry is necessary for self-calibration. This paper shows that
assumption to be false, since for views with a rotating camera there is not epipolar
information.

The calibration algorithm is demonstrated on real and synthetic data and is shown to
perform robustly in the presence of noise.

2 The Camera Model

A commonly used model for perspective cameras is that of projective mapping from 3D
projective space, P3, to 2D projective space, P2. This map may be represented by a
3× 4 matrix, M of rank 3. The mapping from P3 to P2 takes the point x = (x, y, z, 1)�

to u = Mx in homogeneous coordinates. (Note: the equality relation when applied to
homogeneous vectors really means equality up to a non-zero scale factor).

Provided the camera centre is not located on the plane at infinity, the matrix M may
be decomposed as M = K(R| − Rt), where t represents the location of the camera,
R is a rotation matrix representing the orientation of the camera with respect to an
absolute coordinate frame, and K is an upper triangular matrix called the calibration
matrix of the camera. The matrix (R| −Rt) represents a rigid transformation (rotation
and translation) of R3. Given a matrix M it is a very simple matter to obtain this
decomposition, using the QR-decomposition of matrices.

The entries of the matrix K may be identified with certain physically meaningful quan-
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tities known as the internal parameters of the camera. Indeed, K may be written as

K =


 ku s pu
0 kv pv
0 0 1


 (1)

where

• ku is the magnification in the u coordinate direction

• kv is the magnification in the v coordinate direction

• pu and pv are the coordinates of the principal point

• s is a skew parameter corresponding to a skewing of the coordinate axes.

Note that K is non-singular. This follows from the requirement thatM should have rank
3.

The purpose of this paper is to give a method for determining the matrix K of internal
camera parameters. In the method to be described, the camera will be held in the same
location in space but with two different orientations for the two views. For convenience,
the common location of the cameras is chosen to be the origin of the coordinate system.
We will speak of two cameras each with its own camera matrix, whereas in fact the
cameras will be the same, with the same interior parameters, differing only in their
orientation. Thus, we consider two cameras with camera matrices M1 = K(R1 | 0) and
M2 = K(R2 | 0). Further, by orienting the coordinate frame with the first camera, it may
be assumed that R1 is the identity matrix, and hence R2 is the rotation of the second
camera with respect to the first. Often, we will identify a camera with its transformation
matrix.

A point x = (x, y, z, 1)� is mapped by the camera Mj to the point u = K(Rj |
0)(x, y, z, 1)� = KRj(x, y, z). In other words, since the last column of Mj is always
0, the fourth coordinate of x is immaterial. Therefore, in this paper, we will drop the
fourth column of the camera matrix, and write instead

Mj = KRj

where K is upper triangular, the same for both cameras, and Rj is a rotation matrix.
This transformation sends points x = (x, y, z)� to u = KRjx. Note that the points kx,
where k is a non-zero factor, are all mapped to the same point independent of the scale
factor. Consequently, Mj represents a mapping between a two-dimensional projective
object space with coordinates (x, y, z)� and two-dimensional projective image space with
coordinates (u, v, w)�. This situation has a very convenient feature, not shared by the
usual 3D to 2D projective mapping, namely that the mapping Mj from object to image
space is invertible.

3 Rotating the Camera

Now, we will consider what happens to an image taken by a camera when the camera is
rotated. Thus, let M1 = KR1 and M2 = KR2 be two cameras, and let u1

i = KR1xi and
u2
i = KR2xi. From this it follows that

u2
i = KR2R

−1
1 K−1u1

i
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This simple observation gives the following important result

Proposition3.1. Given a pair of images taken by cameras with the same interior pa-
rameters from the same location, then there is a projective transformation P taking one
image to the other. Furthermore, P is of the form P = KRK−1 where R is a rotation
matrix and K is the calibration matrix.

In standard terminology, the relation P = KRK−1 may be described by saying that P
is a conjugate of a rotation matrix, K being the conjugating element.

4 Algorithm Idea

The idea of the calibration algorithm will now be described. Suppose we are given two
overlapping images J1 and J2 both taken from the same location with cameras with
the same calibration (or the same camera). It is required to determine the common
calibration matrix of the cameras. The steps of the algorithm are as follows.

1. Establish point correspondences between the images.

2. Compute the 2D projective transformation P matching J1 to J2. (Section 5)

3. Find an upper triangular matrix K such that K−1PK = R is a rotation matrix for
all j > 0. The matrix K is the calibration matrix of the cameras, and R represents
the orientation of the second camera with respect to the first. Matrix K will not
be uniquely determined by this condition. Uniqueness is assured by placing one
extra constraint on the calibration matrix. (Section 6)

4. Refine the estimated camera matrix using Levenberg-Marquardt iterative tech-
niques. (Section 7)

The steps of this algorithm will be described in detail in subsequent sections of this paper,
as indicated. The main subject of this paper comprises step 3 of this algorithm. The
steps of finding point correspondences, computing the transformation P and Levenberg-
Marquart refinement of the solution were described in greater detail in [?].

5 Determination of the Transformation

Consider a set of matched points u1
i ↔ u2

i . It is required to find a two-dimensional
projectivity, P mapping each u1

i to u2
i . With four matched points in general position

it is well known that a projective transformation P taking each u1
i to u2

i may be com-
puted. With more than four matched points a least-squares solution may be found that
minimizes the matching error. More details may be found in [?].

An alternative method to finding point matches and subsequently computing the trans-
form P is to find the P that matches the two images in a more global sense. In particular
the transformation P may be adjusted in order to maximize the correlation between the
second image and the transformed first image. This technique though promising was not
used in the implementation used for evaluating this algorithm.
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6 Solving for the calibration matrix

The constraint that the transformation matrix P must be the conjugate of a rotation is
not sufficient to determine the conjugating element K exactly. Nevertheless, with just
one additional constraint on the calibration matrix it is possible to determineK uniquely.
For instance, it will be shown that under the assumption that the skew parameter s = 0,
calibration matrix K is uniquely determined, and it is possible to calibrate from only two
views. Since s is usually very small, the assumption that s = 0 is a very reasonable one,
commonly used by other authors ([1]). Alternatively, one may make other assumptions
about the calibration, for instance that the camera has square pixels, ku = kv.

According to Proposition 3.1, given two views the transformation taking one image to the
other is of the form P = KRK−1 where K is the calibration matrix and R is a rotation
representing the relative orientation of the two cameras. Matrix P may be normalized
so that its determinant detP = 1. Given such a P , it will next be shown how to find
an upper-triangular matrix K such that P = KRK−1. It will turn out that there exist
many such K (in fact a one-parameter family), but for now, we will concentrate on how
to find just one of them. Later it will be shown how to find such a K with given desired
properties (such as zero skew).

The fact that P is a conjugate of a rotation matrix has the immediate consequence that
P and R have the same eigenvalues. The eigenvalues of a rotation matrix are equal
to 1, exp(iθ) and exp(−iθ), where θ is the angle of rotation. Therefore, by finding the
eigenvalues of P , we are able to find the angle of rotation of R. Furthermore, it is possible
to find a matrix K ′ such that P = K ′diag(1, exp(iθ), exp(−iθ))K ′−1. The columns of K ′

are the eigenvectors of P . Since the eigenvectors are defined only up to multiplication by a
non-zero factor, so are the columns of K ′. Multiplying the columns of K ′ by independent
factors preserves the condition that P = K ′diag(1, exp(iθ), exp(−iθ))K ′−1. One could
continue this line or reasoning to determine the required calibration matrix, but this
involves computations using complex numbers. Instead, we proceed slightly differently.

Any rotation is conjugate to a rotation about the x axis. Since P is conjugate to a
rotation, it is therefore conjugate to a rotation about the x axis. From the eigenvalues
of P one may determine the angle of rotation, θ. Then one may write P = HRxH

−1,
and hence PH = HRx. We write

Rx =


 1

c −s
s c




where c = cos(θ) and s = sin(θ). Further, write H = (h1,h2,h3) where hi is the i-th
column of H . Then from PH = HRx we obtain equations

Ph1 = h1

Ph2 = ch2 + sh3

Ph3 = −sh2 + ch3

This gives rise to a pair of equations

(P − I)h1 = 0 (2)

and (
P − cI −sI
sI P − cI

)(
h2

h3

)
= 0 . (3)
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Because of the choice of c and s, the matrices in (2) and (3) will be singular. Consequently,
we can solve (2) to find h1 and (3) to find h2 and h3. In the presence of noise, P will
not be exactly equal to a conjugate of a rotation. In this case, the equations (2) and (3)
will not have an exact solution. The least-squares solution is to be used. From the hi
we may resassemble a matrix H . This matrix will satisfy P = HRxH

−1. Now, using
QR decomposition, we may obtain H = KR, where K is upper-triangular and R is a
rotation. It follows that P = KRRxR

−1K−1 = KR̂K−1 as required.

It was shown above how to find a matrix H such that HRxH−1 = P . Such an H is
not unique, and so we now inquire how other solutions may be found. Suppose that
HRxH

−1 = P = H ′RxH
′−1. It follows that (H−1H ′)Rx = Rx(H−1H ′), in other words,

H−1H ′ commutes with Rx. It may be shown by direct symbolic manipulation that if
Rx is not a rotation through 0 or π radians, then H−1H ′ = diag(α1, α2, α2)R′x where
R′x is some other rotation about the x axis. Hence, H

′ = Hdiag(α1, α2, α2)R′x. Since we
are only concerned with finding H up to a non-zero scale factor, we may assume that
H ′ = Hdiag(α, 1, 1)R′x. Now, if H = KR, and Rdiag(α, 1, 1) has QR decomposition
K ′′R′′, then

H ′ = Hdiag(α, 1, 1)R′x = KRdiag(α, 1, 1)R′x = KK ′′R′′R′x .

The foregoing discussion may be summarized in the following proposition.

Proposition6.2. Let P be a 2D projective transformation matching two images taken
from the same location with the same camera. Let P = HRxH

−1 where Rx is a rotation
about the x axis. Further, let H = KR be the QR decomposition of H. Then K is
a calibration matrix for the camera, consistent with the transformation P . Any other
calibration matrix K ′ consistent with P is of the form K ′ = KK ′′ where K ′′R′′ is the
QR decomposition of Rdiag(α, 1, 1) for some α.

This shows that the set of calibration matricesK corresponding to a given transformation
matrix P is a one-parameter family. To find a unique calibration matrix, one extra
constraint is necessary.

We next turn to the problem of finding a calibration matrix K satisfying additional
constraints. To do this, we investigate the QR decomposition of a matrix Rdiag(α, 1, 1).
Let (rij) be the entries of the matrix R. The QR decomposition may be computed
explicitly. Indeed, it may be verified after some computation that Rdiag(α, 1, 1) = K ′′R′′

with K ′′ defined by

K ′′ =
1√
AB


 α

√
A (α2 − 1)r11r21 (α2 − 1)r11r31

√
B

0 B (α2 − 1)r21r31

√
B

0 0 A
√
B


 (4)

where A = (1 − r2
31) + α2r2

31 and B = r2
11 + α2(1− r2

11).

There seems to be no pretty way of demonstrating the truth of this formula, and so
it must be done by algebraic manipulation. The best way is probably to verify that
K ′′K ′′� = I + (α2 − 1)r1r1

� = Rdiag(α, 1, 1)(Rdiag(α, 1, 1))� where r1 is the first
column of R. From this it follows that Rdiag(α, 1, 1) = K ′′R′′ for some rotation R′′ as
required. This formula leads us to the following extension to Proposition 6.2.

Proposition6.3. Let P = HRxH
−1 and H = KR. Any calibration matrix consistent

with P may be written as KK ′′ where K ′′ is of the form given in (4) for some α > 0.
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The condition that α > 0 is required to ensure that the magnification factor ku of KK ′′

remains positive. Now, it is an easy matter to choose α so that the calibration matrix
KK ′′ has desired properties.

Zero skew. We consider the condition that the skew parameter is zero. Suppose
K = (kij) and R = (rij). The (1, 2)-entry (that is, the skew) in the product KK ′′ is zero
exactly when k11(α2 − 1)r11r21 + k12B = 0. Solving for α gives

α2 =
k11r11r21 − k12r

2
11

k11r11r21 − k12(r2
11 − 1)

; α > 0 (5)

This gives a simple algorithm for the calibration of a camera from two views, assuming
that the skew is zero.

1. Compute the transformation matrix P that matches points in the two images, such
that detP = 1.

2. Compute the rotation angle θ which is the argument of one of the complex eigen-
values of the matrix P .

3. Find a matrix H such that P = HRxH
−1 where Rx is a rotation through angle θ

about the x-axis. This is done by solving the equations (2) and (3).

4. Take the QR-decomposition H = KR.

5. Find α > 0 by solving (5).

6. Compute the QR decomposition Hdiag(α, 1, 1) = K ′R′. The matrix K ′ is the
calibration matrix.

Square pixels. An alternative to setting the skew to zero is to set the two magni-
fications ku and kv in the two axial directions to be equal. Multiplying out KK ′′ and
equating the first two diagonal entries leads to an equation k11α

√
A = k22B. Squaring

both sides of this equation leads to a quadratic equation in α2. In particular, we obtain

α4(k2
11r

2
31) + α

2
(
k2

11(1 − r2
31)− k2

22(1− r2
11)
)
− k2

22r
2
11 = 0

This equation is easily solved for α, but in this case there may be two solutions, since
a quadratic equation is involved. We have chosen the strategy of selecting the solution
that has the smaller skew. The algorithm for finding the calibration matrix is otherwise
the same as the previous one.

7 Iterative Estimation of the Calibration matrix

The non-iterative algorithm given here, although performing quite well does not quite
give the optimal solution. For greatest accuracy, least-square techniques may be used for
the iterative determination of the calibration matrix K. In particular, we seek a set of
points xj , a matrix K and rotation matrices R1 = I and R2 such that

uji = KRixj + εji
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The goal is to minimize the squared error sum,
∑
||εji ||2. The calibration matrix K may

be forced to have a special form by the specification of further constraints (such as s = 0
or ku = kv). The solution found by the non-iterative methods is used as an initial seed
for the iteration.

The implementation of this method is a straight-forward application of the Levenberg-
Marquardt algorithm ([8]). Convergence is rapid and trouble-free, because of the accu-
racy of the initial values of the parameters. Sparse block techniques described in [9] may
be used to separate the determination of the point coordinates xi from the determination
of the camera parameters, resulting in substantial time savings.

8 Exceptional Cases

It was seen that the calibration algorithm fails if P represents a rotation through 0 or π
radians. The first case means that the two images are identical, and the second means
that two images are taken with the camera pointing in opposite directions. These special
cases are of no interest. There are, however other exceptional cases.

Rotation about the x-axis. If the rotation is about the x axis, then the trans-
formation matrix P is of the form P = KRxK

−1 where Rx is a matrix of the form
previously given. Any other conjugating element K ′ satisfying this relationship is of the
form K ′ = Kdiag(α, 1, 1) for any α. However, the matrix K ′ so obtained is the same as
K, except that the (1, 1) entry, representing the parameter ku is multiplied by α. The
skew is unchanged. It follows therefore, that constraining the skew to be zero may be an
impossible constraint, and in any case puts no restriction on ku. In other words, we can
not determine ku if the rotation is about the x axis.

Rotation about the y-axis. Similar considerations apply to rotations about the
y-axis. In this case, if P = KRyK

−1, then any other conjugating element K ′ must be of
the form K ′ = Kdiag(1, α, 1). In this case, the the value of kv can not be determined.

Rotation about the z-axis. Unless the camera is calibrated, we do not know
precisely where the principal axis (that is the z-axis) is. However, if the rotation does
happen to be about the z axis, so that K satisfies the condition P = KRzK

−1, then any
other matrix of the form K ′ = Kdiag(α, α, 1) will do so as well. This means that the
two magnification factors, ku and kv as well as the skew are multiplied by the factor α.
Consequently, it is not possible to determine any of these parameters. Only the position
of the principal point and the ratio ku/kv may be computed.

9 Experimental Verification of the Algorithm

9.1 Tests with Synthetic Data

First of all, the calibration algorithm was applied to synthetic data to determine its
performance in the presence of noise.
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Non-iterative algorithm Levenberg-Marquardt
Noise ku skew pu pv angle ku pu pv
0.0 1000.0 0.0 20.0 30.0 19.29 1000.0 20.0 30.0
0.1 1002.3 0.7 19.8 31.0 19.25 1002.3 19.9 31.0
0.25 1005.7 1.9 19.6 32.6 19.18 1005.7 19.7 32.5
0.5 1011.7 3.8 19.2 35.2 19.07 1011.4 19.4 35.1
1.0 1023.5 9.6 18.2 40.7 18.86 1022.5 18.7 40.4
2.0 1050.7 21.2 16.3 52.4 18.38 1046.6 17.4 51.9
3.0 1082.3 35.5 14.4 65.5 17.85 1072.5 15.9 64.5
4.0 1119.0 53.4 12.4 80.2 17.27 1100.3 14.3 78.5
5.0 1162.2 76.0 10.4 97.0 16.62 1130.4 12.5 94.1

Table 1: Calibration from two images with 50% overlap assuming the condition ku = kv.
For the Levenberg-Marquardt iteration, the condition that skew s = 0 was also assumed.
The 6-th column shows the computed rotation angle between the two views. The rotation
was 19.29 degrees about the x axis.

The synthetic data was created to simulate the images taken with a 35mm camera with
a 50mm lens, and digitized with 20 pixels per mm. For such a camera, the image
measures approximately 35mm by 23mm. When digitized with 20 pixels per mm, the
image measures 700 × 460 pixels. The field of view is approximately 38◦ × 26◦. This
is approximately the resolution of the images used for the experiments with real images
described later. For such images, the magnification factors, ku and kv in the two image-
plane axial directions are equal to the focal length in pixels. In other words, ku = kv =
1000. The skew calibration parameter, s was taken to be zero, and the principal point
was taken to have coordinates (pu, pv) = (20, 30).

The square-pixel constraint: A first set of experiments were conducted with two
images overlapping by 50% side-by-side. Thus, the rotation was through an angle of
19.29◦ (that is, half the image width) about the y axis. A set of 100 matched points were
generated, and varying degrees of noise were added. Noise was zero mean Gaussian noise,
with the indicated standard deviation. The quoted noise levels are for the deviation
applied to each of the u and v image coordinates, hence the root-mean-squared pixel
displacement is

√
2 times as great. The calibration algorithm was run with the constraint

that magnification factors were equal : ku = kv. First the non-iterative calibration
algorithm was run. It was found that for large amounts of noise the skew parameter
s became substantially different from zero. Therefore, starting from the calibration
already obtained, an iterative Levenberg-Marquardt optimization was run, clamping the
skew to zero and maintaining the condition ku = kv. The results of these experiments
are found in table 1. As may be seen, the calibration becomes progressively less exact as
noise increases, but for noise levels of the order of 0.5 pixels, which may be obtained in
practice, the magnification is accurate to about 1% and the principal point is displaced
by about 5 pixels. The results obtained by the Levenberg Marquardt algorithm are not
significantly better, except for the zero skew. Note that setting skew to zero does not
affect the other parameters very much, which suggests that skew is somewhat hard to
estimate exactly.
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Non-iterative algorithm Levenberg-Marquardt
Noise ku kv pu pv angle ku pu pv
0.0 1000.0 1000.0 20.0 30.0 90.63 1000.0 20.0 30.0
0.1 1002.6 1002.5 19.7 30.5 90.60 1002.3 19.7 30.4
0.25 1006.6 1006.4 19.2 31.2 90.57 1005.9 19.2 30.9
0.5 1013.6 1013.0 18.4 32.3 90.51 1012.3 18.3 31.7
1.0 1028.2 1027.1 16.6 34.7 90.39 1027.0 16.0 33.0
2.0 1088.8 1086.5 0.1 34.2 90.18 1080.4 4.4 28.5
3.0 1160.8 1157.4 -17.4 36.4 89.96 1150.3 -10.6 25.0
4.0 1260.1 1255.8 -43.0 38.4 89.72 1253.3 -34.5 20.2
5.0 1409.2 1404.6 -85.4 40.4 89.48 1457.3 -85.3 15.4

Table 2: Calibration from two images assuming no skew. For the Levenberg-Marquardt
iteration, the condition that ku = kv was also assumed. The rotation angle is 10◦ about
the x-axis and 90◦ about the z axis, for a combined rotation of 90.63◦.

The zero-skew constraint: A second set of experiments were conducted with the
second image panned sideways through 10◦ and then rotated 90◦ about the principal
axis. In this case, calibration was carried out assuming zero skew. Because of the 90◦

rotation about the principal axis, the ratio of ku/kv was computed very exactly, and a
complete Levenberg-Marquardt optimization makes little difference to the final result.
These results are shown in table 2.

Using knowledge of the rotation: During the Levenberg-Marquardt parameter
fitting it is easy to add a constraint fixing the camera rotation to the known value. This
was done for comparison using the same data as in table 1 for noise level of 2.0 pixels.
The results of the calibration were then :

ku = kv = 1000.35 ; pu = 15.9 ; pv = 47.7

This is (as expected) considerably more accurate that the results for with unknown
camera motion. The magnification factors are determined almost exactly, though there
is still some error in the estimated position of the principal point (about 20 pixels).

Experiments with real data: Finally, calibration was carried out on a set of images
of the capitol taken with a 35mm camera with a zoom lens set at a focal length of
approximately 40mm. The five images are shown in Fig 1 and a composite image is
shown in Fig 2.

The camera was calibrated from all five images using the algorithm of [?]. This calibration
result is provided as a good approximation to ground truth, since it is derived from more
images and is expected to be accurate. Pairs of images were then taken and calibration
carried out. Between 100 and 200 matched points were found between image pairs. The
results are given in table 3.

In general, magnification is accurate within 10%, usually much less, and the principal
point is accurate within 30 pixels. These results verify the conclusion suggested by the
results with synthetic data that best results are obtained using panning rotations and
the square-pixel constraint.
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Figure 1: Five images of the capitol, numbered 1 – 5 left-to-right and top-to-bottom.

Figure 2: A composite image constructed from five different views of the Capitol. The
composite image shows very clearly the projective distortion necessary for matching
the images. Analysis of this projective distortion provides the basis for the calibration
algorithm.
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Image numbers constraint ku kv skew pu pv angle
1,2,3,4,5 – 964.4 966.4 -4.9 392.8 282.0 –
2,3 k 1002.9 1002.9 -25.0 330.1 214.8 25.49
2,5 k 963.6 963.6 -11.3 396.5 286.6 31.43
3,5 k 882.2 882.2 38.0 386.1 277.2 23.40
4,5 k 943.7 943.7 -4.7 389.3 250.8 9.57
1,5 k 1197.3 1197.3 -43.7 531.4 416.7 54.15
1,5 s 812.7 819.4 -0.0 381.3 224.3 54.15

Table 3: Calibration from real images. The second column shows the type of con-
straint used (k = square-pixels, s = zero-skew). The first line gives the result of a
calibration using all five images, provided as (approximate) ground truth. The next four
lines show results of calibration for pairs of images for which the main component of
rotation is a panning rotation. For such a rotation, the constraint skew = 0 will not
give good results. The sixth and seventh lines show the result for a pair of images that
differ by a rotation with its major component about the principal axis. As demonstrated
theoretically, rotations about the principal axis do not lead to good calibration results.
Accordingly, the results in the last two lines are substantially inferior.

10 Conclusions

The algorithm given in this paper derives the camera calibration from the smallest possi-
ble number of views, without using calibration rigs with known geometry. Naturally, the
results are inferior to those obtained with a greater number of views, but they suggest
that for suitable rotations, particularly panning rotations, the results are quite good.
Further work is required to determine the optimal rotation that should be applied to
give best calibration.

The mathematical derivations in this paper make clearer the theory behind self-calibration
schemes such as those of [1, 3]). As was demonstrated, knowledge about the actual mo-
tion of the camera (which was assumed in [1, 3]) may be incorporated into our algorithm
to give high quality results.

As a means of calibrating cameras in the field, the methods of this paper and [?] seem
much more practical than methods based on a moving camera ([7]), both because of
the ease of point matching and the simplicity of the calibration algorithms (for instance
compare with [6, 5]).
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