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Abstract

This paper gives a practical and accurate algorithm for the computation of the
quadrifocal tensor and extraction of camera matrices from it. Previous methods for
using the quadrifocal tensor in projective scene reconstruction have not emphasized
accuracy of the algorithm in conditions of noise. Methods given in this paper
minimize algebraic error either through a non-iterative linear algorithm, or two
alternative iterative algorithms. It is shown by experiments with synthetic data
that the iterative methods, though minimizing algebraic, rather than more correctly
geometric error measured in the image, give almost optimal results.
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1 Introduction

In the study of the geometry of multiple views, the fundamental matrix and more recently
the trifocal tensor have proven to be essential tools. The quadrifocal tensor which relates
coordinates measured in four views is the natural extension of these techniques to four
views. Because of the added stability of a fourth view, and the more tightly it constrains
the position of reconstructed points in space, use of the quadrifocal tensor should lead to
greater accuracy than two and three-view techniques. This hypothesis is supported by
the results of Heyden ([6, 5]). However, the four-view tensor has not been given much
attention in the literature. One of the main impediments to its use is the fact that the
quadrifocal tensor is very greatly overparametrized, using 81 components of the tensor to
describe a geometric confuguration that depends only on 29 parameters. This can lead
to severe inaccuracies if additional constraints are not applied. One method of doing
this was proposed by Heyden, who defined the reduced quadrifocal tensor. This has the
effect of partially constraining the solution, but still leaves many (in fact 32) unresolved
constraints.

In this paper, a method is given for computing the quadrifocal tensor and extracting
camera parameters in a way so as to satisfy all constraints on the tensor, while at the
same time minimizing the algebraic measurement error. The results obtained prove to
be near optimal in terms of minimizing residual error in the measured image coordinates.

2 The Quadrifocal Tensor

The quadrifocal tensor was discovered by Triggs ([8]) and an algorithm for using it for
reconstruction was given by Heyden ([6, 5]). However, because the quadrifocal tensor is
not so widely understood as the fundamental matrix, or the trifocal tensor, a derivation
of its properties and description of existing algorithms is given here. The only previously
existing algorithm for computation of the quadrifocal tensor and extraction of the camera
matrix is due to Heyden ([6, 5]). This algorithm will be described below, since most of
the material will be needed for the description of a new algorithm.

Consider four cameras P, P′, P′′ and P′′′, and let x be a point in space imaged by the
four cameras. Let the corresponding image points in the four images be denoted by u,
u′, u′′ and u′′′ respectively. We write u ≈ Px, and similarly for the other images. The
notation ≈ indicated that the two sides of the equation are equal, up to an unknown
scale factor. Taking account of the scale factor, there are constants k, k′, k′′ and k′′′

such that ku = Px, k′u′ = P′x, and so on for the other two images. This set of equations
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may be written as a single matrix equation as follows:



a1
· u1

a2
· u2

a3
· u3

b1
· u′1

b2
· u′2

b3
· u′3

c1
· u′′1

c2
· u′′2

c3
· u′′3

d1
· u′′′1

d2
· u′′′2

d3
· u′′′3







x
−k
−k′
−k′′
−k′′′




= 0 (1)

where vectors ai, bi, ci and di are the row vectors of the matrices P, P′, P′′ and P′′

respectively.

Since this equation has a solution, the matrix X on the left has rank at most 7, and so all
8× 8 determinants are zero. Any determinant containing fewer than two rows from each
of the camera matrices gives rise to a trilinear or bilinear relation between the remaining
cameras. A different case occurs when we consider 8 × 8 determinants containing two
rows from each of the camera matrices. Expansion of the determinant leads directly to
a quadrilinear relationship of the form

uiu′ju′′ku′′′lεipwεjqxεkryεlszQ
pqrs = 0wxyz (2)

where 0wxyz is a zero tensor with four indices w, x, y and z, and the rank-4 tensor Qpqrs

is defined by

Qpqrs = det




ap·
bq·
cr·
ds·


 (3)

The tensor εijk is defined to be zero unless i, j and k are distinct, and otherwise equal
to 1 or −1 depending on whether (ijk) is an even or odd permutation of (123). We use
the tensor summation convention in which an index repeated in upper (contravariant)
and lower (covariant) positions implies summation of all values 1, 2, 3 of the index.

Note that the four indices of the four-view tensor are contravariant A discussion of
tensors, contravariant and covariant indices is found in an appendix of [3]. Note that for
this quadrifocal tensor there is no distinguished view as there is in the case of the trifocal
tensor. There is only one quadrifocal tensor corresponding to four given views. More
details of this derivation, and the equations that may be derived from it are given in [2].

Each point correspondence across four views gives rise via (2) to 81 equations in the
entries of Q, one equation for each of the choices of indices w, x, y, z. Among these
equations, there are 16 linearly independent equations in the 81 entries of the quadrifocal
tensor Q. From a set of several point correspondences across four views one obtains a
set of linear equations of the form Aq = 0 where q is a vector containing the entries of
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Q. Since Q is defined only up to scale, it may appear that from 5 point correspondences
there are enough equations to compute Q. However, the sets of equations arising from
different point correspondences have a linear relationship, as shown in [2]. It turns out
that 6 points are required to solve for Q. With 6 points or more, one may solve a linear
least-squares problem to find Q.

It is also possible to derive equations involving the quadrifocal tensor from line corre-
spondences, or mixed line-point correspondences, as explained in [2]. All the techniques
of this paper are applicable to line or mixed point-line correspondences as well, but we
omit further mention of this point.

2.1 Algebraic Error

In the presence of noise, one can not expect to obtain an exact solution to an over-
constrained set of equations of the form Aq = 0 such as those that arise from a point
correspondence in 4 views. The linear least-squares algorithm instead finds the unit-norm
vector q that minimizes ||Aq||. The vector ε = Aq is the error vector and it is this error
vector that is minimized. The solution is the unit singular vector corresponding to the
smallest singular value of A.

Consider an estimate for the quadrifocal tensor Q, represented by a vector q, and let A
be the matrix of equations corresponding to a set of point correspondences ui ↔ u′i ↔
u′i ↔ u′′′i across 4 views. The vector Aq is the algebraic error vector associated with the
estimate q, relative to the measurements. Thus, our goal is to find the unit norm vector
q minimizing the algebraic error ||Aq||. In finding this minimum, the vector q may be
allowed to vary freely over the whole linear space R81, or be constrained to some subset
of R81. In any case, the principle is the same, namely that Aq is the algebraic error
vector.

Constraints. The simplest manner of estimating the tensor Q is the linear least
squares method, that finds the unit vector q that minimizes algebraic error, where q
is allowed to vary over the whole space R81. As with the fundamental matrix and the
trifocal tensor, the tensor Q that one finds in this way will not in general correspond
(as in (3)) to a set of four camera matrices. This will only be the case when Q is
appropriately constrained. To be more precise, a quadrifocal tensor Q is determined
by the four camera matrices. These have a total of 44 degrees of freedom. However,
the quadrifocal tensor (just as the fundamental matrix and trifocal tensor) is unchanged
by a projective transformation of space, since its value is determined only by image
coordinates. Hence, we may subtract 15 for the degrees of freedom of a 3D projective
transformation. The quadrifocal tensor depends on only 29 essential parameters. Thus,
it must satisfy a total of 51 = 80− 29 constraints, in addition to the scale ambiguity. As
one may see, the 81 entries of the quadrifocal tensor are very greatly redundant as far as
describing the projective configuration of the cameras is concerned.

By constrast, the fundamental matrix has 8 entries up to scale, and must satisfy a single
constraint (detF = 0). The trifocal tensor has 27 entries and must satisfy 8 constraints,
since the projective configuration of three cameras has 18 = 33− 15 degrees of freedom.
Although one may perhaps hope to get reasonable results by ignoring the constraints on
the fundamental matrix and even the trifocal tensor, it is clear that one can not ignore
the 51 constraints of the quadrifocal tensor and hope to get reasonable results.
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The method described in this paper for computation of the quadrifocal tensor is to find
q that minimizes algebraic error, while at the same time being constrained to correspond
to a set of four camera matrices, according to (3).

2.2 Minimization subject to constraints

In the case where the vector q is constrained to lie on a linear submanifold (an affine
subspace) of R81, a simple linear method exists for carrying out the minimization. The
following algorithm was give in [4]. Since it is an essential part of our method for finding
the quadrifocal tensor, it is repeated below for convenience.

Algorithm : Given a “measurement” matrix A and “constraint” matrix C find the unit
norm vector q that minimizes ||Aq|| subject to constraints q = Ca for some vector a.
Equivalently, minimize ||ACa|| subject to ||Ca|| = 1, then set q = Ca.

Solution :

1. Compute the SVD C = UDV� such that the non-zero values of D appear first down
the diagonal.

2. Let U′ be the matrix comprising the first r columns of U, where r is the rank of C.
Further, let V′ consist of the first r columns of V and D′ consist of the r first rows
and columns of D.

3. Find the unit vector q′ that minimizes ||AU′q′||. This is the singular vector corre-
sponding to the smallest singular value of AU′.

4. The required vector q is given by q = U′q′, A vector a such that q = Ca is given
by a = V′D′−1q′.

2.3 Geometric Distance

A common assumption is that measurement error is confined to image measurements,
and image measurements conform to a gaussian error model. Given a set of measured
correspondences ui ↔ u′i ↔ u′′i ↔ u′′′i , the optimal estimate for the quadrifocal tensor
under this error model is the one that satisifies equations of the form

ûai û
′b
i û
′′c
i û
′′′d
i εapwεbqxεcryεdszQ

pqrs = 0wxyz (4)

as in (3) for each matched point, where ûi, . . . , û
′′′
i are estimated image points that

minimize the geometric error
∑
i

d(ûi,ui)2 + d(û′i,u
′
i)

2 + d(û′′i ,u
′′
i )

2 + d(û′′′i ,u
′′′
i )

2 (5)

subject to the condition that (4) is satisfied exactly. Here, d(·, ·) represents Euclidean
distance in the image. The quantity d(ui, ûi) is known as the geometric distance between
ui and ûi. Thus the error to be minimized is the sum of squares of geometric distances
between measured and projected points.

Geometric error may be minimized using the technique of bundle adjustment, to carry
out a projective reconstruction of the scene. A method for doing this using sparse tech-
niques to minimize time complexity is given in [1]. In general, minimization of geometric
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error can be expected to give the best possible results (depending on how realistic the
error model is). This algorithm is not implemented here for use in comparison with
the algebraic minimization algorithm. Nevertheless, one may easily derive a theoreti-
cal bound (the Cramer-Rao lower bound) for the minimum error obtainable using the
geometric error model. This bound is used to evaluate the algebraic minimization algo-
rithms. Consider an estimation problem involving N measurements each of a Gaussian
random variable with standard deviation σ, and d parameters, the minimum residual er-
ror (distance between measured and modelled values) is equal ([7]) to ε = σ(1−d/N)1/2.
In this particular case, with four images and n points, two coordinates per point, there
are 8n measurement. Counting parameters, we count 3n for the coordinates of the points
in space, plus 29 for the degrees of freedom of the quadrifocal tensor. Hence, the optimal
residual error is

E = σ((5n− 29)/8n)1/2 . (6)

2.4 The Reduced Measurement Matrix

In general, the matrix A may have a very large number of rows. As described in [4] it
is possible to replace A by a square matrix Â such that ||Aq|| = ||Âq|| for any vector q.
Such a matrix Â is called a reduced measurement matrix. An efficient way of obtaining
Â is to use the QR decomposition A = QÂ, where Q has orthogonal columns and Â is
upper-triangular and square.

In this way, all the information we need to keep about the set of matched data ui ↔
u′i ↔ u′′i ↔ u′′′i is contained in the single matrix Â. If we wish to minimize algebraic
error ||Aq|| as q varies over some restricted set of transforms, then this is equivalent to
minimizing the norm ||Âq||.

2.5 The reduced quadrifocal tensor

Amethod introduced by Heyden ([6, 5]) for reducing the number of unsatisfied constraints
involving the quadrifocal tensor involves the reduced quadrifocal tensor. Heyden applied
the same techniques to defined also a reduced fundamental matrix and reduced trifocal
tensor, but these will not be considered in this paper.

Suppose that among the set of correspondences, three correspondences ui ↔ u′i ↔ u′′i ↔
u′′′i for i = 1, . . . , 3 are selected. This selection should be done in such a way that points
u1, u2 and u3 are not collinear, and neither are the corresponding points in the other
images. Now, a projective transformation T exists that maps the points represented in
homogeneous coordinates as e1 = (1, 0, 0)�, e2 = (0, 1, 0)� and e3 = (0, 0, 1)�. to the
points u1,u2,u3. Note that T is not an affine transformation, since it does not keep the
plane at infinity fixed. As such, it is not fully defined by three point correspondences.
However, a simple choice of T is the one represented by a matrix

T =




u1 u2 u3

v1 v2 v3

w1 w2 w3


 (7)

where (ui, vi, wi)� are the coordinates of ui. One verifies easily that indeed Tei = ui. We
assume that each point ui in the image is subjected to the transformation T−1, resulting
in a new set of points. Let us assume that this transformation has been carried out,
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and agree to denote the new transformed points by the same symbol ui. Thus, one
has a set of image points ui of which the first three points u1, u2 and u3 are equal to
ei, i = 1, . . . , 3.

Let the points in space mapping to the points ui be denoted xi. Thus, ui = Pui. We
focus on the first three points x1, x2 and x3. Since image points u1, u2 and u3 are not
collinear (by assumption), neither are the points xi that project to them. It is possible,
therefore to select a projective coordinate frame in which these points have coordinates
x1 = (1, 0, 0, 0)�, x2 = (0, 1, 0, 0)� and x3 = (0, 0, 1, 0)�. Since these points map to
image points ei, one verifies that the form of the projection matrix must be

P =



p1 q1

p2 q2

p3 q3


 . (8)

We may make the further assumption that the centre of the camera is at the point
(0, 0, 0, 1)�, which means that P(0, 0, 0, 1)� = (0, 0, 0)�. Consequently, q1 = q2 = q3 = 0.

Now, applying a similar argument to each of the other cameras, one sees that each of
P, P′, P′′ and P′′′ has a similar form, consisting of a left hand diagonal block, plus an
arbitrary 4-th column. Finally, one may multiply each of the camera matrices on the
right by the matrix 


p−1

1 −p−1
1 q1

p−1
2 −p−1

2 q2

p−1
2 −p−1

3 q3

1


 .

This reduces the first matrix P to the particular simple form [I | 0] while retaining the
form (8) of the other matrices. This is the reduced form for the camera matrices.

Notation : To avoid continually having to count the number of primes to distinguish
the elements from the three cameras, we will write the four cameras as

P = [I | 0] ; P′ =



a1 a′1

a2 a′2
a3 a′3




P′′ =



b1 b′1

b2 b′2
b3 b′3


 ; P′′′ =



c1 c′1

c2 c′2
c3 c′3


 . (9)

We now consider the quadrifocal tensor Qijkl defined by (3), in terms of the matrices in
(9). This tensor is known as the reduced quadrifocal tensor. Each entry is defined as a
determinant made up of one row from each of the four camera matrices. Note that if one
of the three indices 1, 2 or 3 is absent from the indices of Qijkl, then the corresponding
column of the determinant contains only zeros, and the entry of Qijkl is zero. Thus, the
only nonzero entries are those in which all three indices occur. Since in total there are
four indices, one index must appear twice. Simple counting reveals that there are only 36
non-zero entries in the reduced quadrifocal tensor – 6 to account for the choice of which
pair of the four indices i, j, k, l are the same, and 6 to account for the permutations of
the indices 1, 2, 3.
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We may now summarize an algorithm due to Heyden ([6, 5]) for computing the reduced
quadrifocal tensor from a set of point correspondences.

1. Select three point correspondences ui ↔ u′i ↔ u′′i ↔ u′′′i for i = 1, . . . , 3 and
compute transformations T, T′, T′′ and T′′′ that map points ei i = 1, . . . , 3 to these
selected points. Apply the inverse transformation to the complete set of points in
each image, to obtain a new set of transformed point correspondences.

2. Each transformed point correspondence gives a set of linear equations in the 36
non-zero entries of the quadrifocal tensor, according to (2). One ignores the first
three point correspondences, since they give null equations. Solve these equations
in a least-squares manner to find the entries of the quadrifocal tensor.

Transforming the quadrifocal tensor. The quadrifocal tensor corresponding to
the original set of point correspondences (not the transformed set) may be retrieved by
transforming the reduced quadrifocal tensor found by the above algorithm. To do that, we
need to consider how the quadrifocal tensor transforms. Note that the quadrifocal tensor
has 4 contravariant (upper) indices. Similarly, points, such as ui have a contravariant
index. This means that Q transforms in the same way as points. In particular, denote
by ûi the set of transformed points, ûi = T−1ui, and let û′i, û′′i and û′′i be defined
similarly. Suppose Q̂ is the quadrifocal tensor corresponding to the set of correspondences
ûi ↔ û′i ↔ û′′i ↔ û′′′i , and Q is derived from ui ↔ u′i ↔ u′′i ↔ u′′′i . Since ui = Tûi, the
tensor Q̂ also transforms via transform T. More precisely, one finds that

Qijkl = Q̂
abcd

T iaT
′j
b T
′′k
c T ′′′ld (10)

If Q̂ is the tensor computed from the transformed points, then (10) allows us to retrieve
the tensor corresponding to the original points.

2.6 Retrieving the Camera Matrices

Following Heyden, we give a method for computing the camera matrices once the reduced
tensor has been computed. In contrast with the methods for computing the camera
matrices from the fundamental matrix or the trifocal tensor, in which one computes first
the epipoles, in the method to be described, one computes first the diagonal elements of
the matrices in (9), and then computes the final columns, which represent the epipoles.
To understand this, we consider the two entries Q2311 and Q3211. From (3) one finds
that

Q2311 = det




1
a3 a′3

b1 b′1
c1 c′1


 = a3(b1c

′
1 − c1b

′
1)

On the other hand, similarly, one finds that Q3211 = −a2(b1c
′
1 − c1b

′
1). Hence, one sees

that the ratio a3 : a2 = Q2311 : −Q3211. Continuing in this manner, one may solve for
the diagonal elements of the matrices (9) by solving the following equations :




0 Q2311 Q3211

Q1322 0 Q3122

Q1233 Q2133 0






a1

a2

a3


 = 0
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


0 Q2131 Q3121

Q1232 0 Q3212

Q1323 Q2313 0






b1

b2

b3


 = 0 (11)




0 Q2113 Q3112

Q1223 0 Q3221

Q1332 Q2331 0






c1

c2

c3


 = 0

These equations have a pattern to them, which the reader may easily discover. (The first
index of Qijkl corresponds to the column of each matrix in (11), and the repeated index
corresponds to the row.) In this way, one computes the diagonal elements of (9). Each
of the solution vectors (a1, a2, a3)�, (b1, b2, b3)� and (c1, c2, c3)� may be chosen to have
unit norm.

2.7 Retrieving the epipoles.

Once one knows the values of (a1, a2, a3)�, (b1, b2, b3)� and (c1, c2, c3)�, the values of
the entries of Q are linear in the remaining entries a′1, a

′
2, a
′
3, b
′
1, b
′
2, b
′
3, c
′
1, c
′
2, c
′
3. This is

because these entries will all appear in the last column of the determinant (3) representing
Qijkl. Hence the determinant expression can not contain higher order terms in these
entries. The exact form of the linear relationship can be computed by cofactor expansion
of the determinant expression (3) for Qijkl down the last column. We will be content to
express it in the form q̂ = Ma′, where Q̂ is the vector of entries of the reduced quadrifocal
tensor, and a′ is the vector (a′1, a

′
2, a
′
3, b
′
1, b
′
2, b
′
3, c
′
1, c
′
2, c
′
3)
�. The unit-norm least-squares

solution of this set of equations gives the entries of vector a′. Along with the values of
a = (a1, a2, a3, b1, b2, b3, c1, c2, c3)� previously computed, this gives a complete solution
for the camera matrices, according to (9).

The complete algorithm (due to Heyden) for computing the camera matrices from the
reduced quadrifocal tensor is therefore as follows.

1. Compute the diagonal entries of the camera matrices (9) by solving (the unit norm
least-squares solution) of the equations (11). Denote the vector of diagonal entries
by a.

2. Express the entries of the reduced quadrifocal tensor in terms of the vector a′ of
last-column entries of the matrices in (11). This gives a set of equations q̂ = Ma′,
where the entries of M are quadratic expressions in the entries of a. Solve this set
of equations (once more the unit-norm least-squares solution) to find a′.

3. If required, the reduced quadrifocal tensor may be computed using (3). Finally,
the quadrifocal tensor corresponding to the original data may be computed using
(10). Alternatively, if one requires only the original camera matrices, they may be
obtained by transforming the reduced camera matrices found in steps 1 and 2.

It is important to note that this method, along with the algorithm for finding the reduced
quadrifocal tensor together give a method for computing a quadrifocal tensor correspond-
ing to a valid choice of camera matrices, and hence satisfying all needed constraints. This
is done, of course, without explicitly finding the form of the constraints.
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3 Minimizing Algebraic Distance

The algorithm given in the last section, though apparently performing adequately ([6, 5])
has various weaknesses, from a computational viewpoint.

1. In computing the transformations T, . . . , T′′′ according to (7) one risks encountering
the case where the three points used to define the transforms are nearly collinear.
In this case T may be close to being invertible. This means that the positions of
the transformed points computed by applying T−1 to the original data points may
not be very stable.

2. In solving for the epipoles, using (11) the matrices involved will not generally
be singular. The solution is found in effect by computing the nearest singular
matrix (in Frobenius norm) and taking the null space of that matrix. However,
there is really no theoretical justification for finding the nearest singular matrix in
Frobenius norm. The problem is analogous with that encountered when enforcing
the singularity constraint for the fundamental matrix.

3. In the computation of the vector a′, we solve a set of equations once more using
a least-squared method. However, once more the quantity that we are minimizing
has no meaningful interpretation in terms of errors in the original data.

It will now be shown how we may avoid these problems in a way so as to minimize
algebraic error. The result is that in carrying out the three steps of the algorithm one
is minimizing always the same algebraic cost function, and numerical performance is
improved.

3.1 Minimizing Algebraic Error

Solving for the fundamental matrix. The transformation formula (10) is seen to
be linear in the entries of Q̂. More specifically, we may write q = T q̂. In this equation
q̂ and q are vectors of entries of the reduced and full quadrifocal tensors, and T is an
81 × 36 matrix. Let A be the reduced measurement matrix computed from the original
point correspondences. One wishes to compute the unit-norm vector q that minimizes the
algebraic error ||Aq|| subject to the constraint that q is derived from a reduced quadrifocal
tensor according to the constraint q = T q̂. In other words, we wish to minimize ||AT q̂||
subject to the condition ||T q̂|| = 1. This is the type of constrained minimization problem
considered in section 2.2. It is important to note here, that the transformation Q̂ �→ Q
given by (10) depends on the matrices T, . . . , T′′′ given by a formula such as (7) which is
built from the coordinates of the matched points. It is not necessary ever to invert this
matrix to find T−1, . . . , T′′′−1. In addition, the reduced measurement matrix A is formed
from the coordinates of the original untransformed points. In fact, it is never necessary to
invert the matrices T, . . . , T′′′ at all. Thus, one computes the reduced quadrifocal tensor,
while completely avoiding the problem of inverting matrices, which could potentially be
near-singular.

Solving for the epipoles. It does not seem to be possible to find the diagonal
entries of the reduced camera matrices in a way so as to minimize algebraic error, in a
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linear manner. Therefore, we adopt the method of Heyden of finding the least-squares
solution to equations (11). This leaves the problem of finding the final columns of the
matrices, namely the vector a′. As before, the reduced quadrifocal tensor Q̂ may be
expressed linearly in terms of the entries of a′, writing q̂ = Ma′, assuming as we do that
the diagonals of the reduced camera matrices are known.

Now, we wish to find q of unit norm that minimizes ||Aq|| subject to the additional
constraints that q = T q̂ and q̂ = Ma′. These last two constraints become a single
constraint q = T Ma′. Thus, the problem may be cast as follows : minimize ||A(T M)a′||
subject to the condition ||(T M)a′|| = 1. Once more this is a minimization problem of the
sort solved in section 2.2. The solution method provides values for either a′ or q. Thus,
we may compute the quadrifocal tensor directly by computing q, or we may retrieve the
reduced camera matrices by computing a′.

The complete proposed algorithm is therefore as follows.

1. Form the reduced measurement matrix A from the original data.

2. Obtain the transformation matrices T, . . . , T′′′ from three of the correspondences,
using formula (7).

3. Compute the 81× 36 transformation matrix T such that q = T q̂ from the trans-
formation rule (10)

4. Solve the minimization problem : minimize ||AT q̂|| subject to ||T q̂|| = 1 to find Q̂,
an initial estimate of the reduced fundamental matrix.

5. Find the diagonal elements (vector a) of the reduced camera matrices by solving
(11).

6. Compute the 36×9 matrix M such that q̂ = Ma′, where a′ is the 9-vector containing
the elements of the last columns (representing epipoles relative to the first camera)
of the reduced camera matrices.

7. Solve the minimization problem : minimize ||AT Ma′|| subject to ||T Mâ′|| = 1. From
this we may derive the vector q = T Mâ′ corresponding to a full quadrifocal tensor.

8. If desired, we may compute the reduced camera matrices (9) from the vectors a
and a′. These may be transformed to camera matrices for the original set of data
by left-multiplication by the transforms T, . . . , T′′′.

The quadrifocal tensor found in this way is a valid tensor satisfying all appropriate
constraints, since it is derived from a set of camera matrices. In addition, it minimizes
algebraic error subject to the two conditions :

1. The camera matrix diagonals have the value given by the 9-vector a, computed at
step 5 of the algorithm.

2. The three points used to compute transforms T, . . . , T′′′ correspond precisely.
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3.2 Iterative Estimation

The algorithm of the last section gives a way of computing an algebraic error vector Aq
assuming that the 9-vector a representing the diagonals of the reduced camera matrices
is known. This mapping a �→ Aq is a map from R9 to R81. This suggests an iterative
approach in which the goal is to vary a in a way such as to minimize the algebraic error
||Aq||. Such an iteration may be carried out using a parameter minimization program
such as the Levenberg-Marquardt algorithm.

One may observe that the solution that one obtains in this manner is a minimum subject
to the transformations T, . . . , T′′′ being fixed. These transformations are derived (using
(7)) from the coordinates of the first three measured points. One may further let the
entries of the three transformation matrice T′, T′′, T′′′ vary to find an absolute minimum
of algebraic error. It is not necessary to let the transformation T vary. Since T′, . . . , T′′′

are determined by the coordinates u′i,u
′′
i ,u
′′′
i for i = 1, . . . 3, this accounts for a further

variable parameters, a total of 27 in all.

Note the advantage of this method of computing Q is that the iterative part of the
algorithm is of fixed size independent of the number of point correspondences involved.

3.3 4 points on a plane

It may be observed that if 4 of the points are known to lie on a plane, then the min-
imization of algebraic error can succeed without iteration in a single step. (We do
not consider the case where three of these points are collinear.) To be specific, one
may choose the first three correspondences to have homogeneous image coordinates
e1 = (1, 0, 0)�, e2 = (0, 1, 0)�, e3 = (0, 0, 1)� as before and the fourth point can
be chosen as e4 = (1, 1, 1). In a real computation, one needs to find transformations
T, . . . , T′′′ that map these basis points to the actual image points. Now, since the points
are known to be coplanar, one may assume that they lie on the plane at infinity, as the
points (1, 0, 0, 0)�, (0, 1, 0, 0)�, (0, 0, 1, 0)� and (1, 1, 1, 0)�. One assumes further that
the first camera centre is at the origin (0, 0, 0, 1)�. In this case, it is easily verified that
the camera matrices have the form (9) in which the diagonal elements are all equal to 1.
This means that we can skip steps 4 and 5 of the algorithm of section 3.1. The complete
algorithm is as follows :

1. Compute the reduced measurement matrix from the original data.

2. Compute the transforms T, . . . , T′′′ that take the image basis points e1, . . . , e4 to
the measured coordinate values.

3. Compute the 81× 36 matrix T from (10) as before, such that q = T q̂.

4. Compute the 36 × 9 matrix M such that q̂ = Ma′, assuming that the diagonals of
the reduced camera matrices (9) are all 1. This matrix has a given fixed form
independent of the data.

5. Compute a′ by solving the problem : minimize ||AT Ma′|| subject to ||T Ma′|| = 1.
The quadrifocal tensor is given by q = T Ma′.

12



The tensor derived in this way minimizes algebraic error, subject to the first four point
correspondences (those for the coplanar points) being correct.

One should note that essentially the same technique works for the fundamental matrix
and the trifocal tensor. If there exist four points known to lie in a plane, then there
exists a straight-forward linear method that finds the matrix, or tensor, satisfying all
constraints and minimizing algebraic error.

4 Experimental Results

The new algorithm for computation of the quadrifocal tensor was was tested with syn-
thetic data. The data were created to simulate a standard 35mm camera with a 35mm
focal length lens. A set of points were synthesized inside a sphere of radius 1m, and
cameras were located at a distance of about 2.5m from the centre of the sphere aimed at
the point set from random directions. The image is sampled so that the magnification
factors are αu = αv = 1000.0, the same in each direction. This corresponds to a pixel
size of 35µm for a 35mm camera. The expected optimum value of the residual error was
computed using formula ((6)). The results are shown in Fig 1.

The results given in Fig 1 are for a set of arbitrarily placed cameras and arbitrarily chosen
points. An experiment was carried out to determine how the algorithms performed in
near-critical configurations. A similar configuration of points and cameras was chosen as
in the previous test. However, the first camera centre was located on the line through
the first two world points x1 and x2. The result of this is that the points u1 and u2

(the images with respect to the first camera) are close together (in fact without noise,
they coincide). Thus the transformation T is close to being singular. The result of this
experiment is shown in Fig 2.

Iterative Algorithms We now compare the iterative algorithms with the non-iterative
algorithm. The results are shown if Fig 3. Two iterative algorithms are compared. In the
first algorithm, the transformations T, . . . T′′′ are kept fixed, and the 9 diagonal entries of
the reduced camera matrices vary. Thus, there are 9 varying parameters and 81 measured
values. In the second method the transformation matrices T′, T′′, T′′′ are allowed to vary
also. There are 27 varying parameters in this case. This second method should be
expected to give better results.

5 Conclusion

The method of computing the quadrifocal tensor by minimizing algebraic error gives
results almost indistinguishable from minimizing geometric error, and almost optimal. It
avoids singular configurations in which Heyden’s algorithm fails entirely, and in general
gives numerically superior results. It is true that it is possible to be careful in selecting
the three points used in Heyden’s method for defining the reduced tensor. If this is done,
then it is possible to avoid catastrophic failure of the algorithm. However this involves
additional uncertainties in the algorithm. The present algorithm avoids such difficulties
by avoiding the problems with singular configurations of points altogether.
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Figure 1: The residual error achieved by the algorithm of this paper is compared with
the optimal value as well as with the algorithm of Heyden. Each of the graphs shows the
residual error RMS-averaged over 200 runs. In the left hand graph, the residual error is
plotted against the amount of injected noise, for a set of 20 points. The right hand graph
shows the effect of varying the number of points used to compute the tensor. It starts
with 7 points, since none of the algorithms seems to perform well with just 6 points. The
noise level is fixed at 1 pixel (in each coordinate direction). In each case, the lower plot
is the optimum error given by (6)) while the two upper plots are the residual error for
the algorithm of this paper (middle curve) and for Heyden’s algorithm (top curve). One
sees that the presently considered algorithm performs significantly better than Heyden’s
algorithm, but misses the optimal result by about a factor of 2. Note that the error is
closely proportional to the amount of injected noise.
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Figure 2: In near singular cases, the present algorithm still performs well, as shown in
these graphs. On the left is shown the residual as a function of increasing noise, and on
the right the residual is plotted against the number of points. These are shown as log-log
plots, so that the top curve will fit on the graph. It is seen that in this case Heyden’s
algorithm (represented by the top curve) fails completely. The center graph is a linear
plot of just the optimal and the present non-iterative algorithm results.
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Figure 3: These graphs show the performance of iterative algorithms for computing the
quadrifocal tensor. The data set used is the same as for Fig 1. Each graph shows 4
curves. From top to bottom they are (i) the non-iterative algorithm, (ii) the 9-parameter
iterative method, (iii) the 27 parameter iterative method and (iv) the theoretical optimal
method. As may be seen, the 27-parameter iterative method gives very nearly optimal
results (in fact the two last curves are indistinguishable). The two graphs shown are
for varying noise and 20 points (on the left), and for fixed noise of 1 pixel and varying
numbers of points (right).
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