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Abstract� The paper has two main contributions� The �rst is a set
of methods for computing structure and motion for m � � views of 	
points� It is shown that a geometric image error can be minimized over
all views by a simple three parameter numerical optimization� Then� that
an algebraic image error can be minimized over all views by computing
the solution to a cubic in one variable� Finally� a minor point� is that this

quasi�linear� linear solution enables a more concise algorithm� than any
given previously� for the reconstruction of 	 points in � views�
The second contribution is an m view n � 	 point robust reconstruction
algorithm which uses the 	 point method as a search engine� This extends
the successful RANSAC based algorithms for ��views and ��views to m

views� The algorithm can cope with missing data and mismatched data
and may be used as an e
cient initializer for bundle adjustment�
The new algorithms are evaluated on synthetic and real image sequences�
and compared to optimal estimation results �bundle adjustment��

� Introduction

A large number of methods exist for obtaining �D structure and motion from
features tracked through image sequences� Their characteristics vary from the so�
called minimal methods ���� ��� 		
 which work with the least data necessary to
compute structure and motion� through intermediate methods ��� ��
 which may
perform mismatch �outlier
 rejection as well� to the full�bore bundle adjustment�

The minimal solutions are used as search engines in robust estimation algo�
rithms which automatically compute correspondences and tensors over multiple
views� For example� the two�view seven�point solution is used in the RANSAC
estimation of the fundamental matrix in �		
� and the three�view six�point so�
lution in the RANSAC estimation of the trifocal tensor in �	�
� It would seem
natural then to use a minimal solution as a search engine in four or more views�
The problem is that in four or more views a solution is forced to include a
minimization to account for measurement error �noise
� This is because in the
two�view seven�point and three�view six�point cases there are the same number
of measurement constraints as degrees of freedom in the tensor� and in both cases
one or three real solutions result �and the duality explanation for this equiva�
lence was given by ��

� However� the four�views six�points case provides one
more constraint than the number of degrees of freedom of the four�view geome�
try �the quadrifocal tensor
� This means that unlike in the two� and three�view



cases where a tensor can be computed which exactly relates the measured points
�and also satis�es its internal constraints
� this is not possible in the four �or
more
 view case� Instead it is necessary to minimize an image measurement error
whether algebraic or geometric�

In this paper we develop a novel quasi�linear solution for the � point case in
three or more views� The solution minimizes an algebraic image error� and its
computation involves only a SVD and the solution of a cubic equation in a single
variable� This is described in section �� We also describe a sub�optimal method
�compared to bundle adjustment
 which minimizes geometric image error at the
cost of only a three parameter optimization� Before describing the new solutions�
we �rst demonstrate the poor estimate which results if the error that is mini�
mized is not in the measured image coordinates� but instead in a projectively
transformed image coordinate frame� This is described in section 	�

A second part of the paper describes an algorithm for computing a reconstruc�
tion of cameras and �D scene points from a sequence of images� The objectives
of such algorithms are now well established�

�� Minimize reprojection error� A common statistical noise model assumes
that measurement error is isotropic and Gaussian in the image� The Maxi�
mum Likelihood Estimate in this case involves minimizing the total squared
reprojection error over the cameras and �D points� This is bundle adjust�
ment�

	� Cope with missing data� Structure�from�motion data often arises from
tracking features through image sequences and any one track may persist
only in few of the total frames�

�� Cope with mismatches� Appearance�based tracking can produce tracks of
non�features� A common example is a T�junction which generates a strong
corner� moving slowly between frames� but which is not the image of any
one point in the world�

Bundle adjustment ��
 is the most accurate and theoretically best justi�ed
technique� It can cope with missing data and� with a suitable robust statisti�
cal cost function� can cope with mismatches� It will almost always be the �nal
step of a reconstruction algorithm� However� it is expensive to carry out and�
more signi�cantly� requires a good initial estimate in order to be e�ective �fewer
iterations� and less likely to converge to local minimum
� Current methods of
initializating a bundle adjustment include factorization ���� �	� ��� 	�
� hierarchi�
cal combination of sub�sequences ��
� and the Variable State Dimension Filter
�VSDF
 ���
�

In the special case of a�ne cameras� factorization methods ���
 minimize
reprojection error ���
 and so give the optimal solution found by bundle ad�
justment� However� factorization cannot cope with mismatches� and methods to
overcome missing data ���
 lose the optimality of the solution� In the general case
of perspective projection iterative factorization methods have been successfully
developed and have recently proved to produce excellent results� The problems
of missing data and mismatches remain though�



In this paper we describe a novel algorithm for computing a reconstruction
satisfying the three basic objectives above �optimal� missing data� mismatches
�
It is based on using the six�point algorithm as a robust search engine� and is
described in section ��

Notation� The standard basis will refer to the �ve points in IP� whose homo�
geneous coordinates are �
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For a ��vector v � �x� y� z
�� we use �v

�
to denote the �� � skew matrix such

that �v

�
u � v�u � where � denotes the vector cross product� For three points

in the plane� represented in homogeneous coordinates by x�y� z� the incidence
relation of collinearity is the vanishing of the bracket �x�y� z
 which denotes the
determinant of the �� � matrix whose columns are x�y� z� It equals x � �y � z

where � is the vector dot product�

� Linear Estimation Using a Duality Solution

This section brie�y outlines a method proposed by Hartley ��
 for computing a
reconstruction for six points in three or more views� The method is based on
the Carlsson and Weinshall �	� �
 duality between points and cameras� From this
duality it follows that an algorithm to compute the fundamental matrix �seven
or more points in two views
 may be applied to six points in three or more
views� This has the advantage that it is a linear method however� as we shall
demonstrate� the error distribution that is minimized is transformed in a highly
non linear way� leading to a biased estimate� Thus this algorithm is only included
here as a warning against minimizing errors in a projectively transformed image
frame � we are not recommending it�

The duality proceeds as follows� A projective basis is chosen in each image
such that the �rst four points are
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Assuming in addition that the corresponding �D points are E�� � � � �E�� the
camera matrix may be seen to be of the form

P �

�
ai �di

bi �di

ci �di

�
���

Such a camera matrix is called a reduced camera matrix� Now� ifX � �x�y� z�t
�

is a �D point� then it can be veri�ed that
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Note that the r�oles of point and camera are swapped in this last equation�
This observation allows us to apply the algorithm for projective reconstruction
from two views of many points to solve for six point in many views� The general
idea is as follows�

�� Apply a transformation to each image so that the �rst four points are mapped
to the points ei of a canonical image basis�

	� The two other points in each view are also transformed by these mappings
� a total of two points in each image� Swap the r�oles of points and views to
consider this as a set of two views of several points�

�� Use a projective reconstruction algorithm �based on the fundamental matrix

to solve the two�view reconstruction problem�

�� Swap back the points and camera coordinates as in �	
�

�� Transform back to the original image coordinate frame�

The main di�culty with this algorithm is the distortion of the image mea�
surement error distributions by the projective image mapping� One may work
very hard to �nd a solution with minimal residual error with respect to the
transformed image coordinates only to �nd that these errors become very large
when the image points are transformed back to the original coordinate system� A
circular Gaussian distribution is transformed by a projective transformation to a
distribution that is no longer circular� and not even Gaussian� This is illustrated
in �gure �� Common methods of two�view reconstruction are not able to han�
dle such error distributions e�ectively� The method used for reconstruction from
the transformed data was a dualization of one of the best methods available for
two�view reconstruction � an iterative method that minimizes algebraic error ��
�

� Reconstruction from Six Points over m Views

This section describes the main algebraic development of the six point method� In
essence it is quite similar to the development given by Hartley ��
 and Quan ���

for a reconstruction of � points from � views� The di�erence is that Quan used
a standard projective basis for both the image and world points� whereas here
the image coordinates are not transformed� As described in section 	 the use
of a standard basis in the image severely distorts the error that is minimized�
The numerical results that follow demonstrate that the method described here
produces a near optimal solution�

In the following it will be assumed that we have six image points xi in
correspondence over m views� The idea then is to compute cameras for each
view such that the scene points Xi project exactly to their image xi for the �rst
�ve points� Any error minimization required is then restricted to the sixth point
X�� in the �rst instance� leading to a three parameter optimization problem�



0

5

10

15

0 0.5 1 1.5 2 2.5 3 3.5 4

R
es

id
ua

l E
rr

or
Inserted Noise

fitted measured

Original  Image

Projective Basis

transform

projective

Fig� �� Left� Residual error as a function of image noise for six points over �� views�
The upper curve is the result of a duality�based reconstruction algorithm� the lower
is the result of bundle adjustment� The method for generating this synthetic data
is described in section ���� As may be seen the residual error of the duality�based
algorithm is extremely high� even for quite low noise levels� It is evident that this
method is unusable� In fact the results prove to be unsatisfactory for initializing a
bundle adjustment in the original coordinate system� Right� Minimizing geometric
error �as algebraic error minimization tries to approximate this� in a very projectively
transformed space pulls back to a point away from the ellipse centre in the original
image�

��� A Pencil of Cameras

Each correspondence between a scene point X and its image x under a perspec�
tive camera P gives three linear equations for P whose combined rank is 	� These
linear equations are obtained from

x� PX � � ���

Given only �ve scene points� assumed to be in general position� it is possible
to recover the camera up to a ��parameter ambiguity� More precisely� the �ve
points generate a linear system of equations for P which may be written Mp � ��
where M is a ��� �	 matrix formed from two of the linear equations ��
 of each
point correspondence� and p is P written as a �	�vector� This system of equations
has a 	�dimensional null�space and thus results in a pencil of cameras�

We are free to choose the position of the �ve world points �e�g� they could be
chosen to be the points of the standard projective frame E�� � � � �E�
 thus both
Xi and xi �i � �� � � � � �
 are known and the null�space of M can immediately be
computed� The null�space will be denoted from here on by the basis of � � �
matrices �A� B
� Then for any choice of the scalars �� � �
 � IP� the camera in the
pencil P � �A� �B exactly projects the �rst �ve world points to to the �rst �ve
image points�

Each camera P in the pencil has its optical centre located as the null�vector of
P and thus a given pencil of cameras gives rise to a �D curve of possible camera
centres� In general �there are degenerate cases
 the locus of possible camera
centres will be a twisted cubic passing through the �ve world points� The �ve
points specify �� of the �	 degrees of freedom of the twisted cubic� the remaining
	 degrees of freedom are speci�ed by the 	 plane projective invariants of the �ve



image points� If a sixth point in ��space lies on the twisted cubic then there is a
one parameter family of cameras which will exactly project all six space points
to their images� This situation can be detected �in principle
 because if the space
point lies on the twisted cubic then all � image points lie on a conic�

��� The Quadric Constraints
We continue to consider a single camera P mapping a set of point X�� � � � �X� to
image points x�� � � � �x�� Let �A� B
 be the pencil of cameras consistent with the
projections of the �rst �ve points� Since P lies in the pencil� there are scalars
�� � �
 � IP� such that P � �A � �B and so the projection of the sixth world
point X� is x� � �AX� � �BX�� This means that the three points x�� AX�� BX�

are collinear in the image� so

�x�� AX�� BX�� � �� ���

which is a quadratic constraint on X�� The � � � determinant of ��
 can be
expressed as X�

��A��x�
�B
X� � �� As the skew�symmetric part of the matrix
�A��x�
�B
 does not contribute to this equation� ��
 is equivalent to the con�
straint that X� lies on a quadric Q speci�ed by the symmetric part of �A��x�
�B
�
Also� by construction� each of the �rst �ve points Xi �i � �� � � � � �
 lies on Q since
Xi

�QXi � Xi
�
A
��x�
�BXi � xi

��x�
�xi � �� To summarize so far
Let �A� B
 be the pencil of cameras consistent with the projections of �ve known
points Xi to image points xi� Let x� be a sixth image point� Then the �D point
X� mapping to x� must lie on a quadric Q given by

Q � �A��x���B�sym � A
��x���B� B

��x���A � ���

In addition� the known points X�� � � � �X� also lie on Q�
In the particular case case where the �ve points Xi are the points Ei of a

projective basis the conditions Xi
�QXi � � allow the form of Q �or indeed of

any quadric Q which passes through each Ei
 to be speci�ed in more detail� from
Ei
�QEi � � for i � �� � � � � �� we deduce that the four diagonal elements of Q

vanish� From E�
�QE� it follows that the sum of elements of Q is zero� Thus� we

may write Q in the following form

Q �

�
�	

� w� w� ��
w� � w� w�

w� w� � w�

�� w� w� �



�� �	�

where � � w� � w� � w� � w� � w�� The conclusion we draw from this is that
if X� � �p� q� r� s
� is a point lying on Q� the equation X�

�QX� � � may be
written in vector form as

�w�� w�� w�� w�� w��
�

�
BBB�

pq � ps

pr � ps

qr � qs

qs� ps

rs� ps

�
CCCA � � ���

or more brie�y� w�X � �� where X is the column vector in ��
�



Note� equations ��
���
 are algebraically equivalent to the equations obtained
by Quan ���
 and Carlsson�Weinshall ��
� However� they di�er in that here the
original image coordinate system is used� with the consequence that a di�erent
numerical solution is obtained in the over constrained case� It will be seen in
section ��� that this algebraic solution may be a close approximation of the
solution which minimizes geometric error�

Solving for the Point X� Now consider m views of � points and suppose
again that the �rst �ve world points are in the known positions E�� � � � �E�� To
compute projective structure it su�ces to �nd the sixth world point X�� In the
manner described above� each view provides a quadric on which X� must lie�
For two views the two associated quadrics intersect in a curve� and consequently
there is a one parameter family of solutions for X� in that case� The curve will
meet a third quadric in a �nite number of points� so � views will determine a
�nite number �namely 	 � 	 � 	 � � by B�ezout�s theorem
 of solutions for X��
However� �ve of these points are the points E�� � � � �E� which must lie on all three
quadrics� Thus there are up to three possible solutions for X�� With more than
three views� a single solution will exist� except for critical con�gurations ���
�

The general strategy for �ndingX� is as follows� For each view j� the quadratic
constraint X�

�QjX� � � on X� can be written as the linear constraint wj�X �
� on the ��vector X de�ned in terms of X� by equation ��
� The vector wj is
obtained from the coe�cients of the quadric Qj �see below
� The basic method
is to solve for X � IP� by intersecting hyperplanes in IP�� rather than to solve
directly for X � IP� by intersecting quadrics in IP��

In more abstract terms there is a map � � IP���IP�� given by � � X �� X
which is a �rational
 transformation from IP� to IP�� and maps any quadric
Q � IP� through the �ve basepoints Ei into the hyperplane de�ned in IP� by

w�X� �w�X� � w�X� � w�X� � w�X� � � ���

where the �known
 coe�cients wi of w are Q��� Q��� Q��� Q��� Q���

Computing X from X � Having solved for X � �a� b� c� d� e
� we wish to
recover X � �p� q� r� s
�� By considering ratios of a� b� c� d� e and their di�erences�
various forms of solution can be obtained� In particular it can be shown that X
is a right nullvector of the following �� � design matrix��

BBBBB�

e� d � � a� b

e� c � a �
d� c b � �
� e� b a� d �
� e � a� c

� � d b� c

�
CCCCCA ���

This will have nullity � � in the ideal noise�free case where the point X �
�a� b� c� d� e
� really does lie in the range of �� When the point X does not lie
exactly in the image of �� the matrix may have full rank� i�e� no nullvector� In the
following we determine a solution such that the matrix always has a nullvector�



A Cubic Constraint� The fact that dim IP� � � � � � dim IP� implies that
the image of � is not all of IP�� In fact the image is the hypersurface S cut out
by the cubic equation

S�a� b� c� d� e� � abd� abe� ace� ade� bcd� bde �
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d c b

d a a






 � � ����

This can be veri�ed by direct substitution� Alternatively it can be derived by
observing that all ��� subdeterminants of ��
 must vanish� since it is rank de��
cient� These subdeterminants will be quartic algebraic expressions in a� b� c� d� e�
but are in fact all multiples of the cubic expression S�

The fact that the image ��X
 of X must lie on S introduces the problem of
enforcing this constraint �S � �
 numerically� This will be dealt with below�

Solving for � Views of Six Points� The linear constraints de�ned by the
three hyperplanes ��
 cut out a line in IP�� The line intersects S in three points
�generically
 �see �gure 	
� Thus there are three solutions for X� This is a well�
known ���
 minimal solution� Our treatment gives a simpler �than the Quan ���

or Carlsson and Weinshall ��

 algorithm for computing a reconstruction from
six points �and thereby computing a trifocal tensor for the minimum number of
point correspondences as in �	�

 because it does not require changing basis in
the images� To be speci�c� the algorithm for three views proceeds as follows�

�� From three views� obtain three equations of the form ��
 wj�X � � in the
�ve entries of X � Collecting together the wj� as the rows of a �� � matrix
W� this may be written WX � �� which is a homogeneous linear system�

	� Obtain a set of solutions of the form X � �X� � �X� where X� and X� are
generators of the null space of the �� � linear system�

�� By expanding out the constraint ���
� form a homogeneous cubic equation
in � and �� There will be either one or three real solutions�

�� Once X is computed �satisfying the cubic constraint ���

� solve for
X� � �p� q� r� s
�� This could be computed as the null�space of the matrix
��
� or more directly� as a vector of suitably chosen � � � minors of that
matrix�

��� Four or More Views
We extend the solution above from three to m views as follows� an equation of
the form ��
 wj�X � � is obtained for each view� and these may be combined
into a single equation of the form WX � �� where W is a m � � matrix for m
views�

Now� in the case of perfect data �no measurement error
 W has rank � for
m � � views� and the nullvector is the unique �linear
 solution for X � The point
X� is then obtained from X � e�g� as the null�vector of ��
 �X satis�es the cubic
constraint ���

�

However� if there is measurement error �noise
 then there are two problems�
First� for m � � views� although W has rank � the �linear
 solution X to WX � �

may not satisfy the cubic constraint ���
� i�e� the linear solution may not lie on



S �and so a unique value of X� cannot be obtained as a null�vector from ��

because that matrix will have full rank
� Second� and worse still� in the case of
m 	 � views the matrix W will generally have full rank� and there is not even an
exact linear solution for X �

Thus for m � �� we require another method to produce a solution which
satis�es the cubic constraint S � �� The problem is to perform a �manifold
projection� of the least�squares solution to WX � � onto the constraint manifold�
but in a non�Euclidean space with the usual associated problem that we don�t
know in which direction to project� We will now give a novel solution to this
algebraic problem�

Algebraic Error� An �over
determined linear system of equations is often
solved using Singular Value Decomposition� by taking as null�vector the singular
vector with the smallest singular value� The justi�cation for this is that the
SVD elicits the �directions� of space in which the solution is well determined
�large singular values
 and those in which it is poorly determined �small singular
values
� Taking the singular vector with smallest singular value is the usual
�linear� solution� but as pointed out� it does not in general lie on S� However�
there may still be some information left in the second�smallest singular vector�
and taking the space spanned by the two smallest singular vectors gives a line
in IP�� which passes through the �linear� solution and must also intersect S in
three points �S is cubic
� We use these three intersections as our candidates for
X � Since they lie exactly on S� recovering their preimages X under � is not a
problem�

Geometric Error� In each image� �tting error is the distance from the repro�
jected point y � PX to the measured image point x � �u� v� �
�� The reprojected
point will depend both on the position of the sixth world point and on the choice
of camera in the pencil for that image� But for a given world point X� and choice
of camera P � �A� �B in the pencil� the residual is the 	D image vector from x

to the point y � PX � �AX��BX on the line l joining AX and BX� The optimal
choice of �� � for given X is thus easy to deduce� it must be such as to make y

the perpendicular projection of x onto this line ��gure 	
� What this means is
that explicit minimization over camera parameters is unnecessary and so only
the � degrees of freedom for X remain�

Due to the cross�product� the components li�X
 of the line l�X
 � AX� BX

are expressible as homogeneous quadratic functions of X� and we note that these
are expressible as linear functions of X � ��X
� This is because the quadratic
function AX � BX vanishes at each Ei and so� as was noted in section ��	 �in
particular� equation ��

� has the form derived earlier for such quadrics� Thus�

l�X� � AX� BX �

�
l��X�
l��X�
l��X�

�
�

�
� � �q� � � �
� � �q� � � �
� � �q� � � �

�
X

for some �� � matrix with rows qi whose coe�cients can be determined from
those of A and B� If the sixth image point is x � �u� v� �
� as before� then the
squared geometric image residual becomes�
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Fig� �� Left� The diagram shows a line in ��space intersecting a surface of degree �� In
the case of a line in ��space and a hyper�surface of degree �� the number of intersections
is also �� Right� Minimizing reprojection in the reduced model� For a given X� the best
choice P � �A��B of camera in the pencil corresponds to the point y � �AX��BX on
the line closest to the measured image point x� Hence the image residual is the vector
joining x and y�

jd�x� l�X��j� �
ju l��X� � v l��X� � l��X�j�

jl��X�j� � jl��X�j�
�
ju q�X � v q�X � q�Xj

�

jq�Xj
� � jq�Xj

�
����

and this is the geometric error �summed over each image
 which must be min�
imized over X� We can now compare the algebraic cost to the geometric cost�
The algebraic error minimized is WX � which corresponds to summing an alge�
braic residual j�u q� � v q� � q�
Xj

� over each image� Thus� the algebraic cost
neglects the denominator of the geometric cost ���
�

Invariance of Algebraic Error� As we have presented the algorithm so far�
there is an arbitrary choice of scale for each quadric QA�B� corresponding to the
arbitrariness in the choice of representation �A� B
 of the pencil of cameras� the
scale of which depends on the scale of A� B� Which normalization is used matters�
and we address that issue now�

Firstly� by translating coordinates� we may assume that the sixth point is
at the origin� The assumption u� v � � on the position of the sixth image point
makes our method invariant to translations of image coordinates� It is desir�
able that the normalization should be invariant to scaling and rotation as well
since these are the transformations which preserve our error model �isotropic
Gaussian noise� see below
� Our choice of normalization is most simply de�
scribed by introducing a dot product similar to the Frobenius inner product
�A� B


Frob
� trace�A�B
 �

P
ij AijBij � Our inner product simply leaves out the

last row�
�A� B�

Frob
�
P

i������
j��������

AijBij �A� B�
�
�
P

i����
j��������

AijBij

The normalization we use can now be described by saying that the choice
of basis of the pencil �A� B
 must be an orthonormal basis with respect to ��� �


�
�

To achieve this� one could start with any basis of the pencil and use the Gram�
Schmidt algorithm to orthonormalize them� It can be shown that with this nor�
malization the algebraic error is invariant to scaling and rotation of the image
coordinate system�



��� Algorithm Summary
It has been demonstrated how to pass from m � � views of six points in the
world to a projective reconstruction in a few steps� These are�

�� Compute� for each ofm views� the pencil of cameras which map the �ve stan�
dard basis points in the world to the �rst �ve image points� using the recom�
mended normalization to achieve invariance to image coordinate changes�

	� Form from each pencil �A� B
 the quadric constraint on the sixth world point
X as described in section ��	� i�e� form ��
 wj�X � � in the �ve entries of X �

�� Collect together the wj� as the rows of a m� � matrix W�
�� Obtain the singular vectors corresponding to the two smallest singular values

of W via the SVD� Let these be X� and X��
�� The solution X lies in the one�parameter family X � �X� � �X��
�� By expanding out the constraint ���
� form a homogeneous cubic equation

in � and �� There will be either one or three real solutions�
�� Once X is computed �satisfying the cubic constraint ���

� solve for X� from

the null�space of ��
�
�� �optional
 Minimize reprojection error ���
 over the � degrees of freedom in

the position of X��

In practice� for a given set of six points� the quality of reconstruction can vary
depending on which point is last in the basis� We try all six in turn and choose
the best one�

Related Work� Yan et al �	�
 describe a linear method for reconstruction
from m � � views of six points� Both our method and theirs turn the set of
m quadratic equations in X into a set of m linear equations in some auxiliary
variables �X here
� and then impose constraints on a resulting null�space� There
are two problems with their method when measurement error is present� �rst�
their solution may not satisfy �both
 the constraints on the auxiliary variable
and second� their method uses projectively transformed image coordinates� and
so potentially su�ers from the bias described in section 	�

��� Results I
We have computed cameras which map the �rst �ve points exactly to their
measured image points� and then minimize either an algebraic or geometric error
on the sixth point� As discussed in the introduction� the Maximum Likelihood
Estimate of the reconstruction� assuming isotropic Gaussian measurement noise�
is obtained by bundle adjustment in which reprojection error �squared geometric
image residual
 is minimized over all points Xi and all cameras� This will is the
optimal reconstruction� Minimizing error on only the sixth image point is thus
a sub�optimal method�

We now give results on synthetic and real image sequences of � points in m

views� The objective is to compare the performance of four algorithms�

Quasi�linear� minimizes algebraic error on sixth point only �as in the algo�
rithm above
�



Sub�optimal�minimizes reprojection error on the sixth point only �as in ���


by optimizing over X�� This is a three parameter optimization problem� It
is initialized by the quasi�linear algorithm�

Factorization� a simple implementation of projective factorization �the pro�
jective depths are initialized as all �s and ten iterations performed
�

Bundle Adjustment� minimizes reprojection error for all six points �varying
both cameras and points Xi
� This is a ��m � �� parameter optimization
problem for m views and six points� For synthetic data� it is initialized by
whichever of the above three gives the smallest reconstruction error� For real
data� it is initialized with the sub�optimal algorithm�

The three performance measures used are reprojection error� reconstruction er�
ror �the registration error between the reconstruction and ground truth
� and
stability �the algorithm converges
� The claim is that the quasi�linear algorithm
performs as well as the more expensive variants and can safely be used in prac�
tice�
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Fig� �� Summary of experiments on synthetic data� ���� data sets were generated
randomly �� views of 	 points� and each algorithm tried on each data set� Left� For each
of the four estimators �quasi�linear� sub�optimal� factorization and bundle adjustment��
the graph shows the average rms reprojection error over all ���� data sets� Middle� the
average reconstruction error� for each estimator� into the ground truth frame� Right�
the average number of times each estimator failed �i�e� gave a reprojection error greater
than �� pixels��

Synthetic data� We �rst show results of testing the algorithm on synthetic
data with varying amounts of pixel localisation noise added� our noise model is
isotropic Gaussian with standard deviation 
� For each value of 
� the algorithm
is run on ���� randomly generated data sets� Each data set is produced by
choosing six world points at random uniformly in the cube ������


�
and six

cameras with centres between � and � units from the origin and principal rays
passing through the cube� After projecting each point under each chosen camera�
arti�cial noise is added� The images are ��	� ��	� with square pixels� and the
principal point is at the centre of the image� Figure � summarizes the results�

The �failures� refer to reconstructions for which some reprojection error ex�
ceeded �� pixels� The quality of reconstruction degrades gracefully as the noise



is turned up from the slightly optimistic ��� to the somewhat pessimistic 	���
the rms and maximum reprojection error are highly correlated� with correla�
tion coe�cient ����� in each case �which may also be an indicator of graceful
degradation
�

Real Data� The image sequence consists of �� colour images �JPEG� ��� �
��	�
 of a turntable� see �gure �� The algorithms from before� except factoriza�
tion� are compared on this sequence and the results tabulated also in �gure ��
Points were entered and matched by hand using a mouse �estimated accuracy is 	
pixels standard deviation
� Ground truth is obtained by measuring the turntable
with vernier calipers� and is estimated to be accurate to ��	�mm� There were �
tracks� all seen in all views� Of course� in principle any six tracks could be used to
compute a projective reconstruction� but in practice some bases are much better
than others� Examples of poor bases include ones which are almost coplanar in
the world or which have points very close together�

basis residuals all residuals reconstruction
�pixels� �pixels� error �mm�

	 points quasi�linear ���	� ����� ���������� ���	����	�	
	 points sub�optimal ����� ����� ���������� ����������	
	 points bundle adjustment ����� �����	 ��	�����	� �����������
All points �and cameras� bundled ����� ������ ���������� �����������

Fig� �� Results for the � tracks over the �� turntable images� The reconstruction is
compared for the three di�erent algorithms� residuals �reported as rms�max� are shown
for the 	 points which formed the basis ��rst column� and for all reconstructed points
taken as a whole �second column�� The last row shows the corresponding residuals after
performing a full bundle adjustment�

Bundle adjustment achieves the smallest reprojection error over all residuals�
because it has greater freedom in distributing the error� Our method minimizes
error on the sixth point of a six point basis� Thus it is no surprise that the
e�ect of applying bundle adjustment to all points is to increase the error on
the basis point �column �
 but to decrease the error over all points �column
	
� These �gures support our claim that the quasi�linear method gives a very
good approximation to the optimized methods� Figure � shows the reprojected
reconstruction in a representative view of the sequence�
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Fig� �� Left� Reprojected reconstruction in view �� The large white dots are the input
points� measured from the images alone� The smaller� dark points are the reprojected
points� Note that the reprojected points lie very close to the centre of each white dot�
The reconstruction is computed with the 	�point sub�optimal algorithm� Right� The
graph shows for each algorithm� the rms reprojection error for all � tracks as a function
of the number of views used� For comparison the corresponding error after full�bore
bundle adjustment is included�

� Robust Reconstruction Algorithm

In this section we describe a robust algorithm for reconstruction built on the
��point engine of section �� The input to the algorithm is a set of point tracks�
some of which will contain mismatches� Robustness means that the algorithm
is capable of rejecting mismatches� using the RANSAC ��
 paradigm� It is a
straightforward generalization of the corresponding algorithm for � points in 	
views �	�� 	�
 and � points in � views ��� 	�
�

Algorithm Summary� The input is a set of measured image projections� A
number of world points have been tracked through a number of images� Some
tracks may last for many images� some for only a few �i�e� there may be missing
data
� There may be mismatches� Repeat the following steps as required�

�� From the set of tracks which appear in all images� select six at random� This
set of tracks will be called a basis�

	� Initialize a projective reconstruction using those six tracks� This will provide
the world coordinates �of the six points whose tracks we chose
 and cameras
for all the views �either quasi�linear or with � degrees of freedom optimization
on the sixth point � see below
�

�� For all remaining tracks� compute optimal world point positions using the
computed cameras by minimizing the reprojection error over all views in
which the point appears� This involves a numerical minimization�

�� Reject tracks whose image reprojection errors exceed a threshold� The num�
ber of tracks which pass this criterion is used to score the reconstruction�

The justi�cation for this algorithm is� as always with RANSAC� that once a
�good� basis is found it will �a
 score highly and �b
 provide a reconstruction
against which other points can be tested �to reject mismatches
�



��� Results II
The second sequence is of a dinosaur model rotating on a turntable ��gure �
�
The image size is �	������ Motion tracks were obtained using the fundamental
matrix based tracker described in ��
� The robust reconstruction algorithm is
applied using ��� samples to the subsequence consisting of images � to �� For
these � views� there were ��� tracks of which only �	 were seen in all views� �	�
tracks were seen in � or more views� The sequence contains both missing points
and mismatched tracks�

Dinosaur sequence results basis residuals �pixels� all residuals �pixels� inliers

	 points quasi�linear ������������ ���������� ��
	 points sub�optimal ������������ ���������� ��
	 points bundle adjustment ������������ ����������� ��
All points �and cameras� bundled ����� ������ ����������� ��

Fig� �� The top row shows the images and inlying tracks used from the dinosaur se�
quence� The table in the bottom row summarizes the result of comparing the three
di�erent �tting algorithms �quasi�linear� sub�optimal� bundle adjustment�� There were
	 views� For each mode of operation� the number of points marked as inliers by the
algorithm is shown in the third column� There were ��� tracks seen in four or more
views�

For the six point RANSAC basis� a quasi�linear reconstruction was rejected
if any reprojection error exceeded �� pixels� and the subsequent � degrees of
freedom sub�optimal solution was rejected if any reprojection error exceeded a
threshold of � pixels� These are very generous thresholds and are only intended
to avoid spending computation on very bad initializations� The real criterion of
quality is how much support an initialization has� When backprojecting tracks
to score the reconstruction� only tracks seen in � or more views were used and
tracks were rejected as mismatches if any residual exceed ��	� pixels after back�
projection�

The algorithms of section ��� �except factorization
 are again compared on
this sequence� The errors are summarized in �gure �� The last row shows an
additional comparison where bundle adjustment is applied to all the points and
cameras of the �nal reconstruction� Figure � also shows the tracks accepted by
the algorithm� Figure � shows the computed model�

Remarks entirely analogous to the ones made about the previous sequence
apply to this one� but note speci�cally that optimizing makes very little di�erence
to the residuals� This means that the quasi�linear algorithm performs almost as
well as the sub�optimal one� Applying bundle adjustment to each initial ��point
reconstruction improves the �t somewhat� but the gain in accuracy and support
is rather small compared to the extra computational cost �in this example� there
was a ��fold increase in computation time
�



Fig� �� Dinosaur sequence reconstruction� a view of the reconstructed cameras �and
points�� Left� quasi�linear model� cameras computed from just 	 tracks� Middle� after
resectioning the cameras using the computed structure� Right� after bundle adjustment
of all points and cameras �the unit cube is for visualization only��

The results shown for view � to � are typical of results obtained for other
segments of � consecutive views from this sequence� Decreasing the number of
views used has the disadvantage of narrowing the baseline� which generally leads
to both structure and cameras being less well determined� The advantage of
using only a small number of points �i�e� � instead of �
 is that there is a higher
probability that su�cient tracks will exist over many views�

� Discussion
Algorithms have been developed which estimate a six point reconstruction over
m views by a quasi�linear or sub�optimal method� It has been demonstrated
that these reconstructions provide cameras which are su�cient for a robust re�
construction of n 	 � points and cameras overm views from tracks which include
mismatches and missing data� This reconstruction can now form the basis of a
hierarchical method for extended image sequences� For example� the hierarchi�
cal method in ��
� which builds a reconstruction from image triplets� could now
proceed from extended sub�sequences over which at least six points are tracked�

We are currently investigating whether the e�cient � degree of freedom
parametrization of the reconstruction can be extended to other multiple view
cases� for example seven points over m views�
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