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Abstract

The critical configurations for projective reconstruction from three views are discussed.
A set of cameras and points is said to be critical if the projected image points are insuf-
ficient to determine the placement of the points and cameras uniquely, up to projective
transformation. For two views, the classification of critical configurations is well known -
the configuration is critical if and only if the points and camera centres all lie on a ruled
quadric. For three views the critical configurations have not been identified previously.
In this paper it is shown that for any placement of three given cameras there always ex-
ists a critical set consisting of a fourth-degree curve — any number of points on the curve
form a critical set for the three cameras. Dual to this result, for a set of seven points
there exists a fourth-degree curve such that a configuration of any number of cameras
placed on this curve is critical for the set of points. Other critical configurations exist in
cases where the points all lie in a plane, or one of the cameras lies on a twisted cubic.

1 Introduction

The critical configurations for one and two views of a set of points are well understood.
For one view the critical sets consist of either a twisted cubic, or plane plus a line.!. Cam-
era position can not be determined from the image projections if and only if the camera
and the points lie in one of these configurations. This is a classic result rediscovered by
Buchanan ([1]).

For two views the critical configuration consists of a ruled quadric, that is, a hyperboloid
of one sheet, or one of its degenerate versions. Any configuration consisting of two
cameras and any number of points lying on the ruled quadric is critical. An interesting
dual result proven by Maybank and Shashua ([6] is that a configuration of six points and
any number of cameras lying on a ruled quadric is critical. This result though originally
proven using sophisticated geometric techniques was subsequently shown to follow easily
from the two-view critical configuration result using Carlsson duality ( [2, 8, 4]).

No paper analyzing the three-view critical configurations has previously been published.
An unpublished paper by Shashua and Maybank ([5]) addressed this problem but did
not identify any critical configurations other than ones consisting of isolated points.In
this paper it is shown that various critical configurations exist for three views. Different
types of critical surface exist, in particular :

LConfigurations consisting of degenerate forms of a twisted cubic also exist



1. A fourth-degree curve, the intersection of two quadric surfaces. If the cameras and
points lie on this curve, then the configuration is critical.

2. A set of points all lying on a plane and any three cameras lying off the plane.

3. A configuration consisting of points lying on a twisted cubic and at least one of the
three cameras also lying on the twisted cubic.

No attempt is made in this paper to determine if this is an exhaustive list of critical
surfaces for three view, though this would not be unlikely.

Application of duality to the first of these cases generates a critical curve for any number
of views of seven points. If all cameras lie along a specific fourth-degree curve, the
intersection of two ruled quadrics, then the configuration is critical.

Although critical configurations exist for three views, they are much less common than
for two views, and most importantly the critical configurations are of low dimension,
being the itersection of quadric surfaces, whereas in the two-view case the critical surface
has codimension one. In addition in the two view case there is much more freedom in
finding critical surfaces. One can go as far as to specify two separate pairs of cameras
(P,P’) and (Q,Q) up front. There will always exist a ruled quadric critical surface for
which two projective reconstructions exist, with cameras (P, P’) in the one reconstruction,
and cameras (Q,Q’) in the other. In the three-view case this is not true. If two camera
triples (P,P’,P”) and (Q,Q’, Q") are specified in advance, then the critical set on which one
can not distinguish between them consists of the intersection of three quadrics, generally
consisting of at most eight points.

Notation In this paper, the camera matrices are represented by P and Q, 3D points
by P and Q, and corresponding 2D points by p = PP or q = QQ. Thus cameras and 3D
point are distinguished only by their type-face. This may appear to be a little confusing,
but the alternative of using subscripts or primes proved to be much more confusing. In
the context of ambiguous reconstructions from image coordinates we distinguish the two
reconstructions by using P and P for one, and Q and Q for the other.

2 Definitions

We begin by defining the concept of critical configurations of points and cameras. These
are essentially those configurations for which a unique projective reconstruction is not
possible. The following definitions will be given for the two-view case, but the extension
to three views is immediate. In fact it is the three-view case that we will mainly be
interested in in this paper, but we will need the two-view case as well.

A configuration of points and camera is a triple?> {P,P’,P;} where P and P’ are camera
matrices and P; are a set of 3D points. Such a configuration is called a critical configu-
ration if there exists another inequivalent configuration {Q,Q’,Q;} such that PP; = QQ;
and P'P; = Q'Q; for all <.

Unspecified in the last paragraph was what is meant by equivalent. One would like to
define two configurations as being equivalent if they are related via a projective trans-
formation, that is there exists a 3D projective transformation H such that P = QH™! and

2In the three-view case, there will be an extra camera P” of course.



P’ = Q'H!, and P; = HQ; for all i. Because of a technicality, this definition of equiv-
alence since from image correspondences one can not determine the position of a point
lying on the line joining the two camera centres. Hence, non-projectively-equivalent re-
constructions will always exist if some points lie on the line of camera centres. This
type of reconstruction ambiguity is not of great interest, and so we will modify the no-
tion of equivalence by defining two reconstructions to be equivalent if H exists such that
P=0QH ! and P’ = QH!. Such an H will also map P; to Q;, except possibly for re-
constructed points P; lying on the line of the camera centres. This condition is also
equivalent to the condition that Fp = Fg (up to scale of course), where Fp and Fq are
the fundamental matrices corresponding to the camera pairs (P,P’) and (Q,Q’).

Thus, a critical configuration is one in which one can not reconstruct the cameras uniquely
from the image correspondences derived from the 3D points — there will exist an alterna-
tive inequivalent configuration that gives rise to the same image correspondences. The
alternative configuration will be called a conjugate configuration.

We now show the important result that the property of being a critical configuration
does not depend on any property of the camera matrices involved, other than their two
camera centres. The following remark is well know and easily proven, so we omit the
proof.

Proposition2.1. Let P and P’ be two camera matrices with the same centre. Then there
exists a 2D projective image transformation represented by a non-singular matriz H such
that P’ = HP. Conversely, for any such matriz H, two cameras P and P’ = HP have the
same centre.

This proposition may be interpreted as saying that an image is determined up to projec-
tivity by the camera centre alone. It has the following consequence.

Proposition2.2. If {P,P',P;} is a critical configuration and P and P’ are two cameras

with the same centres as P and P’ respectively, then {15, 13/, P;} is a critical configuration
as well.

Proof. This is easily seen as follows. Since {P,P’, P;} is a critical configuration there exists
an alternative configuration {Q,Q’, Q;} such that PP; = QQ; and P'P; = Q'Q; for all i.
However, since P and P have the same camera centre, P = HP according to Proposition 2.2
and similarly p' = H'P'. Therefore

PP; = HPP; = HQQ; and
p'P, =HP'P, = HQQ, .

It follows that {HQ,H'Q’,Q;} is an alternative configuration to {Pg, Py, P;}, which is there-
fore critical.

3 Two view ambiguity

The critical configurations for two-view reconstruction are well known : A configuration
is critical if and only if the points and the two camera centres all lie on a ruled quadric
(in the non-degenerate case, a hyperboloid of one sheet). What is perhaps not so well



appreciated is that one may choose both pairs of camera matrices in advance and find a
critical surface.

It is customary to represent a quadric by a symmetric matrix S. A point will lie on
the quadric if and only if PTSP = 0. However, notice that it is not essential that the
matrix S be symmetric for this to make sense. In the rest of this paper quadrics will
commonly be represented by non-symmetric matrices. Note that PTSP = 0 if and only
if PT(S+S8T)P =0. Thus, S and its symmetric part S+ ST represent the same conic.

Lemma 3.3. Consider two pairs of cameras (P,P') and (Q,Q"), with corresponding fun-
damental matrices Fprp and Fgq. Define a quadric Sp = P’ "FqqP ', and Sq = Q' "FppQ .

1. The quadric Sp contains the camera centres of P and P'. Similarly, Sq contains the
camera centres of Q and Q.

2. If P and Q are 3D points such that PP = QQ and P'P = Q'Q, then P lies on the
quadric Sp, and Q lies on Syg.

3. Conversely, if P is a point lying on the quadric Sp, then there exists a point Q lying
on Sy such that PP = QQ and P'P = Q'Q.

Proof. The matrix Fpp corresponding to a pair of cameras (P,P’) is characterized by the
fact that P’ TFpipP is skew-symmetric ([3]). Since Fprp # Fgq, however, the matrices Sp
and Sg defined here are not skew-symmetric, and hence represent well-defined quadrics.

We denote the centre of a camera with matrix such as P by Cp. Then

1. The camera centre of P satisfies PCp = 0. Then Cp ' SpCp = Cp ' (P’ TFgqP)Cp =
Cp " (P’ TFyq)PCp = 0, since PCp = 0. So, Cp lies on the quadric Sp. In a similar
manner, Cp: lies on Sp.

2. Under the given conditions one sees that
PSP =P P TFyPP = Q" (Q' TFgqQ)Q =0

since Q' "FgqQ is skew-symmetric. Thus, P lies on the quadric Sp. By a similar
argument, Q lies on Sg.

3. Let P lie on Sp and define p = PP and p’ = P’P. Then, from P ' SpP = 0 we deduce
0 = PTP' TFgoPP = p’Fyqp, and so p’ «» p are a corresponding pair of points
with respect to Fgiq. Therefore, there exists a point Q such that QQ = p = PP,
and Q'Q = p’ = P'P. From part 2 of this lemma, Q must lie on Sg.

This lemma completely describes the sets of 3D points giving rise to ambiguous image
correspondences. Note that any two arbitrarily chosen camera pairs can give rise to am-
biguous image correspondences, provided that the world points lie on the given quadrics.
One may prove further that the two quadrics Sp and Sq are ruled quadrics, but this is
well known, and no proof is given here.



4 Three view critical surfaces

We now turn to the main subject of this paper — the ambiguous configurations that may
arise in the three-view case. To distinguish the three cameras, we use superscripts instead
of primes. Thus, let P, P} P? be three cameras and {P;} be a set of points. One asks
under what circumstances there exists another configuration consisting of three other
camera matrices Q°, Q' and Q% and points {Q;} such that PP, = Q’Q; for all ¢ and 7J.
One requires that the two configurations be projectively inequivalent.

Various special ambiguous configurations exist.

Points in a plane.

If all the points lie in a plane, and P; = Q; for all ¢, then one may move any of the
cameras without changing the projective equivalence class of the projected points. Then
one may choose P/ and @/ with centres at any two preassigned locations in such a way
that P/P; = Q/Q;. This ambiguity has also been observed in [7].

Points on a twisted cubic.

One has a similar ambiguous situation when all the points plus one of the cameras, say P2
lie on a twisted cubic. In this case, one may choose Q° = P°, and Q! = P! and the points
Q; = P; for all i. Then according to the well known ambiguity of camera resectioning
for points on a twisted cubic ([1]) for any point Cj on the twisted cubic, one may choose
a camera matrix Q% with centre at Cg such that P?2P; = Q2Q; for all i.

These examples of ambiguity are not very interesting, since they are no more than ex-
tensions of the 1-view camera resectioning ambiguity. In the above examples, the points
P; and Q; are the same in each case, and the ambiguity lies only in the placement of the
cameras with respect to the points. More interesting ambiguities may also occur, as we
consider next.

General 3-view ambiguity.

Suppose that the camera matrices (P°, P!, P?) and (Q°,Q*, Q%) are fixed, and we wish to
find the set of all points such that PPP = Q'Q for i = 0,1,2. Note that we are trying
here to copy the 2-view case in which both sets of camera matrices are chosen up front.
Later, we will turn to the less restricted case in which just one set of cameras are chosen
in advance.

A simple observation is that a critical configuration for three views is also a critical set
for each of the pairs of views as well. Thus one is led naturally to assume that the set
of points for which {P° P! P2 P,} is a critical configuration is simply the intersection
of the point sets for which each of {P° P!, P;}, {P!, P2 P;} and {P°,P? P;} are critical
configurations. Since by lemma 4 each of these point sets is a ruled quadric, one is led
to assume that the critical point set in the 3-view case is simply an intersection of three
quadrics. Although this is not far from the truth, the reasoning is somewhat fuzzy. The
crucial point missing in this argument is that the corresponding conjugate points may
not the same for each of the three pairs.



More precisely, corresponding to the critical configuration {P° P! P;}, there exists a
conjugate configuration {Q°,Q}, Q¥'} for which P/P; = @/QY* for j = 0,1. Similarly, for
the critical configuration {P°, P2, P;}, there exists a conjugate configuration {Q", Q%, Q}?}
for which P/P; = @7QY? for j = 0,2. However, the points QY2 are not necessarily the
same as QY!, so we can not conclude that there exist points Q; such that P/P; = Q' Q;
for all 4 and j = 0,1,2 — at least not immediately.

We now consider this a little more closely. Considering just the first pairs of cameras
(P, P!) and (Q%,Q'), lemma 4 tells us that if P and Q are points such that P/P = @/Q,
then P must lie on a quadric surface S9! determined by these camera matrices. Similarly,
point Q lies on a quadric SJ'. Likewise considering the camera pairs (P?,P?) and (Q°,Q?)
one finds that the point P must lie on a second quadric S92 defined by these two camera
pairs. Similarly, there exists a further quadric defined by the camera pairs (P!, P?) and
(@',Q%) on which the point P must lie. Thus for points P and Q to exist such that
P’P = PQ for j = 0,1,2 it is necessary that P lie on the intersection of the three
quadrics : P € S N 892 N'si?. It will now be seen that this is almost a necessary and
sufficient condition.

Theorem 4.4. Let (P°,P*,P?) and (Q°,Q%,Q%) be two triplets of camera matrices and
assume P® = Q0. For each of the pairs (i,5) = (0,1),(0,2) and (1,2), let S and Sg be
the ruled quadric critical surfaces defined for camera matriz pairs (P*,P7) and (@', Q) as
in lemma 4.

1. If there exist points P and Q such that P'P = Q'Q for all i = 0,1,2, then P must
lie on the intersection S3* N SY? N SE? and Q must lie on 881 N 882 N Séz,

2. Conversely, if P is a point lying on the intersection of quadrics S3' N8Y2 NSE2, but
not on the plane containing the three camera centres CJ, C§ and CZ, then there
exists a point Q lying on S§' N'SY? NSE? such that PP = Q'Q for all i = 0,1, 2.

Note that the condition that P = Q° is not any restriction of generality, since the
projective frames for the two configurations (P°, P!, P?) and (Q°,Q!,Q?) are independent.
One may easily choose a projective frame for the second configuration in which this
condition is true. This assumption is made simply so that one may consider the point P
in relation to the projective frame of the second set of cameras.

The extra condition that the point P not lie on the plane of camera centres Cé is necessary,
as will be seen later. Note that in most cases this case will not arise, however, since the
intersection point of the three quadrics with the trifocal plane will be empty, or in special
cases consist of a finite number of points.

Proof. For the first part, the fact that the points P and Q lie on the intersections of the
three quadrics follows (as pointed out before the statement of the theorem) from lemma 4
applied to each pair of cameras in turn.

To prove the converse, suppose that P lies on the intersection of the three quadrics. Then
from lemma 4, applied to each of the three quadrics Sy, there exist points Q% such that
the following conditions hold :

Pp —@°Q" . PP —q'Q"
PP — Q" : P?p — Q2Q™
Plp—q'Q2 ;. PP =qQ2Q"



Figure 1: Configuration of the three camera centres and the three ambiguous points. If
the three points QY are distinct, then they all lie in the plane of the camera centres Cé.

It is easy to be confused by the superscripts here, but the main point is that each line is
precisely the result of lemma 4 applied to one of the three pairs of camera matrices at a
time. Now, these equations may be rearranged as

pp — Q" = q°Q"™
plp 2'Q! = g'Q!2
p2’p — 2Q" = q2Q!"?

Now, the condition that Q'Q%' = Q'Q'2 means that the points Q°! and Q'? are collinear
with the camera centre Cé of Q'. Thus, assuming that the points Q¥ are distinct, they
must lie in a configuration as shown in Fig 1. One sees from the diagram that if two
of the points are the same, then the third one is the same as the other two. If the
three points are distinct, then the three points Q% and the three camera centres Cj are
coplanar, since they all lie in the plane defined by Q°' and the line joining Q%2 to Q!2.
Thus the three points all lie in the plane of the camera centres Cé. Howevever, since
PP = Q°Q%' = Q°Q%2 and P = Q°, it follows that P must lie along the same line as Q"
and Q°2, and hence must lie in the same plane as the camera centres Cé.

In general, the intersection of three quadrics will consist of eight points. In these case,
the critical set with respect to the two triplets of camera matrices will consist of these
eight points alone. In some cases, however, the camera matrices may be chosen such that
the three quadric surfaces meet in a curve. This will occur if the three quadrics Sy’ are
linearly dependent. For instance if Si2 = aS3' + £S32, then any points P that satisfies
PTS)'P =0 and PTSY2P = 0 will also satisfy PTS.?P = 0. Thus the intersection of the
three quadrics is the same as the intersection of two of them, which will in general be a
fourth-degree space curve.

An example.

As a specific example of ambiguity, consider the following configuration. Let

P°=[1]0] Q" =[1]0]



1 -1 1 1

pl = 1 -1 Q' = -1 0
I 1 -1 | 1 -1 1 |
M1 1 (1 0 7

p? = 1 1 Q° = 1 -1
I 1 -1 | I -1 1 1 |

In this case, one may verify that

0 1 0 0 0 -1 0 1 -1
Fl=10 0 1| ; F=|10 0| ;F'=|10 0
0 -1 0 1 0 O 1 0 O
and from one may compute that the quadric surfaces S3! = S92, both represent the

quadric XY = Z represented by the matrix
0 1
1 0

The intersection of this quadric with Si? will be a curve. In fact, for any ¢, let Y(t) =

1—t2+vV1—t2+t4 and

P, = (t,Y(t),ty(t),1)T
Q= (t,Y(t),tv(t), (v(t) —t)/(1+1)T . (1)

One may then verify that PP; = Q'Q; for all 4 and t. One alse verifies that all the three
camera centres C3 = (0,0,0,1)7, ¢} = (1,1,1,1)T and C2 = (—1,—1,1,1)T lie on the
curve Py.

The method of discovering this example was to start with the camera matrices P?, and
then compute the required fundamental matrices Féo and F%O necessary to ensure that
the quadrics S9! and S92 have the desired form. From the fundamental matrices one then
computes the matrices @/ by standard means.

Note that this example may appear a little special, since two of the quadrics are equal.
However, this case is only special, because we are choosing all six camera matrices in ad-
vance. Using this example, we are now able to describe a critical set for any configuration
of three cameras.

Theorem 4.5. Given three cameras (P, P!, P?) with non-collinear centres, there exists
(at least) a fourth-degree curve Py formed as the intersection of two ruled quadrics con-
taining the three camera centres that can not be uniquely reconstructed from projections
from these three camera centres. In particular, there exist three alternative cameras Q*
and another fourth-degree curve Qg such that for all i and t

PP, =Q'Qq

and such that the two configurations {P°,P* P2, P;} and {Q°,Q',Q%, Q;} are not projec-
tively equivalent.



Proof. The proof is quite simple. Since the three camera centres are collinear one may
transform them by a projective transform if necessary to the three camera centres C% =
(0,0,0,1)7, ¢f = (1,1,1,1) " and CZ = (—1,—1,1,1) T of the foregoing example. Now,
applying Proposition 2.2 we may assume that the three cameras are identical with the
three cameras P? of the example. Now, choosing Q’, P; and Q; as in the example gives
the required reconstruction ambiguity.

It is significant to note that the critical curve for the three specified cameras in Theo-
rem 4.5 is not unique even for fixed camera matrices — rather there exists a 6-parameter
family of such curves, since any projective transformation that maps the three camera
centres to themselves will map the critical curve to another critical curve. Summing up,
given three fixed cameras (P°,P!,P?) In total we have identified the following critical
configurations :

1. A six-parameter family of fourth-degree curves containing the three camera centres.
2. Any plane not containing the camera centres.

3. Any twisted cubic passing through one of the three camera centres.

Can all three quadrics be the same ? It is natural to ask whether it is possible
to choose camera matrices so that all three quadrics S8%, S92 and S}? are equal, and
whether in this case this constitutes a critical set for all three cameras. The answer
to this question is yes and no — it is possible to choose the camera matrices such that
the three quadrics Sy are the same, but this does not constitute a critical surface for
the three cameras, since the three quadrics S§ are different. This seems to contradict
Theorem 4.4, but it in fact does not, as we shall see in the following discussion. We
consider only the case where the three camera centres for P? are non-collinear.

Since all hyperboloids of one sheet are projectively equivalent, one can assume that
each Sy is the quadric Xy = z. Then there are sufficiently many remaining degrees of
freedom to allow as to assume that the three camera centres are at (0,0,0)", (1,1,1)T
and (—1,—1,1). (This is valid, unless two of the centres lie on the same generator of the
quadric.) We can therefore conclude that the camera matrices P/ are the same as in the
example above. Next, we wish to find the fundamental matrices F§ . The constraint that
Sli,j is the quadric Xy = Z in each case constrains the form of Féj computed according
to the formula S§ = P'TF{/P/ given in lemma 4. One finds that there are only two
possibilities for each Féj . One possibility is

0 1 0 01 0 0 1 0
FP=1]0 0 1 ; Fl=10 0 -1 s Fer=|1 0 1] . (2
0 -1 0 01 0 0 -1 0

The other possibility for each of the three fundamental matrices is obtained by simultane-
ously swapping the first two rows and the first two columns of each fundamental matrix.
Thus there are two choices for each Féf , making a total of eight choices in all. However
to be compatible the three fundamental matrices must satisfy coplanarity constraints.
Specifically, denoting an epipole in the j-th view as e*/, one requires that ekaFaJ ekl =0
for all choices of i,j,k = 1,2,3. This condition rules out all choices of Féj except for
the ones in (2) and the set obtained by swapping the first two rows and columns of all



three Féj at once. This second choice of Féj is substantially the same as the one in (2),
and hence we may assume that the three fundamental matrices are as in (2). Now one
observes that the epipoles e'” and e®” obtained as the right null-vectors of F§° and Fg’
are both the same, equal to (1,0,0) . This means that the three camera Q* are collinear.

This gives the curious result :

» Suppose that (P°, P, P?) and (Q°,Q", Q%) are two triplets of cameras for which the three
critical quadric surfaces Sy are all equal. If the centres of cameras P* are noncollinear,
then the centres of Q" are collinear.

Finally, from the three fundamental matrices one can reconstruct the three camera ma-
trices Q'. Because the camera centres are collinear, there is not a unique solution — the
general solution (up to projectivity) is

1 0 0 1 a b c d
R =[I0] ; *=]0 -1 0 0 |@*=]| 0 —1 0 0 (3)
1 0 -1 1 —a —b —c—1 —d

One can now compute the three quadrics 881 explicitly using lemma 4 One finds that
they are not the same. Thus, the three quadrics Sf,j are the same, but the three quadrics
S§ are different, and so Sy is not a critical surface for all three views. It follows from this
that it is not possible for the intersection of all three quadrics to form a critical surface
for all three views.

How is this to be reconciled with Theorem 4.4 which states (roughly) that the critical
point set is the intersection of the three quadrics S§ ? The answer is in the exception
concerning points that lie in the trifocal plane of the three camera centres of Q7. In
the present case the centres of the three cameras Q° are collinear, so any point P lies
in a common plane with the three camera centres and we are unable to conclude from
Theorem 4.4 that there exists a point Q such that P’P = Q’Q. There are actually three
points Q¥ as in Fig 1.

5 Ambiguous views of seven points.

In [4] a general method was given based on a duality concept introduced by Carlsson
([2]) for dualizing statements about projective reconstructions. The basic idea is that
the Cremona transform

I':(x,Y,%,T) — (YZT, XZT,XYT, XYZ)

induces a duality that swaps the role of points and camera, with the exception of 4 refer-
ence points, the vertices of the reference tetrahedron, the points E; = (1,0,0,0)7,..., By =
(0,0,0,1)T. Relevant to the present subject is the observation ([4]) that the Carlsson
map takes a ruled quadric containing the points E; to another ruled quadric.

In dualizing the statement of Theorem 4.5

e the three non-linear camera centres become seven points not lying on a twisted
cubic.

e the intersection of two ruled quadrics remains an intersection of two ruled quadrics
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e The seven points must contain at least a set of four non-coplanar points to act as
the reference tetrahedron.

Theorem 5.6. Given a set of seven non-coplanar points P; not lying on a twisted cubic,
there exists a curve v formed by the intersection of two quadrics such that the projections
of the P; from any number of cameras P’ with centres Cb lying on the curve v are
insufficient to determine the projective structure of the points P; uniquely. In particular,
there exists an inequivalent set of points Q; and cameras Q* such that Pin = Qin for
all i and j.

No proof of this is given here, since it follows almost immediately from Theorem 4.5 by
an application of Carlsson duality. For a description of the general principal of duality
as it relates to questions of this type, see [4].

6 Conclusions

Although critical configurations for three views do exist, they are less common than for
two views, and are of lower dimension. Thus for practical algorithms of reconstruction
from three views it is safer to ignore the probability of encountering a critical set than
in the two view case. The exception is for a set of points in the plane, for which it will
always be impossible to determine the camera placement.

Though no formal claim is made that the list of critical configurations given here is
complete, it shows that such configurations are more common than might have been
thought. My expectation is that a closer analysis will show that in fact this list is
substantially complete.
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