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Abstract. The recently introduced Coalgebraic Predicate Logic (CPL) provides
a general first-order syntax together with extra modal-like operators that are in-
terpreted in a coalgebraic setting. The universality of the coalgebraic approach
allows us to instantiate the framework to a wide variety of situations, including
probabilistic logic, coalition logic or the logic of neighbourhood frames. The last
case generalises a logical setup proposed by C.C. Chang in early 1970’s. We
provide further evidence of the naturality of this framework. We identify syn-
tactically the fragments of CPL corresponding to extended modal formalisms
and show that the full CPL is equipollent with coalgebraic hybrid logic with the
downarrow binder and the universal modality. Furthermore, we initiate the study
of structural proof theory for CPL by providing a sequent calculus and a cut-
elimination result.

1 Introduction

Coalgebras over sets provide an universal framework for state-based systems, such
as (labelled or unlabelled) transition systems, multigraphs, conditional frames, game
frames or (monotone and general) neighbourhood frames. They provide a natural se-
mantics for a wide range of modal logics, ranging from conditional and probabilistic
to coalition logic. The development of a full-blown coalgebraic model and correspon-
dence theory is hindered by the lack of a formalism that allows both direct reference
to individual states and supports universal quantification and binding: a coalgebraic
counterpart of first-order (and higher-order) predicate logic. The framework of coalge-
braic predicate logic (CPL) was introduced recently in [9] in a joint paper with Lutz
Schröder, where we have provided a complete Hilbert axiomatisation, a modal corre-
spondence theorem and some basic model-theoretic constructions. The present paper is
intended as a companion to op.cit. presenting more evidence that coalgebraic predicate
logic is a natural extension of both (coalgebraic) modal logic and first-order logic.

As explained in op.cit., our approach can be traced back to an unjustly forgotten pa-
per [7] by C. C. Chang. The original motivation was to simplify model theory for what
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Montague called pragmatics and replace Montague’s many-sorted setting by one with-
out sorts. In contemporary terminology, Chang’s paper deals with model and correspon-
dence theory for neighbourhood frames: coalgebras for double contravariant powerset
functor (see [8] for a coalgebraic treatment in a two-sorted setting). His constructions
and results include both suitable notions of (elementary) submodel/extension, elemen-
tary chain of models and ultraproduct and suitable variants of Tarski-Vaught, downward
and upward Löwenheim-Skolem and compactness theorems. Curiously, Chang did not
prove any completeness results. Apart from these technical developments, advantages
of [7] include its lucid, intuitive motivation and examples. But the biggest interest lies
in the syntax itself, with only one sort of variables for elements of the state space and no
need for explicit quantification over neighbourhood or successors. Apart from a number
of papers (e.g., Sgro [16]) on interior operator logic in topology, we are not aware of
any work in a similar setup.

Our CPL (Coalgebraic Predicate Logic) is based on a notational variant of Chang’s
syntax. The interpretation of CPL in coalgebras for arbitrary Set-functors is parametric
in the notion of predicate lifting; if Λ is a supply of modal operators, then the supply
of functors and predicate liftings interpreting modalities in Λ is called Λ-structure. In
[9], the authors together with Lutz Schröder have proved completeness results for two
classes of Λ-structures—the first one (S1SC) generalizing neighbourhood frames, an-
other one (k-bounded) generalizing Kripke structures. Furthermore, it was shown that
there are limitations to the possible scope of more general completeness results. We
also proved an analogue of the Van Benthem-Rosen theorem, characterizing coalge-
braic modal logic (CML) as the behavioural-invariant fragment of CPL. Finally, we
provided foundations of model theory for CPL, significantly generalizing the scope of
Chang’s model-theoretic results discussed above.

This paper is intended as a companion paper to [9]. In the first part, we generalize the
results of [4] characterizing the correspondence between predicate logic and extended
hybrid formalisms CHL↓,AΛ and CHL∀,@Λ . We take it as yet another indication that CPL
is natural and well-designed both as a generalization of FOL and “the” predicate relative
of existing coalgebraic formalisms. Furthermore, due to a somewhat modal character of
the CPL syntax, the correspondence is even closer and more natural than for ordinary
FOL and additional results on the correspondence between sublanguages of CPL and
various extensions of coalgebraic modal/hybrid logic become available. In the second
part, we initiate the study of proof theory of CPL. We provide cut-free sequent systems
for strongly one-step complete (S1SC) Λ-structures, which generalize the neighbour-
hood logic (and hence Chang’s original setup). Our proof of cut-elimination is entirely
syntactic and constructive.

2 Syntax and Semantics

Throughout the paper, we fix a modal similarity type Λ consisting of modal operators
with associated arities. We also fix a setΣ of predicate symbols (with associated arities)
and a set Vi of individual variables. The language CPLΛ of coalgebraic predicate logic
is given by the grammar

CPLΛ 3 φ, ψ ::= x = y | P (x1, . . . , xn) | ⊥ | φ→ ψ | ∀xφ | x♥dx1 : φ1e . . . dxn : φne



where ♥ ∈ Λ is an n-ary modal operator, P ∈ Σ is an n-ary predicate symbol and
x, y, x1, . . . , xn ∈ Vi are individual variables. For simplicity, we ignore function sym-
bols which can be added in the same way as in [7].

In a formula x♥dx1 : φ1e . . . dxn : φne, ♥ is an n-ary modal operator, applied to
n arguments dxi : φie, for i = 1, . . . , n. Here, xi is a comprehension variable. Given
a first-order structure with carrier set W and variable assignment ϑ, dx : φe denotes
the set of all those states w ∈ W such that φ holds under the modified assignment
ϑ[x 7→ w]. Our informal reading of dx : φe is ‘the set of all x such that φ’. As a
consequence, the n-tuple dx1 : φ1e . . . dxn : φne denotes an n-tuple of predicates on
the carrier set, to which we can apply an n-ary modal operator ♥ in the usual way.
The formula x♥dx1 : φ1e . . . dxn : φne is then best understood as expressing that the
property ♥dx1 : φ1e . . . dxn : φne is true relative to the (interpretation of) x in a first-
order structure.

Example 1. We have provided a number of examples of the use of CPL in a variety
of situations already in [9] where consider CPL over probabilistic modal logic, over
coalition logic and Pressburger modal logic. Here, we content ourselves with the fol-
lowing:

1. As originally noted by by Chang himself, coalgebraic predicate logic is partic-
ularly well-suited for reasoning about social situations and relationships between an
individual and sets of individuals. Indeed, Chang’s examples suggest an intensional
reading of ♥ as ‘useful’ or ‘enjoyable’. Given a unary modality � and a binary relation
S(x, y) that we read as ‘x speaks to y’, the formula x�dz : S(z, y)e reads as ‘x finds
it enjoyable to speak to y’ where x determines the truth of this sentence by inspecting
the the set ‘{z : S(z, y)}’ of people speaking to y. The fact that whether or not x finds
it enjoyable to speak to y may depend non-monotonically on the set of people y con-
verses with suggests to interpret � as a neighbourhood modality (as we will in fact do
in Example 4).

2. Coalgebraic predicate logic can also be used to speak about ‘losers’, ‘jerks’ and
‘politicians’. In [2], these terms are defined using hybrid logic over Kripke semantics
where the underlying binary relation is understood as ‘respects’ or ‘admires’. For ex-
ample, a loser is understood as a person who lacks self-respect. In coalgebraic predicate
logic, the fact that x is a loser is expressed by the formula x�dy :¬(y = x)e. We read
this formula as ‘everybody whom x respects has the property of being distinct from x’,
i.e. x lacks self-respect. Accordingly, our interpretation of � (given in Detail in Exam-
ple 4) in this example will be relational, and coincides with the Kripke-interpretation
over relational models. We leave it to the reader to express their own (or [2]’s) notions
of ‘jerks’ and ‘politicians’ in coalgebraic predicate logic. In Section 3, we will show
that coalgebraic hybrid logic is in fact equi-expressive to coalgebraic predicate logic.

3. Coalgebraic predicate logic also extends, for instance, majority logic [11] to a
first-order setting. If we take x to be a politician if the majority of people known to
them distrusts x, then the fact that x is a politician is expressed by the formula xMdy :
D(x, y)e where M is the majority operator that we read ‘the majority of’ (and assume
that majorities are taken among people that are known to an individual) andD(x, y) is a



binary relation that expresses that x distrusts y. We will make this semantically precise,
in the next example, by interpreting M as the majority operator of [11].

The semantics of coalgebraic predicate logic is given, as usual, in terms of a first or-
der structure and a variable assignment. Crucially, the first-order structure must ac-
commodate for the interpretation of the modalities present in the similarity type Λ and
must provide a uniform interpretation of modalities. We therefore understand first-order
structures for Λ as an enrichment of the standard notion of first-order structure with a
device to interpret modalities. In our (coalgebraic) context, the interpretation of modal
operators is given by Λ-structures.

Definition 2. A Λ-structure is an endofunctor T : Set → Set on the category of sets,
together with an assignment of predicate liftings, that is, a set-indexed family of maps

J♥KX : (QX)n → Q(TX) (X ∈ Set)

for every n-ary modal operator ♥ ∈ Λ. Here Q is the contravariant powerset functor,
and we require naturality of J♥K, that is, (Tf)−1 ◦ J♥KY = ♥X ◦ (f−1)n for every
function f : X → Y . We usually denote Λ-structures by the underlying endofunctor T ,
when the underlying assigned predicate liftings are clear.

In the remainder of this paper, we assume that our chosen set Λ of modal opera-
tors comes equipped with a Λ-structure. We now take first-order structures to be T -
coalgebras that are additionally equipped with an interpretation of the given relation
symbols.

Definition 3. A first-order structure (for Λ relative to a Λ-structure T ) is a triple M =
(C, γ, π) where (C, γ) is a T -coalgebra, i.e. C is a set and γ : C → TC a (transition)
function, and π is an interpretation of the predicate symbols, that is, π(P ) ⊆ Cn for
all n-ary predicate symbols P ∈ Σ. We silenty identify T -coalgebras with first-order
structures and leave the interpretation of predicate symbols implicit whenever this does
not cause confusion.

The semantics of coalgebraic predicate logic is best explained as the algamation of
coalgebraic modal logic and (standard) first-order logic. Given a T -coalgebra (C, γ),
formula φ of coalgebraic modal logic are interpreted as subsets JφK ⊆ C. The crucial
clause for modal operators is J♥(φ1, . . . , φn)K = {c ∈ C | γ(c) ∈ J♥KC(Jφ1K, . . . , JφnK)},
discussed in detail e.g. in [13]. Informally speaking, the (coalgebraic) interpretation of
♥(φ1, . . . , φn) is the set of individuals c ∈ C that enjoy property ♥ (which depends
on φ1, . . . , φn). In coalgebraic predicate logic, this interpretation is relativised to indi-
viduals: in a first-order structure M = (C, γ, π), the formula x♥dx1 :φ1e . . . dxn :φne
is true under a variable assigment ϑ if the individual ϑ(x) has property ♥ which now
depends on the sets of individuals xi that have property φi(xi).

Formally, we define truth M, ϑ |= φ of a formula φ ∈ CPLΛ in a first-order struc-
ture M = (C, γ, π) relative to a variable assignment ϑ : Vi → C by the standard
clauses for propositional and first-order connectives, augmented with

M, ϑ |= x♥dx1 :φ1e . . . dxn :φne ⇐⇒ γ(ϑ(x)) ∈ J♥KX(Jφ1Kx1

M,ϑ, . . . , JφnK
xn
M,ϑ)



where JφKyM,ϑ = {c ∈ C |M, ϑ[y 7→ c] |= φ} (we usually drop the subscript M, ϑ) and
ϑ[y 7→ c] is the same variable assignment as ϑ except it maps y to c.

Example 4. We continue Example 1 and describe the structures that give rise to the
interpretation put forward above.

1. Chang’s original attempt generalises the neighbourhood interpretation of modal
logics to the setting of full first-order logic. For a similarity type Λ = {�} contain-
ing a single unary operator, neighbourhood semantics is captured coalgebraically
by the Λ-structure N = Q ◦ Q together with the predicate lifting defined by

J�KX(A) = {N ∈ NX | A ∈ N}

which ensures that the standard modal neighbourhood semantics conincides with
the coalgebraic semantics of modal formulae. In a first-order setting, this exhibits
Chang’s original language (and its interpretation) as a special case of coalgebraic
predicate logic. In a first-order structure (C, γ), every individual c ∈ C induces a
set γ(c) ⊆ P(C) of neighbourhoods such that – in the spirit of the example – x
finds it enjoyable to speak to y if the set dz : S(z, y)e is a (social) neighbourhood
of x.

2. In [2], hybrid logic is used to define losers, jerks and politicians, where notions
like respect or admiration are modelled by binary relations between individuals.
We replace relations by T -coalgebras for TC := PC (P is the covariant powerset
functor) and interpret the (unary) model operator � by J�KC(A) := {B ∈ PC |
B ⊆ A} which gives the standard semantics. The formula x�dy : ¬(y = x)e then
expresses that x is a loser, i.e. lacks an arc along the relation expressing self-respect.
We leave it to the reader to express the definitions of jerks and politicians given in
[2]). Indeed, hybrid logic is translatable to the language discussed here, see below.

3. As a slight variation, we may consider a predicate version of majority logic [11]
where we again co-algebraise the relational semantics. We interpret formulae in-
volving an operator M (read ‘the majority . . . ’) over coalgebras of type (C, γ :
C → BC) where BC := {f : C → N | f(c) 6= 0 only finitely often} using

JMKC(A) := {f ∈ BC |
∑
x∈A

f(x) >
∑
x 6∈A

f(x)}.

This differs from the original semantics of op.cit. but induces the same set of true
sentences. If we read M as the majority of people someone knows . . . and R(x, y)
as likes, an unpopular person could be characterised by the sentence xM{y :
¬R(y, x)} stipulating that the majority of people x knows don’t like x.

4. Frame classes can be combined: instead of using the relation symbol R in the pre-
vious example, we could consider coalgebras (C, γ : C → TC) where TC :=
BC × PC gives a majority structure and a relational structure, and interpret the
operators M and � by projecting out the components. Unpopular individuals are
then characterised as satisfying xMdy : y�dz : ¬(z = x)ee.



3 Equipollence results

3.1 Coalgebraic Standard Translation for CMLΛ

The formulas CMLΛ(Σ) of pure (coalgebraic) modal logic in the modal signature Λ
over Σ (now all elements of Σ are assumed to be of arity 1) are given by the grammar:

CMLΛ φ, ψ ::= P | ⊥ | φ→ ψ | ♥(φ1, . . . , φn),

where P ∈ Σ.
Satisfaction is defined with respect to M = (C, γ, π) and a specific point c ∈ C in

a standard way, see e.g. [14, 15].

Proposition and Definition 5. Define the coalgebraic standard translation as

STx(P ) := P (x),

STx(♥(φ1, . . . , φn)) := x♥dx : STx(φ1)e . . . dx : STx(φn)e,
STx(⊥) := ⊥,

STx(φ→ ψ) := STx(φ)→ STx(ψ).

Then for any φ ∈ CMLΛ(Σ) and any M = (C, γ, π), ϑ, c, we have M, c � φ iff
M, ϑ[x 7→ c] � STx(φ).

This definition is more straightforward than the standard translation into FOL of modal
logic over ordinary Kripke frames. Moreover, STx uses only one variable from Vi,
namely x itself. In fact, we can immediately observe that

Proposition 6. Whenever Σ consists entirely of unary predicate symbols, the subset of
φ ∈ CPLΛ(Σ) obtained as the image of STx for a fixed x ∈ Vi consists precisely of
equality-free and quantifier-free formulae in the variable x.

Whereas the Van Benthem-Rosen theorem provided in [9] is a semantic characterization
of CMLΛ wrt CPLΛ, Proposition 6 above is its syntactic counterpart. In fact, we can
combine the two results to obtain

Corollary 7. Whenever Σ consists entirely of unary predicate symbols (and there are
no function symbols), the behaviourally-invariant (over finite structures) formulas of
CPLΛ in one-free variable are up to equivalence (over finite structures) precisely the
equality-free and quantifier-free formulas in the single-variable fragment of CPLΛ.

No such syntactic characterization exists for formulas of ordinary first-order logic in-
variant under bisimulation. Of course, we can do better thanks to the somewhat more
modal character of CPL syntax as compared to ordinary FOL.

3.2 Hybrid Languages

In this section, we generalize the results of [4]. Our ultimate goal is Theorem 13 be-
low which establishes the equivalence of CPL with the hybrid languages CHL↓,AΛ and



CHL∀,@Λ . Both correspondences also hold for ordinary predicate logic over relational
structures (FOL) and extend to CPL. We take this as yet another indication that CPL
is natural and well-designed both as a generalization of FOL and “the” predicate logic
cousin of existing coalgebraic formalisms.
This is our main, but not the only motivation. We progress towards this result step-by-
step, extending the modal language gradually with new hybrid constructs. In this way,
we reveal that a similar correspondence exists between natural fragments of CPL and
weaker hybrid languages, most importantly between quantifier-free CPL and CHL↓,@Λ —
something which has no analogue in the FOL case.
Again, obviously the correspondence between fragments of CPL and extensions of
CML is tighter than in the case of FOL and ML only due to the modal flavour of CPL.
However, results such as Corollary 10 are useful spadework: any model-theoretic tool to
be developed—say, a variant of E-F games—would be adequate for an extended coalge-
braic modal formalism (e.g., CHL↓,@Λ ) iff it is adequate for the corresponding fragment
of CPL (e.g., the variable-free fragment), so we are free to work with whichever formal-
ism we find more convenient at a given moment. This is closely related to our present
research efforts. The straightforward correspondence also provides a good starting point
for an extension of research programme sketched in [5]—see Remark 14 at the end of
this section.
Given a supply of world variables Vw that we are going to keep fixed and implicit, we
define the following coalgebraic hybrid languages

CHL↓,@Λ φ, ψ ::= z | P | ⊥ | φ→ ψ | ♥(φ1, . . . , φn) | @zφ |↓z.φ
CHL↓,AΛ φ, ψ ::= z | P | ⊥ | φ→ ψ | ♥(φ1, . . . , φn) | Aφ |↓z.φ
CHL∀,@Λ φ, ψ ::= z | P | ⊥ | φ→ ψ | ♥(φ1, . . . , φn) | @zφ | ∀z.φ

where z ∈ Vw. We refer the reader to, e.g, [15, 4, 5] for the semantics. The extension of
the standard translation to these formalism is unproblematic in some cases, just like in
the case of ordinary hybrid logic over Kripke frames:

STx(z) := x = z, STx(Aφ) := ∀x.STx(φ), STx(∀z.φ) := ∀z.STx(φ).

One is tempted to put forward also

STx(@zφ) := STx(φ)[z/x], STx(↓z.φ) := STx(φ)[x/z].

However, with other clauses remaining the same, this could work only if [z/x] denotes
capture-avoiding substitution. Sadly, this in turn would entail forsaking the luxury of
using just one designated variable for comprehension. Guillame Malod (see [6]) ob-
served that if we restrict the supply of variables, a translation along the above lines—
indeed first proposed in the literature (which shows that the present discussion is less
trivial than it might seem)—would fail even when embedding the hybrid logic over
Kripke frames in the two-variable fragment of FOL. Malod’s counterexample used nest-
ing of modalities of level two, but as our translation uses just one designated variable,
ST would go wrong already on formulas of depth one. Just consider STx(↓z.♦z): we
would obtain x♦dx : x = xe, which is a formula with a completely different meaning.



There are two ways out. First is to redefine

STmodx(@zφ) := ∀x.(x = z → STx(φ)), (1)
STmodx(↓z.φ) := ∀z.(x = z → STx(φ)). (2)

The second is to keep ST for hybrid formulas as defined above and change the modal
clause instead:

STx(♥(φ1, . . . , φn)) := x♥dy : ST y(φ1)e . . . dy : ST y(φn)e, (3)

where y is the first (in some fixed enumeration) variable not used in STx(φ1), . . . ,STx(φn);
by not used here we mean both free and bound usage. Furthermore, to ensure that the
translation works correctly, we have to assume that neither x nor y appears in Vw.
While the requirement to use more bound variables can be cumbersome—particularly
for infinite sets of formulas—we prefer this option, as it makes it easier to characterize
weaker hybrid languages as suitable syntactic fragments of CPL.

We can now state a generalization of both Proposition 5 and corresponding results
from the hybrid logic literature—see, e.g., [4] for references:

Proposition 8. For any φ ∈ CHLΛ and any M = (C, γ, π), ϑ, c, we have M, ϑ, c � φ
iff M, ϑ[x 7→ c] � STx(φ).

As is well-known in the hybrid logic community—see again [4] for references—there
is also a translation in the reverse direction for sufficiently expressive hybrid languages.
This also generalizes to our setting, see Table 1.

Table 1. Coalgebraic Hybrid Translation from quantifier-free CPL to CHL↓,@
Λ

HT(P (x)) := @xP HT(x = y) := @xy

HT(⊥) := ⊥ HT(φ→ ψ) := HT(φ)→ HT(ψ)

HT(x♥dy1 : φ1e . . . dyn : φne) := @x♥(↓y1.HT(φ1), . . . , ↓yn.HT(φn))

Proposition 9. For any φ ∈ CPLΛ and any M = (C, γ, π), ϑ, c, we have

M, ϑ, c � HT (φ) iff M, ϑ[x 7→ c] � φ.

Combining Propostions 9 and 8, we get:

Corollary 10. Whenever Σ consists purely of unary predicates (and no function sym-
bols), CHL↓,@Λ is expressively equivalent to the quantifier-free fragment of CPLΛ, as-
suming Vi contains Vw plus a disjoint infinite supply of additional individual variables
(used for comprehension).

Remark 11 (Quantifier-free CPL as the bounded fragment of FOL). In the case
of ordinary FOL, the fragment equivalent to CHL↓,@Λ is characterized as the bounded
fragment, see, e.g., [1]. In fact, our formula x♥dy : φe, despite being quantifier-free on



the surface, can be described as a form of bounded quantification. This can be formal-
ized as a result stating that over coalgebras for the covariant powerset functor (Kripke
frames), quantifier-free CPLΛ is equivalent to the bounded-fragment of ordinary FOL,
where the role of ♥ in CPLΛ is played by the binary relation symbol R in FOL; details
are left to the reader.

Remark 12 (Chang’s original syntax). As already mentioned, our syntax is slightly
different to the original one proposed by Chang [7]. In that paper, there were no explicit
comprehension variables and even in the enriched syntax which allowed constants and
function terms, the term on the left-hand side of ♥ had to be a variable. This vari-
able was reused then on the right side of ♥ as the comprehension variable. In other
words, Chang’s x♥φ(x) was equivalent to ours x♥dx : φ(x)e. In presence of quan-
tifiers, which can be used to simulate the effect of capture-avoiding substitution as in
STmod (this trick in fact stems back to Alfred Tarski), the two languages are obviously
equivalent. But when considering fragments, as we do here, the equivalence breaks
down; without quantifiers, Chang’s syntax does not allow (2) and simple renaming of
the comprehension variable on the right-hand side of ♥ as in (3) is not possible either.

There are two usual routes in hybrid logic to achieve full first-order expressivity. One
is to add universal quantifiers over Vw in presence of the satisfaction operator @. The
other is to add the global modality A in presence of the downarrow binder ↓. The hybrid
translation is extended then as follows:

HT∀@(∀x.φ) := ∀x.HT (φ)

HTA↓(∀x.φ) :=↓y.A ↓x.A(y → φ)

In HTA↓we need the proviso that y is not occurring in the whole formula.

Theorem 13. CHL↓,AΛ , CHL∀,@Λ and CPLΛ are expressively equivalent.

As we can use STmodx now and keep reusing x as the comprehension variable, it is
enough to assume that Vi = Vw ∪ {x}. Since @zφ is definable in presence of A (as
A(z → φ), ↓ is definable by the universal quantifier over Vw (as ∀z.(z → φ)) and A is
definable by combination of ∀ and @ (as ∀y.@yφ, where y is not used in φ), we get in
fact seven equivalent languages: CPLΛ, Chang’s original language, CHL↓,AΛ , CHL∀,@Λ ,
CHL↓,AΛ with @, CHL∀,@Λ with ↓ and the jumbo hybrid language with all connectives
introduced above.

Remark 14. The equivalences stated here extend to the case of CHLΛ and CPLΛ en-
riched with quantification over predicates (i.e., second-order languages). It would be
interesting to follow more thoroughly the program of coalgebraic abstract model the-
ory both above and below CPLΛ (see Ten Cate’s PhD Thesis [5] for spadework in
abstract model theory below first-order logic).



4 Proof theory

4.1 Axiomatisation of Coalgebraic Predicate Logic

This paper’s companion [9] already gives a complete Hilbert calculus for coalgebraic
predicate logic that we review briefly here before giving an axiomatisation in terms of
a cut-free sequent system. The crucial aspect of this system (and also of the sequent
system that we will describe) are one-step rules that describe the geometry of the Λ-
structure under consideration.

The modularity of coalgebraic predicate logic in the precise notion of structure ne-
cessitates that we cannot commit to a fixed set of rules. Instead, we import modal deduc-
tion rules into a first-order setting. It can be shown [13] that these deduction rules can
be restricted to so-called one-step rules that have a very specific format. More precisely:

Definition 15. A (CMLΛ) one-step rule over a similarity type Λ has the form

Γ1 ⇒ ∆1 · · · Γk ⇒ ∆k

♥1p1, . . . ,♥npn ⇒ ♥n+1pn+1, . . . ,♥n+mpn+m
(R)

where k, n,m ≥ 0, ♥1, . . . ,♥n+m ∈ Λ, pi = (p1
i , . . . , p

a(i)
i ) are vectors of proposi-

tional variables according to the arity a(i) of ♥i and Γ1, . . . , Γk, ∆1, . . . ,∆k ⊆ {pji |
1 ≤ i ≤ n, 1 ≤ j ≤ a(i)}. We denote the conclusion of (R) by ΓR ⇒ ∆R.

For the Hilbert-style axiomatisation of CPL, we write x,y, . . . for finite sequeneces of
variables and define derivability HR ` as the the least set of formulae that is closed
under modus ponens and contains axioms listed in Table 2. We have shown in [9] that

Table 2. Axioms of Coalgebraic Predicate Logic

EG1 all propositional tautologies
EG2 ∀y.(∀x.φ→ φ)
EG3 ∀y.(∀x.(φ→ ψ)→ (∀x.φ→ ∀x.ψ))
EG4 ∀y.(φ→ ∀x.φ) if x is fresh for φ
EG5 ∀y(x = x)
EG6.1 ∀y.(x = z → P (u, x,v)→ P (u, z,v) for P ∈ Σ ∪ {=}
EG6.2 ∀y.(x = z → x♥dy1 :φ1e . . . dyn :φne → z♥dy1 :φ1e . . . dyn :φne)
CONG ∀y.(∀x.(

∧n
i=1(φi ↔ ψi))→ ∀x.(x♥dx : φ1e . . . dx : φne ↔ (x♥dx : ψ1e . . . dx : ψne)))

ONESTEP(R) ∀y.∀z.(∀x.(P1 ∧ · · · ∧ Pk)→ C)

In ONESTEP, R ranges over the one-step rules in R of the form above and C = [σ, x, z](
∧
ΓR →

∨
∆R) represents

the conclusion of the rule and Pi = (
∧
Γi →

∨
∆i)σ its premises, where σ sends each pi to a formula of CPLΛ and

[σ, x, z] is the inductive extension of the map sending each♥ipi to z♥idx : σ(p1
i )e · · · dx : σ(p

a(i)
i )e).

this calculus is complete for strongly one-step complete rule sets. One difference is
that—as we are working here with (counterparts of) sequent-style rather than of Hilbert-
style one-step rules—our ONESTEP(R) has a slightly more general syntactic shape
than the corresponding axiom in [9].

Definition 16. Given any supply of primitive symbolsD (which can be any set), define
Prop(D) as the set of boolean combinations ofD andΛ(D) = {♥(d1, . . . , dn) | d1, . . . , dn ∈



D and ♥ ∈ Λ is n-ary}. For any C ∈ Set, given a valuation τ : D → P(C), we write
C, τ |= α if τ(α) = > for all α ∈ Prop(D). We understand JχKTC,τ , i.e., the interpre-
tation of χ ∈ Prop(Λ(Prop(D))) in the boolean algebra P(TC) under τ , as the induc-
tive extension of the assignment J♥(α1, . . . , αn)KTX,τ = J♥KC(τ(α1), . . . , τ(αn)).
We write TC, τ |= χ if JχKTC,τ = TC, and t |=TC,τ χ if t ∈ JχKTC,τ . A set
Ξ ⊆ Prop(Λ(Prop(D))) is one-step satisfiable with respect to τ if

⋂
χ∈ΞJχKTC,τ 6= ∅.

If D ⊆ P(C) and τ is just the inclusion, we will usually drop it from the notation.

Definition 17. Let P be the set of propositional variables and R = Γ1 ⇒ ∆1, ..., Γk ⇒
∆k / ΓR ⇒ ∆R a one-step rule. We denote

∧
{
∧
Γi →

∨
∆i | 1 ≤ i ≤ k} (∈ Prop(P))

and
∧
ΓR →

∨
∆R (∈ Prop(Λ(P))) by Prem(R) and Conseq(R), respectively. R is

one-step sound if TC, τ |= Conseq(R) whenever C, τ |= Prem(R) for a valuation
τ : P → P(C), for all R ∈ R. Given a set R of one-step rules and a valuation
τ : P → P(C), a set Ξ ⊆ Prop(Λ(Prop(P))) is one-step consistent (with respect to
τ) if the set Ξ ∪ {Conseq(R)σ | σ : P → Prop(P);R ∈ R;C, τ |= Prem(R)σ} is
propositionally consistent. A rule set R is strongly one-step complete (S1SC) for a Λ-
structure if for every set C, any Ξ ⊆ Prop(Λ(Prop(P))) and any τ : P → P(C), Ξ is
one-step satisfiable with respect to τ whenever it is one-step consistent with respect to τ .
We say that a set of rules is finitary S1SC if the above holds whenever τ : P→ Pfin(C)
(but not necessarily for arbitrary τ ).

The following was established in the companion paper [9].

Theorem 18. The Hilbert-calculus is sound and complete, i.e. HR ` φ if and only if
M, ϑ |= φ for all first-order structures M and all variable assignments ϑ provided R
is strongly one-step complete (S1SC) and one-step sound.

Strongly one-step complete rule sets are somewhat restrictive, but they do exist for
Chang’s original logic in terms of neighbourhood semantics and for coalition logic.
Here, we are complementing the axiomatisation of coalgebraic predicate logic by a cut-
free, complete sequent calculus. Our basis is the system G3c of [17] that we extend
with modal rules that describe the (fixed) Λ-structure T . We take sequents to be pairs
(Γ,∆), written Γ ⇒ ∆ where Γ,∆ ⊆ CPLΛ are finite multisets. The sequent calculus
for coalgebraic predicate logic contains three types of rules: the standard logical rules
for first-order logic, rules for equality and rules for the modal operators. The logical
rules are standard as in Table 3. The formula introduced in the conclusion of a logical
rule is called the principal formula of the rule.

The equality rules from Table 3 allow us to replace equals for equals both in pred-
icate symbols and in modal formulae of the kind x♥dy1 : φ1e . . . dyn : φne. Equality
rules do not have principal formulae.

To account for the modal operators, we incorporate the one-step rules R into the
sequent system and write φji for σ(pji ) as in ONESTEP(R). Then, we transform the
axiom into its sequent form as follow:

{(Γiσ)[y/x]⇒ (∆iσ)[y/x] | 1 ≤ i ≤ k} y fresh

z♥1dx :φ1e, . . . , z♥ndx :φne⇒ z♥n+1dx :φn+1e, . . . , z♥n+mdx :φn+me

Furthermore, we repeat the information of the lower sequent in all the upper sequents
to ensure the admissibility of contraction, and add a weakening context Σ, Θ to both



Table 3. Sequent Rules of Coalgebraic Predicate Logic

Logical Rules

(Ax)φ, Γ ⇒ ∆,φ (φ atomic) (L⊥)⊥, Γ ⇒ ∆

(L∧) φ, ψ, Γ ⇒ ∆

φ ∧ ψ, Γ ⇒ ∆
(R∧)Γ ⇒ ∆,φ Γ ⇒ ∆,ψ

Γ ⇒ ∆,φ ∧ ψ

(L∨)φ, Γ ⇒ ∆ ψ,Γ ⇒ ∆

φ ∨ ψ, Γ ⇒ ∆
(R∨) Γ ⇒ ∆,φ, ψ

Γ ⇒ ∆,φ ∨ ψ

(L→)
Γ ⇒ ∆,φ ψ, Γ ⇒ ∆

φ→ ψ, Γ ⇒ ∆
(R→)

φ, Γ ⇒ ∆,ψ

Γ ⇒ ∆,φ→ ψ

(L∀)∀xφ, φ[y/x], Γ ⇒ ∆

∀xφ, Γ ⇒ ∆
(R∀)Γ ⇒ ∆,φ[y/x] y fresh

Γ ⇒ ∆,∀xφ

(L∃)φ[y/x], Γ ⇒ ∆ y fresh

∃xφ, Γ ⇒ ∆
(R∃)Γ ⇒ ∆,φ[y/x], ∃xφ

Γ ⇒ ∆,∃xφ ,

where φ[y/x] stands for the formula φ with all free occurrences of x replaced by y and the
assumption of freshness means not occurring in the lower sequent of the rule.

Equality Rules

(Ref)
x = x, Γ ⇒ ∆

Γ ⇒ ∆
(Repl)

φ[y/z], x = y, φ[x/z], Γ ⇒ ∆

x = y, φ[x/z], Γ ⇒ ∆

In (Repl), φ is resticted to the atomic formulae.

(Ren)
x = y, x♥dz :φ1e . . . dz :φne, y♥dz :φ1e . . . dz :φne, Γ ⇒ ∆

x = y, x♥dz :φ1e . . . dz :φne, Γ ⇒ ∆

Modal Rules S(R): for every one-step rule of the form R ∈ R,

S(R) {(Γiσ)[y/x], Γ+ ⇒ ∆+, (∆iσ)[y/x] | 1 ≤ i ≤ k} y fresh

Σ, z♥1dx :φ1e, . . . , z♥ndx :φne⇒ z♥n+1dx :φn+1e, . . . , z♥n+mdx :φn+me, Θ

where σ sends each pji to a formula φji of CPLΛ and dx :φie = dx : φ1
i e . . . dx : φ

a(i)
i e is a

finite sequence of comprehension expressions according to the arity a(i) of ♥i and Γ+ ⇒ ∆+

denotes the lower sequent.

(Admissible) Structual Rules

(WL)
Γ ⇒ ∆

φ, Γ ⇒ ∆
(WR)

Γ ⇒ ∆

Γ ⇒ ∆,φ
(ConL)

Γ, φ, φ⇒ ∆

Γ, φ⇒ ∆
(ConR)

Γ ⇒ ∆,φ, φ

Γ ⇒ ∆,φ

(Cut)
Γ ⇒ ∆,φ φ,Σ ⇒ Θ

Γ,Σ ⇒ ∆,Θ



premise and conclusion. Finally, we obtain the desired form of S(R) in Table 3. The
formulae z♥idx :φie are called the principal formulae of S(R).

Example 19. If (K) is the (one-step sound and one-step complete) rule set for the nor-
mal modal logic consisting of the rules

(Kn)
p⇒ q1, . . . , qn
♦p⇒ ♦q1, . . . ,♦qn

for all n ≥ 0, we obtain the following first-order version

S(Kn)
φ0[y/z], Σ, z♦dx :φ0e ⇒ z♦dx :φ1e, . . . , z♦dx :φne, Θ, φ1[y/z], . . . , φn[y/z]

Σ, z♦dx :φ0e ⇒ z♦dx :φ1e, . . . , z♦dx :φne, Θ

(where y is fresh in the lower sequent) by the previous definition. Modal neighbourhood
semantics is axiomatised by the one-step rule

(C)
p⇒ q q ⇒ p

�p⇒ �q

which expresses that � is a congruential operator. The first order version of (C) then
reads

S(C)

φ0[y/x], Σ, z�dx :φ0e ⇒ z�dx :φ1e, Θ, φ1[y/x]
φ1[y/x], Σ, z�dx :φ0e ⇒ z�dx :φ1e, Θ, φ0[y/x]

Σ, z�dx :φ0e ⇒ z�dx :φ1e, Θ

(where y is fresh in the lower sequent) which we shall later see to provide a complete
and cut-free axiomatisation of Chang’s original logic.

If R is a set of one-step rules, we write SR ` Γ ⇒ ∆ if Γ ⇒ ∆ can be derived
using the logical and equality rules of Table 3, together with the rules S(R) from Table
3 for every rule R ∈ R. We write SRCut ` Γ ⇒ ∆ if the cut rule (Cut) of Table 3 is
used additionally. If M = (C, γ, π) is a first-order structure over a Λ-structure T , we
write M, ϑ |= Γ ⇒ ∆ if M, ϑ |=

∧
Γ →

∨
∆ and, as usual M |= Γ ⇒ ∆ if M, ϑ |=

Γ ⇒ ∆ for all variable assignments ϑ and finally T |= Γ ⇒ ∆ if M |= Γ ⇒ ∆ for all
first-order structures M over T .

We show soundness and completeness of the sequent system SR by translating into,
and from, the Hilbert system HR which is known to be (semantically) complete. The
translation – initially using (Cut) in the sequent system – relies on a few routine facts
concerning structural rules that we now summarise (note that the definition of both SR
and SRCut does not involve structural rules). The structural rules are standard as in
Table 3: we consider weakening both on the left and on the right and the rules of left
and right contraction. Admissibility of weakening is standard:

Lemma 20. The rules of left weakening and right weakening are height-preserving
admissible in SR and SRCut.

Proof. By induction on derivations. Note that weakening is built into modal rules S(R)
that are derived from one-step rules in R. The other cases than S(R) are done, e.g., as
in [17, Lemma 3.5.3] and [10, Theorem 3.2.1 and Theorem 4.2.7].



Finally, we note one consequence of the congruence rule before we show that both
systemsHR and SRCut have the same deductive power provided that the rules absorb
congruence. We introduce the concept of absorption in a slightly more general form
which will be used later.

Definition 21. We say that a set S of sequents covers a set S′ of sequents if each ele-
ments of S′ is a subset of some element of S′. We write SBS′ if S covers S′ where we
identify sequents with singleton sets. A setR of rules absorbs a rule P/C if there exists
a rule R = Q/D ∈ R such that P BQ and DBC. A rule set absorbs congruence if it
absorbs the rule

(Cong♥)
p1 ⇒ q1 . . . pn ⇒ qn q1 ⇒ p1 . . . qn ⇒ pn

♥(p1, . . . , pn)⇒ ♥(q1, . . . , qn)

and it absorbs monotonicity of ♥ in the i-th argument if the rule

(Moni)
pi ⇒ qi

♥(p1, . . . , pn)⇒ ♥(p1, . . . , pi−1, qi, pi+1, . . . pn)

is absorbed.

Lemma 22. Suppose that R absorbs congruence. Then SR ` Γ, φ ⇒ φ,∆ for all
formulas φ.

Proof. Here we assume for simplicity that R consists of unary modal operators alone.
AsR absorbs congruence, the rule (Cong♥)

{Γ, φi[y/x]⇒ ψi[y/x],∆ | 1 ≤ i ≤ n} {Γ, ψi[y/x]⇒ φi[y/x],∆ | 1 ≤ i ≤ n}
Γ, z♥dx : φe⇒ z♥dx : ψe,∆

(where y is fresh in the lower sequent and n is the arity of ♥) is admissible in SR (and
SRCut). This allows us to proceed by induction on the structure of φ, where (Cong♥)
deals with the inductive case where φ is of the form x♥dy :φe.

One direction of the translation between the two proof systems can now be given as
follows:

Theorem 23. Suppose thatR absorbs congruence and letHR ` φ. Then SRCut `⇒
φ.

Proof. First, we demonstrate admissibility of modus ponens in SRCut by

(Cut)

(Cut)
⇒ φ→ ψ φ→ ψ, φ⇒ ψ

φ⇒ ψ ⇒ φ

⇒ ψ

where the derivability of φ→ ψ, φ⇒ ψ is easily estabilished by Lemma 22. Note that,
in our proof of the theorem, we need (Cut) only for this admissibility.

Then, it suffices to show that all the axioms of HR (recall Table 3) are derivable in
SR (here we do not need the cut rule). Since this is easy to show for non-modal axioms,



we focus on (EG6.2), (CONG) and (ONESTEP(R)). First, (EG6.2) is derivable by
(Ren) and Lemma 22. Second, the derivability of (CONG) follows from Lemma 22.
Finally, let us move to the provability of (ONESTEP(R)). Suppose that R = Γ1 ⇒
∆1, . . . , Γk ⇒ ∆k/ΓR ⇒ ∆R is a one-step rule as in Definition 15. We obtain the
following derivation where N = {1, ..., n} and M = {n+ 1, ..., n+m}:

(L∧,R∨)
S(R), (WL/R)

(L∀) {P1[y/x] ∧ · · · ∧ Pn[y/x], (Γiσ)[y/x]⇒ (∆iσ)[y/x] | 1 ≤ i ≤ k}
{∀x.(P1 ∧ · · · ∧ Pn), (Γiσ)[y/x]⇒ (∆iσ)[y/x] | 1 ≤ i ≤ k}

∀x.(P1 ∧ · · · ∧ Pn), {z♥idx : φie | i ∈ N} ⇒ {z♥idx : φie | i ∈M}

∀x.(P1 ∧ · · · ∧ Pn),
∧
{z♥idx : φie | i ∈ N} ⇒

∨
{z♥idx : φie | i ∈M}

which shows derivability of the axiom ONESTEP(R) as the top sequent is readily seen
to be provable in SR (recall that Pi means (

∧
Γi →

∨
∆i)σ).

For the converse direction, absorption of congruence is not required.

Theorem 24. Suppose that SRCut ` Γ ⇒ ∆. ThenHR `
∧
Γ →

∨
∆.

Proof. It suffices to show that all the translations of the axioms and rules of SR are
derivable in HR. We can easily handle the cases of the axioms and rules for logical
connectives of first-order logic. As for ♥ ∈ Λ, the provability of the translation of
(Ren) and S(R) follows from (EG6.2) and (ONESTEP(R)), respectively. ut

As a corollary, we obtain (for the time being, in a calculus with cut) both soundness and
completeness of the sequent calculus.

Corollary 25. Suppose thatR is one-step sound and strongly one-step complete. Then
SRCut ` Γ ⇒ ∆ iff |= Γ ⇒ ∆.

Proof. By Theorems 23 and 24 in conjunction with soundness and completeness of
HR (Theorem 18). The absorption of congruence was shown in Proposition 5.12 of
[12].

A paradigm example of a set of rules satisfying the assumptions of Corollary 25 is C
and its CPL translation S(C) from Example 19 above.
As we have remarked above, the assumption of strongly one-step complete rule sets is
limiting in that there are only few examples. The companion paper [9] gives a complete
Hilbert-style axiomatisation also for bounded operators. We repeat the definition for
convenience:

Definition 26. A modal operator ♥ is k-bounded in i-th argument for k ∈ N and with
respect to a Λ-structure T if for every C ∈ Set and every A1, . . . , An ⊆ C,

J♥KC(A1, . . . , An) =
⋃

B⊆Ai,#B≤k

J♥KC(A1, . . . , Ai−1, B,Ai+1, . . . , An).

Note that this implies in particular that ♥ is monotonic in the i-th argument. Exam-
ples of bounded modalities include the standard ♦ of relational modal logic interpreted



over Kripke frames, graded modalities over multigraphs and we refer to [15] for more
examples. In the Hilbert-calculus, boundedness is reflected syntactically by the axiom

BDPLk,i∀y.(x♥dy1 : φ1e . . . dyn : φne ↔ ∃z1 . . . zk.(x♥dy1 : φ1e . . . dyi−1 : φi−1e

dyi : yi = z1 ∨ · · · ∨ yi = zkedyi+1 : φi+1e . . . dyn : φne ∧
∧
j≤k

φi[zj/yi]))

where each zi is fresh for all the yis and φis. The derivability predicate induced by
exteding the Hilbert calculusHR by the boundedness axiom above gives completeness
under weaker conditions.

Definition 27. We writeBHR ` φ if φ is derivable inHRwhere additionally (BDPLk,i)
is used for every operator that is k-bounded in the i-th argument.

Strictly speaking, the derivability predicate BHR should include information about
precisely which operators are assumed to be k-bounded in the i-th argument, but this
will always be clear from the context. In the presence of boundedness, completeness of
the Hilbert-calculus can be established under weaker conditions, where we again refer
to [9] for details:

Theorem 28. Suppose thatR is one-step sound and finitary strongly one-step complete
over a Λ-structure T . Let each operator be bounded in every argument. Then BHR ` φ
iff M, ϑ |= φ for every first-order structure M and every variable assignment ϑ.

We can reflect boundedness in the sequent calculus by adding a paste rule, similar in
spirit to the paste rule of hybrid logic [3, Section 7] which was generalised to a coalge-
braic setting in [15]. In a sequent setting, this rule takes the form

(Pasteki )

Γ, x♥dx1 :φ1e · · · dxi−1 :φi−1edy :
∨

1≤j≤k

y = zjedxi+1 :φi+1e · · · dxn :φne,

φ[z1/y], ..., φ[zk/y]⇒ ∆ z1, . . . , zk fresh

Γ, x♥dx1 :φ1e · · · dxi−1 :φi−1edy : φedxi+1 :φi+1e · · · dxn :φne ⇒ ∆ ,

where z1, ..., zk are pairwise distinct fresh variables. Additional use of the above paste-
rule in the system SR is denoted by BSR, that is, we write BSR ` Γ ⇒ ∆ if Γ ⇒ ∆
is derivable in SR where (Pasteki ) may additionally be applied for every modality that
is k-bounded in the i-th argument.

In what follows, we assume that R absorbs the congruence rules for all ♥ ∈ Λ and
monotonicity of all operators that are k-bounded in the i-th argrument.

Lemma 29. Suppose that R absorbs congruence. Then, the replacement axiom x =
y, φ[x/z]⇒ φ[y/z] is derivable in SR.

Proof. By induction on φ (note that we do not need the cut rule in this proof). It suf-
fices to check the case where φ is of the form v♥dw : ψe, since the other cases than
z♥dx : ψe are done, e.g., as in [17, Lemma 4.7.2 (i)] and [10, Lemma 6.5.2]. For sim-
plicity, let us consider the case where φ is v♥dw : ψe (i.e., ♥ is unary). In order to



show the derivability of x = y, (v♥dw : ψe)[x/z]⇒ (v♥dw : ψe)[y/z], here we only
consider a case where z ≡ v and z 6≡ w as follows.

(Cong♥)
x = y, ψ[x/z][w′/w]⇒ ψ[y/z][w′/w]

y = x, ψ[y/z][w′/w]⇒ ψ[x/z][w′/w]

x = x, x = y, ψ[y/z][w′/w]⇒ ψ[x/z][w′/w]

x = y, ψ[y/z][w′/w]⇒ ψ[x/z][w′/w]
(Ref)

(Repl), (WL)

(WL), (Ren)
x = y, y♥dw : ψ[x/z]e ⇒ x♥dw : ψ[y/z]e
x = y, x♥dw : ψ[x/z]e ⇒ y♥dw : ψ[y/z]e ,

where w′ is fresh in the lower sequent of Cong(♥) and two top sequents are provable
in SR by induction hypothesis.

Theorem 30. Suppose that R absorbs congruence and monotonicity in the i-th argu-
ment of every operator that is k-bounded in the i-th argument. Then BHR ` φ implies
that BSRCut `⇒ φ.

Proof. First of all, ifR absorbs monotonicity in the i-th argument of ♥ ∈ Λ, the rule

(Moni)
Γ, φi[y/x]⇒ ψ[y/x],∆

Γ, z♥dx : φe⇒ z♥dx : φ1e . . . dx : φi−1edx : ψedx : φi+1e . . . dx : φne,∆

(where y is fresh in the lower sequent) is admissible in BSR (and BSRCut). Almost
all the arguments are the same as the proof of Theorem 23, except that we need to
show the provablity of (BDLP) by (Paste) (The only place we need the cut rule is the
derivability of modus ponens). More precisely, we can show the left-to-right implication
of (BDPL) by means of (Pasteki ) and (Moni) gives the reverse direction. For example,
when♥ is unary and 1-bounded, the derivability of the right-to-left direction of (BDPL)
is demonstrated as follows.

(WL)
w = v, φ[w/y]⇒ φ[v/y]

(Repl)
v = v, v = w,w = v, φ[w/y]⇒ φ[v/y]

(Ref)
v = v, v = w, φ[w/y]⇒ φ[v/y]

(Mon)
v = w, φ[w/y]⇒ φ[v/y]

(L∧)
x♥dy : y = we, φ[w/y]⇒ x♥dy : φe

(L∃)
x♥dy : y = we ∧ φ[w/y])⇒ x♥dy : φe
∃z.(x♥dy : y = ze ∧ φ[z/y])⇒ x♥dy : φe ,

where the top sequent is the replacement axiom, which is derivable by Lemma 29.

The reverse direction of Theorem 30 is established analogously to Theorem 24 and
again absorption properties are not needed.

Theorem 31. BSRCut ` Γ ⇒ ∆ only if BHR `
∧
Γ →

∨
∆.

Proof. The only difference from the proof of Theorem 23 is to need to care about the
translation of Paste. However, we can easily establish this by the axiom (BDLP). ut

As in the non-bounded case we obtain semantic soundness and completeness, but under
weaker coherence conditions.



Corollary 32. Suppose that R is one-step sound and strongly finitary one-step com-
plete. Then BSRCut ` Γ ⇒ ∆ iff |= Γ ⇒ ∆.

Proof. By Theorems 30 and 31. Note that absorption of congruence and monotonicity
follows from (strong, finitary) one-step completeness as in Proposition 5.12 of [12].

A canonical example of a rule set satisfying the assumptions of the above corollary can
be obtained by taking K of Example 19 and extending it with (Pasteki ) for i = k = n =
1.

4.2 Elimination of Contraction and Cut

Note that a priori we cannot expect that cut elimination holds for cuts between two
instances of modal rules: the set R of one-step rules can possibly consist of a single
rule, and a cut between this rule and itself may not be derivable. We therefore need to
impose an additional requirement, cut and contraction closure to deal with this case.

Definition 33. Let S be a finite set of sequents. The set of sequents that can be derived
from premises S using (only) the contraction rules is denoted by Con(S). Similarly,
the set of all sequents that can be derived from premises in S using (only) the cut rule
is denoted by Cut(S). A rule setR absorbs contraction if, for all rules R = P/C ∈ R
and all C ′ ∈ Con(C) there exists a rule R′ = Q/D ∈ R such that Con(P ) B Q and
D B C ′. A rule setR absorbs cut, if for all pairs of rules inR

(R1)
P1

Γ1 ⇒ ∆1, φ
(R2)

P2

φ, Γ2 ⇒ ∆2

there is a rule R = P/C ∈ R such that Cut(P1 ∪ P2)B P and C B Γ1, Γ2 ⇒ ∆1, ∆2.

Informally, absorption of cut and contraction allows us to replace an application of cut
or contraction to the conclusions of rules inR by a possibly different rule with possibly
weaker premises and stronger conclusion. While these definitions are purely syntactic,
a semantic characterisation has been given in [12] in terms of one-step cut-free com-
pleteness. For many Λ-structures, including those for probabilistic and graded modal
logic, the modal logic K, the logic of (monotone) neighbourhood frames, one-step cut-
free complete rule sets are known. In particular, these rule sets satisfy absorption of cut,
contraction and congruence [12, Section 5].

The absorption requirements directly translate into proof-theoretic properties of the
associated sequent calculus for coalgebraic predicate logic that we now collect. Note
that weakening is built into one-step rules so that weakening is always admissible with-
out further assumptions.

Lemma 34. All the logical and equality rules of SR are height-preserving invertible.

Lemma 35. If SR ` Γ ⇒ ∆ and y is fresh in Γ and ∆, then If SR ` Γ [y/x] ⇒
∆[y/x] with the same height of derivation.

Proposition 36. Suppose R is a set of one-step rules over a similarity type Λ. If R
absorbs contraction, then the rules (ConL) and (ConR) are admissible in SR.



Proof. By induction on the structure of proofs with the help of Lemmas 34 and 35.
We have to use absorption of contraction to replace an application of a contraction rule
to the conclusion of S(R) in order to replace the application of S(R) by (a possibly
different) rule S(R′).

We now turn to cut-elimination, where the majority of the cases are straightforward,
and in fact identical to the cut-elimination proof in first-order logic.

Theorem 37 (Cut Elimination). Suppose that R absorbs cut and contraction. Then
the cut rule is admissible in SR.

Proof. We proceed by double induction on the size of the cut formula and the size of
the proof tree. In all cases that do not involve the application of a rule S(R) for some
R ∈ R it is straightforward to either propagate the cut upwards or to replace the cut by a
smaller cut formula using the fact that contraction is admissible. Now fix a one-step rule
R and consider the cuts involving S(R). For cuts between S(R) and another S(R′), the
cut may be eliminated by the fact that R absorbs cut. For cuts between S(R) and an
equality rule, the cut can be propagated upwards in the proof tree. For a cut between
S(R) and a logical rule, we distinguish two cases depending on whether or not the cut
formula A is principal in one of the rules.

In case A not principal in S(R) the cut may be eliminated by choosing a different
weakening context in the application of S(R). In caseA is principal in S(R) we observe
thatA is of the form x♥dy : φe and therefore cannot be principal in a logical rule. This
allows us to propagate the cut upwards in the proof tree.

As an immediate corollary, we obtain completeness of the cut-free calculus assuming
thatR is strongly one-step complete:

Corollary 38. Suppose that R is one-step sound and strongly one-step complete over
a Λ-structure T . Then |= Γ ⇒ ∆ iff SR ` Γ ⇒ ∆.

Proof. This follows from Theorem 37 with the help of Proposition 5.11 and 5.12 of
[12], the latter asserting precisely the absorption of cut and congruence.

The situation is more complex in presence of bounded operators where completeness
of the Hilbert calculus is only guaranteed in presence of (BDPL), and completeness
of the associated sequent calculus relies on (Pasteki ). The difficulty in a proof of cut-
elimnation is a cut-end derivation where a cut is performed on x♥dy1 : φ1e . . . dyn :
φne which is introduced by (Pasteki ) and a (one-step) rule where the same formula is
principal. We leave this as an open problem:

Open Problem 39. Is there a way to modify the rules of BSR so that completeness
with respect to BHR holds and cut is admissible?

5 Conclusions

We believe that results obtained here, particularly in Section 3 strengthens the claims
first made in [9] concerning naturality of CPL as a (or perhaps “the”?) predicate counter-
part of existing coalgebraic formalisms. As concerns sequent systems and cut-elimination



results in Section 4, we have fully achieved our goals for those functors and signatures
which are “sufficiently neighbourhood-like” (S1SC). We are presently working on the
intriguing question whether a constructive proof of cut-elimination can be given on the
“Kripke-like” end, i.e., Open Problem 39. We refer the reader to [9] for more on open
problems and future work.
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