Denotational Semantics of Hybrid Automata*

Abbas Edaldtand Dirk Pattinsoh

! Department of Computing, Imperial College London, UK
2 Department of Computer Science, University of Leicestés, U

Abstract. We introduce a denotational semantics for non-linear lalylani-
tomata, and relate it to the operational semantics givearms of hybrid trajec-
tories. The semantics is defined as least fixpoint of an ameoatthe continuous
domain of functions of time that take values in the latticeofpact subsets of
n-dimensional Euclidean space. The semantic function ass@every point in
time the set of states the automaton can visit at that tiraetjrsg from one of its
initial states. Our main results are the correctness angbutational adequacy of
the denotational semantics with respect to the operatgerabntics and the fact
that the denotational semantics is computable.

1 Introduction

A hybrid automaton [12,2] is a digital, real-time systemttinéeracts with an analogue
environment. Hybrid automata are ubiquitous in all areasoflern engineering and
technology. For example, the (digital) height control ofsartomobile chassis depends
on and influences the (continuous) driving conditions ofvlhbicle [18]. Hybrid au-
tomata typically operate in safety critical areas, suchhashighway control systems
[17] and air traffic control [20]. They combine a finite set ohtrol states with contin-
uous dynamics. In every control state, the continuous blesaevolve according to an
ordinary differential equation and the system changesrobstates if the continuous
variables reach certain thresholds.

One of the key concerns in the theory of hybrid automata isltperithmic verifica-
tion of safety critical properties. This problem is well wnstood for linear systems [3]
and implemented in the model checker HyTech [13]. The sdndbr non-linear sys-
tems is, not surprisingly, much less satisfactory. Whikedpproximation of non-linear
hybrid automata by linear systems is asymptotically cotedl®d], it results in a huge
blow-up in the number of discrete control states and asttitate transitions, which
limits the possibilities of algorithmic analysis.

This paper presents an alternative approach. Conceptualyegard a hybrid au-
tomaton as the integration of two different types of systetmsevolution of a family of
continuous systems, governed by differential equatiomd the dynamics of a discrete
system given by a generalised iterated function system) (i§€& [16]. We synthesise
the domain-theoretic approach to solving differentialamns [7,10] and the domain-
theoretic approach to obtain the attractor of an iteratedtfan system [6] to develop
a domain-theoretic semantics for general hybrid autonidta.denotational semantics

* This work has been partially supported by DFG (Germany) hedEuropean Union

assigns to every time pointhe setf] H](¢) of states that the automatdh can enter at
time ¢. The semantic functiofif] is obtained as the least fixpoint in the (continuous)
domain of compact-set valued functions of a real variabler. fdst main results are
correctness and computational adequacy of this denotd@mantics w.r.t. the oper-
ational semantics, given in terms of a labelled transitigstesm. Moreover, standard
techniques of domain theory allow us to actually compute thinction. The impli-
cations are twofold: we obtain new results on the computglaf trajectories in the
domain theoretic model, and our analysis gives rise to atijrénplementable algo-
rithm that computes approximations to the semantic fundfi] up to an arbitrary
degree of accuracy. As the algorithm works on proper datestyglefined e.g. over the
dyadic numbers, this property is moreover guaranteed fplementations.

The paper is divided in two parts. In the first part, we focuflow automata, where
the behaviour of the continuous variables in every disaretdrol state is governed by
flow functions, which behave like the solutions of ordinaiffedential equations. We
impose two conditions on the automata under scrutiny: fistiequire that the ingredi-
ents of the automaton give rise to Scott continuous funstmnthe respective domains.
In order to show that the least fixpoint precisely capturesréachable states, we as-
sume that the automaton is separated, i.e. has no trantiged svhich the automaton
can leave immediately (after O time units) after entering. d¢cuss these restrictions
by means of examples, and show that the semantic functiociassd with a flow au-
tomaton cannot be computable in absence of these properties

In the second part of the paper, we transfer the resultsraatao hybrid automata,
where the trajectories of the continuous variables arengiyea vector field. By instan-
tiating earlier results on domain theoretic solutions @fahvalue problems, we reduce
the problem of computing the semantic function of a hybritbenaton to that of a
flow automaton. Taken together, the domain theoretic agpbrpaovides a new com-
putational model for the analysis of hybrid systems, an@grise to both new com-
putability results, and directly implementable data tyaed algorithms for the analysis
of non-linear systems.

Related Work. We have already mentioned symbolic techniques for the aisady
linear hybrid automata [3] and their implementation in theTeich model checker [13].
The domain theoretic approach of this paper is related tintkeval analysis approach
of [15], where interval numerical methods are used to compuer-approximations of
the set of reachable states. In contradbtocit., where outward rounding is required
if the result of an arithmetic operation is not machine repreable, the domain theo-
retic model of computation actually allows to compute theaastic function up to an
arbitrary degree of accuracy.

2 Preliminaries and Notation

We use basic domain theoretic notions, see e.g. [1,11]. tticpar, our analysis
employs the following domains defined over the real numb#rs: domain ofn-
dimensional compact rectangles extended with a least efeme

IR" = {a C R™ | a nonempty compact rectanglel {R"},

ordered by reverse inclusion, and #isdended upper space
U'R" = {¢ C R" | ¢ compac} U {R"}

of compact subsets d&", also ordered by reverse inclusion. Note that the extended
upper space arises by extending the upper space [5] witrothelementT = 0. A
closedsemi rectanglén R” is of the forma; x - - - x a,, Where thez; are closed (hot
necessarily bounded) intervalsin If A is a semi-rectangle, we wril = {ANr | r €
IR"} andU" A = {ANc| ¢ € UTR"} for the sub-domain of all elements aboveln
particular, we will consider the domalif0, o), whose bottom element is= [0, c0).
For a semi rectanglk, IA is a continuous Scott domain akd A is a continuous lattice.
We often considefA C U' A as a sub-domain without making this explicit; similarly,
we identify z € R” with the degenerate hyper-rectangle} ¢ IR® C UTR". We
write L = A for the least element of boflA andUT A, and T = {) for the top element
of UT A. Note that the way-below relation, bothTA andU' A, is given bya < b iff
b C a°, wherea? is the interior ofa.

If (C;)ier is a family of compact subsets; C R"™, we identify (x;);c; €
[T.c; U C; with the set{(i,y) | i € I,y € x;} for convenience of notation. Note that
this induces a membership predicate and subset relatiaohwbhe explicitely given by

(4,2) € (xi)ier <= z € xjand(z;)icr C (Yi)ier <= Vi€ lL.a; Cy;

where(z;);c;r and(y;)icr € Hiel U'C;,jelandz € C;. Moreover, we obtain two
continuous mapg), |, whose explicit definition reads

o (H U ;)2 — HUTC/@, ((zi)ier, Wi)ier) = (xiOyi)ier
icl iel
where< € {1, J}. Note that, domain theoreticallf) is the least upper bound and
U gives us the greatest lower bound of two elementf]of, U' C;. We always con-
sider sub-domains of the upper space or the interval donsadégaipped with the Scott
topology.

The symbol=- is used for the continuous function space. In particulars&mi
rectanglesA, B, we consider the sé¢A = U' B) of functionsf : A — U'B which
are continuous with respect to the Euclidean topologyA@and the Scott topology on
U' B. Similarly, (UT A = U' B) denotes the set of functions that are continuous w.r.t.
the Scott topology ofJT A andU' B; the same applies to the interval domain.

We extend the ordinary arithmetical operations to the ugpeace without further
mention. In particular, we writeCb = {zOy | € a,y € b}, where® € {+,—, %, /}
anda, b € UTR". (We adopt the standard convention thagb =1 if 0 € b.)

It is a straightforward exercise to see that Scott contisufwnctions of type
A — U' B are precisely the semi continuous functions of set-valuedyais [4]. More
concretely, we have thgt: A — U' B is Scott continuous, iff

Vz € AVe > 03§ > 0V2' € B(z).f(2") C f(x) + Bs

whereB.(z) = {2’ € A | ||z — 2/|| < ¢} andBs = Bs(0). Note that we have the Scott
continuousextension mapping

£:(A=U'B) > (UA=UB),f— X[] flv),

yex

and it is an easy exercise to show that this greatest lowemd@uactually given by
directimage, i.e€(f)(z) = U{f(v) | y € =}.

3 Flows and Flow Automata

We begin our study of hybrid automata by first discusdiowy automatawhere the
continuous evolution in every control state is an expljcglven flow function. This
will subsequently be shown to be equivalent to the caselieatdntinuous evolution is
specified by a vector field in Section 6. For flow automata,edé@crete control state
comes with a flow function that behaves like the solution ofratial value problem,
and governs the evolution of the continuous variables ihstze.

Definition 1. Aflow is a continuous functiorf : R x [0, 00) — R™, which is contin-
uously differentiable w.r.t. its last argument, such thiét,0) = z and f(z,s + t) =
f(f(z,s),t) forall z € R™ ands, t € [0, 00).

Thatis, a flowf : R" x [0,00) — R™ behaves like the solution of an initial value
problemf(t) = v(f(¢)), f(0) = z, wherev is defined on the whole of Euclidean space
R™. Note that flows typically arise as solutions of initial velproblems:

Lemma 1. Suppose : R® — R™ is a Lipschitz vector field. If (z,-) denotes the
(unique) solution of the initial value probleif{z, t) = v(f(x,t)), f(z,0) = z, thenf
is a flow. We say thaf is theflow induced byw.

We now introduce continuous flow automata.
Definition 2. A flow automatorin R" is a tupleF’ = (Q, inv, flow, res, init) where

— @ is afinite set of discrete control states

— inv = (inv(q))4eq is a family of state invariantsvith inv(g) C R"

— flow = (flow(q))qeq is a family offlow functionsflow(g) : R™ x [0, 00) — R™

—res = (res(p,q))p.qeq iS @ family of reset relationsvith res(p,q) : inv(p) —
P(inv(q))

— init = (init(q))4eq is a family ofinitial stateswith init(q) C inv(q).

We call a flow automatogompact if inv(q), init(¢q) € U'R"™ are compact for all
q € Q andres(p, q)(x) € UTinv(q) is a compact subset ofiv(q) for all p,q € Q
and all z € inv(q). A stateof a flow automaton is a tuplgy, =) with ¢ € @ and
z € inv(q). We writeSp = {(¢,z) | ¢ € Q,z € inv(q)} for the state space df and
ir ={(q,z) € S| x € init(q)} for the set of initial states.

Although our interest in the flow function will be restrictéol valuesflow(q)(z, t),
wherex € inv(q), the flow function is defined on the whole of Euclidean space fo
convenience.

The above definition of flow automata, while slightly diffateis equivalent to the
standard definition given e.g. in [3]. While our control s&fre in one-to-one corre-
spondence to the control locationslot.cit., the transitions between control states are

modelled in terms of a finite multisét C @ x @ of transitions, and an action predi-
cateact(v) C R™ x R™ is assigned to every transitiane V. In this terminology, the
automaton can change its state, say from igte) to state(¢’, 2’) iff there exists a
transition(q, ¢') € V with (z,z’) € act(v). In our terminology, this can be modelled
by the reset relatiores(q, ¢') = \x.{y € inv(q) | I(q,q") € V.(z,y) € act(q,q')}.

For the remainder of the paper, we assume that all flow autbaratcompact. Our
main interest lies in the comparison of the denotationales#its and the operational
semantics of a flow automaton. The latter is given in terms t#belled transition
system, where a label is either a non-negative real numthessignifies time, or,
indicating that the automaton is changing its discretercbstate.

Definition 3. Suppose&’ = (Q, inv, flow, res, init) is a flow automaton and le¥’ =
[0,00) U {7}. Theassociated transition systefix is the tuple(Sr, —), whereSg is
the state space df and—C S x X' x S is defined by the following two clauses:

flow transitions (q,x) —¢ (¢/,2') iff ¢ = ¢/, flow(q)(z, to) € inv(q) forall ty € [0, ¢]
andflow(q)(z,t) = «’
jump transitions (q,z) —7 (¢, 2’) iff 2’ € res(q, ¢')(x)

For statess, s’ € S, we writes —! s’ if there is a finite sequence of states. . ., s
with s =01 g3 —% ... 0k g — ¢ withdy,...,0, € X andzéke[oym) 0r = t. We
write init —¢ s iff there existg € ip withi —1 s.

An F-trajectoryis a finite or infinite sequendg;, ¢;, f;)i<ny WhereN € NU {oo}
such that(¢;);<n is non-decreasing if0, c0), (¢;)i<n IS @ sequence id) and f; :
[ti—1,t;] — R™is a function (we use the convention that = 0) that, foralli < N,
satisfies

— f()(tfl) S init(qo) and (Qia fl(tzfl)) —t (Qia fi(tifl + t)) forall t € [tifl, tz]
= (ai; fi(t:)) =7 (git1, fiva(E)).

We denote the set of possible states of the autonfatattimet by Rx(t) and the set
of all states the automaton can visit up to titiey Vi (¢), formally defined by

Rp(t) = {s € Sp | init =% s} and Vg(t) = U{RF(S) | s <t}
wheret € [0, 00).

Note that by assumptiofipw(¢;)(fi(ti—1),t) = fi(t;—1 +t). Compared with the defi-
nition of trajectories in [2], it is straightforward to véyithat, under the correspondence
outlined after Definition 2, our definition of trajectorieig@s rise to the same semantics.

We now turn to the main issue of the present paper and desitrébaecessary
ingredients needed to perform domain theoretic analysia dibw automatonf'.
Our main goal is to define a domain theoretic semantic fundlig] : [0,00) —
[T,cq UTinv(q). The function[F] associated to every time poitite [0, 00) an ele-
mentof[[., U'inv(q). Thatis, to every pointin timewe associate a famils,),co,
with s, C inv(q), of compact sets such thftg, z) | = € s,} = Rr(t). Having com-
putedRp, it is easy to derive a mechanism for computing the possilslijed states
Vr(t) at timet by unfolding the definition oV/». We demonstrate later, that it is also
possible to obtaivy directly as a fixed point.

The goal of the construction is to givecantinuoussemantics of flow automata: if
the automaton igffectively giveni.e. bothflow andres arise as limits of sequences of
finitary approximations witflow = | |, fr andres = | |, . 7%, then we can effec-
ti\{ely obtai.na,C : [0,00) — quQ inv(q) such thafl F] = | |, o ox. This provides us
with three important properties:

1. Everyoy, is aconservative approximatioof the semantics of”, for k > 0

2. The semantics af' can be computed up to an arbitrary degree of accuracy

3. The algorithm for computing;, can be implemented on a digital computer without
loss of precision

Clearly, continuity of the semantics mappifi§ can only be achieved if we restrict
attention to flow automata, whose components are continddus motivates the next
definition.

Definition 4. A flow automatod = (Q, inv, flow, res, inv) is continuousif res(p, q) :
inv(p) — UTinv(q) is Scott continuous for a}, ¢ € Q. We say thaf" is separatedf

— z € res(p, q)(y) implies thatres(g,7)(x) = @ forall p,q,r € Q andy € inv(p)
— z € init(q) implies thatres(q, r)(z) = @ forall ¢, € Q

While the continuity condition onres is clearly enforced by our goal to be able to
approximate the semantics of flow automata, the separatiogition tells us that there
are no transient states, i.e. the automaton cannot perfats changes frony, to g1,
and subsequently from to ¢ without remaining in state; for a non-zero amount of
time.

We will see later that separation and continuity imply tHa automaton under
scrutiny is non-zeno. While we believe that all of our resulan be established even
for non-separated automata under the additional assumipiéb the automata are non-
zeno, the main benefit of the separation property is thatitig easy to verify.

For a continuous flow automaton, the famihs(p, ¢), e induces a generalised
IFS on the extended upper spacesisf(p), for p € @, as we will see in Definition 5
later on. The following example discusses the requirenmiatrtsduced in Definition 4.

Example 1.We consider the following varianf' of a thermostat automaton, see e.g.
[14]. Let @ = {on,off} with inv(q) = [1,3] for ¢ = on, off. The flow functions are
given by the differential equatiof®w (on)(xo, -) = the unique solution of = —x +
5,2(0) = xo, and similarly,flow(off)(xo, -) = the unique solution of = —z, z(0) =

xg, with initial state(on, 2). We fix two subsets, ¢» C [1, 3] and letres(on, off) (z) =
{x} N 1. The functionres(off, on) is given byz — 1, if x € [0,1], andz +— 0
otherwise. Graphically, the automaton can be displayeal&snas, wherer’ denotes
the value ofr after the change of control states.

TEP

' e

z € [0,1]

We now discuss several alternatives for the geamde, and relate them to continuity
of the induced automaton.

1. Suppose) = (1,2). Thenres(off,on) does not take values " 1, 3], as(1, 2)
is not compact, hences(off, on) is not a well defined function of typg, 3] —
U'[1,3].

2. Suppos® = (2, 3]. Then theF is not continuous, as far = 2 ande > 0, we fail
to find§ s.t. for allz’ € Bs(x) we haveres(on, off)(2’) € res(on, off)(z) + B..

3. If both¢ andy are compact, theh' is continuous.

4. We have that" is separated, ify N [0, 1] = ¢ N = P andg N {2} = 0.

To verify continuity of the reset functions in practice, athat Scott continuity is pre-
served by function composition, hence all combinationsamftScontinuous functions
will be Scott continuous. In particular, we note that thddwing functions are Scott
continuous, and thus can be used as building blocks for fesetions.

Proposition 2. Supposé, B € U'R".

1. All step functions b rea®

aN\,b:A—>UB, z+— .
1 otherwise

are continuous for. € UT A, b € U' B, wherea® denotes the interior of.

2. All co-step functions
- {b T Ea

a~b:A—U'B, _
T otherwise

are continuous fon € UTA, b € U'B.
3. All functions
<b:A—-UB, z— {z}Nb

are continuous fob € UTB

4. 1f f1,f> : A — UTB are continuous, then so i U fo : A — U'B,z —
f1(@) U fa().

5. If (fi)ier is directed (w.r.t. the pointwise ordering), thef); fi : A — U'B,z —
|l;c; fi(x) is continuous.

The previous proposition gives some general constructimeiples for continuous hy-
brid automata, and can be applied to show that a large cldlsswodutomata are actually
continuous. We now turn to the separation property. Thefallg example, which is
a variation of the bouncing ball automaton [19] shows, thatgeparation property is
vital for the computability of the semantic function assaed with a flow automaton.

Example 2.Consider the automataf = (Q, init, flow, res, inv) with

-Q={q}
inv(q) = [0, 1] oo
ﬂOW(’I’, t) —r4aq-t —_— z'e{2z,—22}N[0,1]
res(x) = {2z, —22} N[0, 1]

— init(q) = {0}

wherea € R is a computable real number, as depicted on the right abaygpdse
we can effectively find a sequence of functioRs : [0,1] — U'|[0,1] such that

Lsen B = Rp. Then clearlyR(1) = {0} iff « = 0, andR(1) N [1/2,1] # 0 iff

a > 0.As R(1) = ey Bx(1), this implies that we can semi-decide whether 0.
Together with a semi decision procedure ot 0, we arrive at a decision procedure
for a = 0, which is impossible, see e.g. [21].

Recall that a flow automaton Benq if it admits a trajectory(t;, g:, fi)i<oo With
sup, . ti < 00. The key consequence of separation, which makes it pogsiloiem-
pute the semantic function associated with a flow automédhat separated automata
are non-zeno. This is the content of the next proposition.

Proposition 3. Supposé is separated and continuous. Theris non zeno.

Note that, while the fact that an automaton is separatedficisnt for it being non-
zeno, the separation property is not necessary. Considexﬁmple the automaton

with reset relationsres(up, trans) = res(trans,down) = Az.{z} N {1} and
res(down,up) = Az.{z} N {-1} and initial state(up,) Then clearlyF is non-
zeno, butF' is not separated. This suggests that the separation pyagertbe relaxed,
and one just needs to require that there is no finite l@gpzo), (g1, 1), - - -, (¢, 1)
with ;11 € resy, ¢,,, (z5) @andxg € resy, 4, (7;), but we refrain from doing so, as the
technical complications would obscure the techniqueseh#art of our analysis.

4 Denotational Semantics of Continuous and Separated Autoata

We now turn to the main objective of the present paper andritbesa computa-

tional method for obtaining?z for a continuous and separated flow automatan

Our technique will compute the functioRg as least fixpoint of a functional of type
([0,00) = U) — ([0,00) = U), whereld =] ., U'inv(q). We first introduce some
terminology to make the notation more readable.

Definition 5. Supposé’ = (Q, inv, flow, res, init) is a flow automaton. The function
fr:U x1[0,00) — U,
((zg)qeq: @) = ({flow(q)(yq:t) | yq € T4, t € @, Vs < t.How(q)(yq, s) € Inv(q)})eeq
is called theextended flow functiorand
rr iU = U, (2q)qeq — (U E(res(p, 9))(xp))qeq
PEQ

is the extended reset function. If the automakodis clear from the context, we omit the
corresponding subscript.

While the extended reset function collects all the fundtien(p, ¢) in a single map, the
rationale behind the definition of the extended flow funci®moreover that we need
to cut out those portions of the flows that leave or re-entéate snvariant. Pictorially,

this leaves us with the shaded region displayed in Figuréi$.dasy to see that both

flow(q)

—a-
.
2

—z

Fig. 1. The functionsf (e, -) (left) andp* (right)

the extended flow function, and the extended reset functi®$aott continuous.
Lemma 4. If F'is continuous, then botfir andrr are Scott continuous.

With this notation, we are now ready to introduce the key ephof the present paper:
the forward action associated with a flow automaton. As wé seé later, the least
fixpoint of this operator captures the set of of states theraaton can engage in at
timet and, moreover, can be effectively computed.

Definition 6. Supposé- is a flow automaton. The operator

Bp : ([0,00) = U) — ([0,00) = U), p = M. fr(ip,t) U fr(re(p(s).t — s))

s<t
is called theforward actionassociated with.

The forward action combines the discrete action and theirnamts flow, and can be
seen as a generalisation of the fixpoint operator associdthan IFS [6]. Our goal is
to show that the least fixpoint of the forward action is prelgighe functionR g that
computes reachable states. In order to compute this fixpfi@ttively, we first have
to ensure tha® - is compatible with approximations, i.@ is well-defined and Scott
continuous.

Lemma 5. Both®(p), for p € ([0, 00) = U), andPr are Scott continuous.

Continuity of & now guarantees the existence of a least fixpoin® pf which we
denote by[F] throughout. We now examine this fixpoint and show that it jzelg
captures the set of afl-trajectories.

In order to show soundness, it is convenient to formulajedtaries as maps into
the upper space. In order to turn the trajectories into Smitinuous functions, we
let the induced function take a non-singleton set as valueneter the discrete control
state changes. Belowgn(x) € {—1,0,+1} is the sign ofr € R.

Lemma 6. Suppose_; : [-1,0] — Rand fy; : [0,1] — R are continuous. Then
the functionf & g : [-1,1] — U'R, defined byt — {funw (t)}, if ¢ # 0, and
t — {f(0),¢(0)} otherwise, is Scott continuous.

For F'-trajectories, we have the following corollary. Note tHat tondition on trajecto-
ries is automatic for continuous and separated automata.

Corollary 7. Supposé is a flow automatop = (¢;, g, fi)i<n IS a F-trajectory with
sup, t; = oo in caseN = oo. Then

phi[0,00) = U, t— {(qi fi(t) |t € [ti1, 8]}

whereq € @, is Scott-continuous. MoreoveRr(t) = U{p*(t) | pisanF —
trajectory}, if F' is a flow automaton.

The functionp® is visualised on the right hand side of Figure 1. The nexestant is a
stepping stone for proving the soundness of our approaclshte, that applyin@r,
we do not lose any trajectories; hence starting the fixpténafion from the everywhere
undefined function, the least fixpoint is guaranteed to cailérajectories.

Lemma 8. Supposef’ is separated and continuoug,is an F-trajectory ando €
([0, 00) = U) with o T pf. Thend (o) C pF.

Note that the proof of the previous theorem relies on sepdnatss. Using the above
result, correctness of the fixpoint construction is verydashow.

Corollary 9 (Correctness).Supposé is continuous and separated. Ther [F](¢)
if init —% sforall s € Sy andallt € [0, 00).

While the previous result asserts soundness, we now tummnpatational adequacy of
the construction, i.e. we show thRi- = [F], where[F] is the least fixpoint 0f 5.

Theorem 10 (Computational Adequacy).SupposeF' is separated and continuous.
Thens € [F](t) iff init —¢ sforall s € Sr and allt > 0.

The proof of the theorem in fact demonstrates, that any fangte ([0, co) = U) with

p C [F], that does not arise as dfttrajectory, necessarily leads to a violation of the
separatedness property. Unfolding the definitioVpf we also obtain computational
means to obtain the states of a flow automatothat can be visited up to timg in
terms of the least fixpoirftF'] of the forward action associated with This then gives
Vr(t) = U,<; Rr(s). However, we can also obtalry- as a fixpoint of an operator in
its own right.

Definition 7. The operator

Ur: ([0,00) = U) — ([0,00) = U),p— frir,[0,t])U U fr(re(p(s),[0,t—s]))

s<t

is thevisited states operatassociated withF'.

The properties o¥r are similar to those ob g, in particular W is Scott continuous,
and the least fixpoint captures the set of visited stateseNtomally:

10

Theorem 11. Suppose : [0,00) — U is the least fixpoint oF . Thenp = Vp.

While Theorem 10 and Theorem 11 are important on their owrthe allow us to
obtain the semantics of hybrid automata as a least fixpomtinitable function space,
they also allow us to derive new results about the funcfignthat yields the states
reachable at timefor continuous and separated automata:

Corollary 12. 1. Rp(t) andVg(t) are compact for every € [0, c0).
2. Rr andVr are Scott continuous.

5 Approximation of Flow Automata

We have seen that the semantj@] : [0,c0) — U of a flow automatorF’ can be
computed as the least fixpoint of a functional @, co) = U/). While this gives a
mathematical means of understanding the semantics, we Inow, shat this also in-
duces a method to compute the semantics up to an arbitrargelefjaccuracy.

To do this, we restrict attention to countable bases of thelwed domains, that
is, to finitely representable objects, that generate ahefihvolved domains by means
of directed suprema. We show, that we can effectively comphe least fixpoint of
the functional up to an arbitrary degree of accuracy, if weragimate all continuous
ingredients of the automaton. We begin by introducing treebaf the domains we are
interested in. For the remainder of the section, we fix a aliatdense ordered subring
D = {dy,ds, ...} with decidable equality and order, and computable ring afjp@ns.
We putDy, = {dp, ..., dr}. We only treat the case of computify- as a least fixpoint;
the setup can be easily adapted to accommodaté/also

Definition 8. We let, for an arbitrary sef C R, IR% = {[a1,b1] X -+ X [an, by] €
IR" | ay,...,an,b1,...,b, € S} U {R} denote the set of rectangles with endpoints
in S, augmented with the least eleméutlf A C R” is a semi rectangle, thelAs =
{ANb | b e IRY} denotes the set of rectanglés € IR™ that are contained i
and have corners ir¥, again with a bottom element. We distinguish two kinds qf ste
functions:
a\ib:A—>B,xn—>{ boa<a

1 otherwise

b xz€a’

. and aN\,b:A—B,z+—
1 otherwise

whereB is a dcpo withb € B in both casesA C R™ is a semi rectangle with € TA in
the case ofi * b, andA is a dcpo witha € A for a ™\, b. We use the following bases:

1. If A C R" is a semi-rectangle with corners i U {+oco}, then the selAp of
rectangles contained iA and corners inD is called thestandard basef IR™.

2. IfA € IR}, then the seU"Ap = {Ui<i<kD; | i € N, D; € IAp} of finite unions
of rectangles with corners i is therectangular basef UT A.

3. If (4;)p is abase of the dcpd;, then(A; x - - x A,)p = (A1)p X -+~ X (Ak)p
is the base ofi; x --- x Ay induced by the components.

4. If Ap andBp are bases of the dcpds and B, respectively, thefA = B)p =
{U;icicp @i \bi € (A= B)|ai,...,ar € Ap,b1,...b, € Bp} is the rectan-
gular base of A = B).

11

5. Finally, if A C R™ is a semi rectangle with corners it U {+oo} andBp, is a base
of the dcpoB, then(A = B)p = {||;c;cpai N\ b € (A= B) | a1,...,a; €
IAp,b1,...,b; € Bp is the induced base of 6A = B)

where we indicate by |, ;. a; \. b; € (A = B) that we consider only consider
consistent step functions [8, Section 2], similarly E{Sigk a; \\! b;.

In words, ifA, B C R™ are semi-rectangleBA p is the set of rectangles containedAn
with corners inD andUT A, is the set of finite unions of rectangles with corner®in
For the function spacéA = U'B)p, is the induced base of the space of functions of
one or more real variable§J" A = U'B)p, is the induced base of the function space
of a compact set valued variable.

Itis easy to see that the sets introduced above are indeed btihe corresponding
domain. We now use these bases to show, that the fixpointtopéra associated to a
flow automaton can be effectively computed, given approkiona of the components
of the automaton. In order to make assertions about the ctabitity of functions in
the domain theoretic model of computation, we have to fix am@ration of the base
of the involved domains. We do not do this explicitely herat instead assume that
the baseg-)p above come with an effective enumerationN — (-)p, which is fix
throughout. In particular, the enumeration gives rise t@ton of effective sequence
If Ais a dcpo whose base is enumeratedividN — Ap, then a sequend@y,)xen in
Ap is effectiveif ar, = «(f(k)) for some total recursive functiofi

First, note that composition of base functions yields a Basetion, and that the
extension function is effectively computable.

Lemma 13. Supposg € (A = U'B)p andg € (U'B = U’ C)p. Then

1. gofe (A= U'C)pandgo f is effectively computable.
2. £(f) € (UTA = U'B)p and&(f) is effectively computable.

The next lemma gives a basis representation of subtraatibith is needed in the
definition of the fixpoint functiona® » associated witl#’, see Definition 6.

Lemma 14. The functionsM}, : [0,00)? — 1[0, 00), defined byM;, = | [{a x b \,
b—a| a,b € I0,00)p, } satisfyM € ([0,00)? = I[0,00))p forall k € N, and
Uken My = Mz, y).y — 2.

Building on these basic facts, we can now show, that the fegsiint of the operator
& associated with a flow automaton is effectively computablés of course hinges
on the fact that the automaton is effectively given:

Definition 9. Supposé&’ = (@, init, flow, res, inv) is a flow automaton. We say that
is effectively givenif it comes with

— an effective sequen¢é) ,en in (UTinv(q)) p with | |,y @7 = init(q)

— an effective sequen¢g)xen in (R™ x [0,00) = IR™)p with| |, . f = flow(q)

— an effective sequenc@??)sey in (inv(p) = Ulinv(q))p with | |, r¢ =
res(p, q)

12

forall ¢ € Q, resp. all(p,q) € Q% andinv(q) € U'RY, for all ¢ € Q. The family

of sequence§f})ken, (if)ren (Whereg € Q) and (r1"?)cen (Where(p, q) € Q?) are
called aneffective presentatioaf F'.

That is to say that, for an effectively given flow automatdg initial states, the flow
functions and the reset functions are computable. It is easge that every effectively
given flow automaton induces a computable extended flow fmmcand a computable
extended reset function. Spelling this out, Lemma 13 andrharh4, together with the
Scott continuity ofPr, allow us to prove our second main theorem:

Theorem 15. SupposeF' is an effectively given flow automaton. Then we can effec-
tively obtain a sequende) with | |, . o = [F].

6 Hybrid Automata

In this section, we transfer our results on flow automata faridysystems, where the
continuous behaviour of the system in every given contiatiests described directly
by a vector field. This is achieved by associating the egeintdlow automaton to the
hybrid automaton under consideration. If the hybrid auttmmas effectively given,
we show, that the same also holds for the induced flow autamélte thus obtain an
effective framework for the analysis of hybrid automatae Tollowing is a variant of
the standard definition of a hybrid automaton [12,2].

Definition 10. A hybrid automatonis a tuple H = (Q,inv, vect, res, init) where
@, inv, res, init are as in Definition 2, andrect = (vecty)qeq is a family of vector
fieldsvect(q) : R® — R™ where allvect(q) are assumed to be globally Lipschitz, i.e.
[lvect(q)(x) — vect(q)(y)|| < L||lx — y||, forall ¢ € Q, z,y € R™ and somd. € R.

In contrast to the standard definition, the trajectoriehefreal variables are described
by a differential equation rather than differential inéars We require this restriction
in view of the domain theoretic treatment of differentiabiations [9], which in general
gives a strict over-approximation to the solution of diffietial inclusion.

We recall from Lemma 1, that every Lipschitz vector field R — R™ induces
a flow functionf : R™ x [0,00) — R™. The main reason for restricting attention to
vector fields that are globally Lipschitz is that the indudledvs are globally defined,;
we believe that similar results can be obtained for vecttadiezhose associated flows
don'’t diverge. Replacing the vector field by the induced flawdtion, every hybrid
automator¥ induces a flow automataf; in this case, we writ§ H] for [F].

Definition 11. SupposeH = (Q,inv,vect,res,init) is a hybrid automaton and
flow(q) is the flow induced byect(q). The automatorf’ = (Q, inv, flow, res, init)
is called theflow automaton induced b¥/. We say thaf{ is continuous (resp. sepa-
rated), if the induced flow automaton is continuous (respassted). We say thatl is
effectively givenif it comes with

— an effective sequen¢é),y in (U inv(q))p with | |, oy it = init(q)
— an effective sequence;)ren in (IR™ = IR™)p with | |, . v}l = vect(q)

13

— an effective sequenc@??)rey in (inv(p) = Ulinv(q))p with | |, r? =
res(p, q)

forall ¢ € Q, resp. all(p,q) € Q% andinv(q) € U'RY, for all ¢ € Q. The family
of sequence&)ren, (v])ren (Whereq € Q) and (r}?)zen (Where(p, q) € Q?) are
called aneffective presentatioof H.

We have seen in Theorem 15, that the funcfiétj associated with a flow automaton,
which captures the states reachablefbgt timet € [0, o), is effectively computable,
if F is effectively given. In order to associate an effectivelyeg flow automaton to
an effectively given hybrid automaton, we therefore havermduce approximations
fr € (Il eq nv(g) x [0, 00) = U) of the flow function induced by a hybrid automaton.
In other words, we have to solve the initial value problenféngel by the vector field
that defines the hybrid automation. This is achieved by migttng results from [9,10],
where it is shown how to solve initial value problems in a domtheoretic framework.

Theorem 16. SupposéeH is an effectively given hybrid automaton. Then so is the in-
duced flow automatof’. Moreover, we can construct an effective presentatiof’ of
from an effective presentation &f.

Together with Theorem 15, we have now shown, that the semfamiction[H], asso-
ciated with an effectively given hybrid automaton, is cornatle:

Theorem 17. Supposé is effectively given, continuous and separated. Then e fu
tion [H] : [0, 00) — U is effectively computable.

Moreover, as all our constructions are based on bases ofdimaids involved, the
algorithms underlying Theorems 17 and 15 are based on pdapertypes, and can be
directly implemented on a digital computer: we choose thadity(or rational) numbers
for D, and then define data types that directly represent the Bases , andip,
as well as the bases of the function spéfecc) = U)p. Computing with dyadic
(or rational) numbers then allows us to manipulate elemefitise data types without
any loss of arithmetical precision. Moreover, we have shtivah the fixpoint operator,
that gives rise to the semantic functipH| of a hybrid automaton, can be effectively
computed on the described data types.

Conclusions and Future Work. Of course, much remains to be done. While the
presentation in this paper is geared towards demonstridiiig domain theory has all
the necessary tools to facilitate the algorithmic analg$isybrid automata, we antici-
pate that major improvements will be made on the efficiendi®fnvolved algorithms.
In particular, we are working towards rigorous estimatethefconvergence speed and
the complexity of the described fixpoint algorithms in terofithe Hausdorff distance
in U, which will also allow us to make concrete assertions abbetdomputational
complexity of our method. For now, we have concentrated anmding the semantic
function[H] associated with a hybrid automaton. Future work will brirfgeenework
for computing the set of reachable states of a hybrid automaind a real time logic
with associated model checking procedure for the automagefication of hybrid au-
tomata.

14

References

1. S. Abramsky and A. Jung. Domain Theory. In S. Abramsky, @bleay, and T. S. E.
Maibaum, editorsHandbook of Logic in Computer Scienomlume 3. Clarendon Press,
1994.

2. R. Alur, C. Courcoubetis, N. Halbwachs, T. HenzingetHPHo, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine. The algorithmic analysis of hgltsystems.Theoret. Comp. Sci
138(1):3-34, 1995.

3. R. Alur, T. Henzinger, and P.-H. Ho. Automatic symbolicifieation of embedded systems.

IEEE Transactions on Software Engineeri22(3):181-201, 1996.

J.-P. Aubin . Viability Theory Birkh&auser, 1991.

A. Edalat. Dynamical systems, measures and fractalsari@adh theory. Information and

Computation120(1):32-48, 1995.

6. A. Edalat. Power domains and iterated function systemformation and Computatign
124:182-197, 1996.

7. A. Edalat, M Krznai, and A. Lieutier. Domain-theoretic solution of differedtequations
(scalar fields). IfProceedings of MFPS XIXolume 83 ofElect. Notes in Theoret. Comput.
Sci, 2004.

8. A. Edalatand A. Lieutier. Domain theory and differentialculus (functions of one variable.
Math. Struct. Comp. Sg¢il4, 2004.

9. A. Edalat and D. Pattinson. A domain theoretic accountazr’s theorem. IiProc. ICALP
2004 number 3142 in Lect. Notes in Comp. Sci., pages 494-5054.200

10. A. Edalat and D. Pattinson. Domain theoretic solutiohmitial value problems for un-
bounded vector fields. In M. Escardd, editBroc. MFPS XX| Electr. Notes in Theoret.
Comp. Sci., 2005. to appear.

11. G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Misepand D. ScottContinuous
Lattices and DomainsCambridge University Press, 2003.

12. T.Henzinger. The theory of hybrid automata. In M. Inad BnKurshan, editor&/erification
of Digital and Hybrid Systemsolume 170 ofNATO ASI Series F: Computer and Systems
Sciencespages 265-292. Springer Verlag, 2000.

13. T. Henzinger, P.-H. Ho, and H. Wong-Toi. HYTECH: A modeecker for hybrid systems.
International Journal on Software Tools for Technologyrster, 1(1-2):110-122, 1997.

14. T.Henzinger, P.-H. Ho, and H. Wong-Toi. Algorithmic &rsés of nonlinear hybrid systems.
IEEE Transactions on Automatic Contydi3:540-554, 1998.

15. T. Henzinger, B. Horowitz, R. Majumdar, and H. Wong-Tdeyond HYTECH: Hybrid
systems analysis using interval numerical methodsPrbee. HSCC 2000volume 1790 of
Lect. Notes in Comp. Scpages 130-144. Springer, 2000.

16. J. E. Hutchinson. Fractals and self-similarityydiana University Mathematics Journal
30:713-747, 1981.

17. J. Lygeros, D. Godbole, and S. Sastry. Verified hybridrotlers for automated vehicles.
IEEE Transactions on Automatic Contrdi3(4):522-539, 1998.

18. O. Miiller and T. Stauner. Modelling and verification gglimear hybrid automata — a case
study. Mathematical and Computer Modelling of Dynamical Systes(ik):71-89, 2000.

19. S. Simic, K. Johansson, S. Sastry, and J. Lygeros. Tewagkometric theory of hybrid
systems. In N. Lynch and B. Krogh, editoRroc. HSCC 2000volume 1790 of.ect. Notes
in Comp. Sci.pages 421-436, 2000.

20. C. Tomlin, G. Pappas, and S. Sastry. Conflict resolutioif traffic management : A study
in muti-agent hybrid systemslEEE Transactions on Automatic Contrel3(4):509-521,
1998.

21. K. Weihrauch.Computable AnalysisSpringer, 2000.

os

15

