
Denotational Semantics of Hybrid Automata⋆

Abbas Edalat1 and Dirk Pattinson2

1 Department of Computing, Imperial College London, UK
2 Department of Computer Science, University of Leicester, UK

Abstract. We introduce a denotational semantics for non-linear hybrid au-
tomata, and relate it to the operational semantics given in terms of hybrid trajec-
tories. The semantics is defined as least fixpoint of an operator on the continuous
domain of functions of time that take values in the lattice ofcompact subsets of
n-dimensional Euclidean space. The semantic function assigns to every point in
time the set of states the automaton can visit at that time, starting from one of its
initial states. Our main results are the correctness and computational adequacy of
the denotational semantics with respect to the operationalsemantics and the fact
that the denotational semantics is computable.

1 Introduction

A hybrid automaton [12,2] is a digital, real-time system that interacts with an analogue
environment. Hybrid automata are ubiquitous in all areas ofmodern engineering and
technology. For example, the (digital) height control of anautomobile chassis depends
on and influences the (continuous) driving conditions of thevehicle [18]. Hybrid au-
tomata typically operate in safety critical areas, such as the highway control systems
[17] and air traffic control [20]. They combine a finite set of control states with contin-
uous dynamics. In every control state, the continuous variables evolve according to an
ordinary differential equation and the system changes control states if the continuous
variables reach certain thresholds.

One of the key concerns in the theory of hybrid automata is thealgorithmic verifica-
tion of safety critical properties. This problem is well understood for linear systems [3]
and implemented in the model checker HyTech [13]. The situation for non-linear sys-
tems is, not surprisingly, much less satisfactory. While the approximation of non-linear
hybrid automata by linear systems is asymptotically complete [14], it results in a huge
blow-up in the number of discrete control states and associated state transitions, which
limits the possibilities of algorithmic analysis.

This paper presents an alternative approach. Conceptually, we regard a hybrid au-
tomaton as the integration of two different types of systems: the evolution of a family of
continuous systems, governed by differential equations, and the dynamics of a discrete
system given by a generalised iterated function system (IFS), see [16]. We synthesise
the domain-theoretic approach to solving differential equations [7,10] and the domain-
theoretic approach to obtain the attractor of an iterated function system [6] to develop
a domain-theoretic semantics for general hybrid automata.The denotational semantics

⋆ This work has been partially supported by DFG (Germany) and the European Union



assigns to every time pointt the setJHK(t) of states that the automatonH can enter at
time t. The semantic functionJHK is obtained as the least fixpoint in the (continuous)
domain of compact-set valued functions of a real variable. Our first main results are
correctness and computational adequacy of this denotational semantics w.r.t. the oper-
ational semantics, given in terms of a labelled transition system. Moreover, standard
techniques of domain theory allow us to actually compute this function. The impli-
cations are twofold: we obtain new results on the computability of trajectories in the
domain theoretic model, and our analysis gives rise to a directly implementable algo-
rithm that computes approximations to the semantic function JHK up to an arbitrary
degree of accuracy. As the algorithm works on proper data types, defined e.g. over the
dyadic numbers, this property is moreover guaranteed for implementations.

The paper is divided in two parts. In the first part, we focus onflow automata, where
the behaviour of the continuous variables in every discretecontrol state is governed by
flow functions, which behave like the solutions of ordinary differential equations. We
impose two conditions on the automata under scrutiny: first,we require that the ingredi-
ents of the automaton give rise to Scott continuous functions on the respective domains.
In order to show that the least fixpoint precisely captures the reachable states, we as-
sume that the automaton is separated, i.e. has no transient states which the automaton
can leave immediately (after 0 time units) after entering. We discuss these restrictions
by means of examples, and show that the semantic function associated with a flow au-
tomaton cannot be computable in absence of these properties.

In the second part of the paper, we transfer the results obtained to hybrid automata,
where the trajectories of the continuous variables are given by a vector field. By instan-
tiating earlier results on domain theoretic solutions of initial value problems, we reduce
the problem of computing the semantic function of a hybrid automaton to that of a
flow automaton. Taken together, the domain theoretic approach provides a new com-
putational model for the analysis of hybrid systems, and gives rise to both new com-
putability results, and directly implementable data typesand algorithms for the analysis
of non-linear systems.

Related Work. We have already mentioned symbolic techniques for the analysis of
linear hybrid automata [3] and their implementation in the HyTech model checker [13].
The domain theoretic approach of this paper is related to theinterval analysis approach
of [15], where interval numerical methods are used to compute over-approximations of
the set of reachable states. In contrast toloc.cit., where outward rounding is required
if the result of an arithmetic operation is not machine representable, the domain theo-
retic model of computation actually allows to compute the semantic function up to an
arbitrary degree of accuracy.

2 Preliminaries and Notation

We use basic domain theoretic notions, see e.g. [1,11]. In particular, our analysis
employs the following domains defined over the real numbers:the domain ofn-
dimensional compact rectangles extended with a least element

IR
n = {a ⊆ R

n | a nonempty compact rectangle} ∪ {R
n},

2



ordered by reverse inclusion, and theextended upper space

U
⊤

R
n = {c ⊆ R

n | c compact} ∪ {R
n}

of compact subsets ofRn, also ordered by reverse inclusion. Note that the extended
upper space arises by extending the upper space [5] with the top element⊤ = ∅. A
closedsemi rectanglein R

n is of the forma1 × · · · × an, where theai are closed (not
necessarily bounded) intervals inR. If A is a semi-rectangle, we writeIA = {A∩r | r ∈
IR

n} andU
⊤A = {A ∩ c | c ∈ U

⊤
R

n} for the sub-domain of all elements aboveA. In
particular, we will consider the domainI[0,∞), whose bottom element is⊥= [0,∞).
For a semi rectangleA, IA is a continuous Scott domain andU

⊤A is a continuous lattice.
We often considerIA ⊆ U

⊤A as a sub-domain without making this explicit; similarly,
we identifyx ∈ R

n with the degenerate hyper-rectangle{x} ∈ IR
n ⊆ U

⊤
R

n. We
write ⊥ = A for the least element of bothIA andU

⊤A, and⊤ = ∅ for the top element
of U⊤A. Note that the way-below relation, both inIA andU

⊤A, is given bya ≪ b iff
b ⊆ ao, whereao is the interior ofa.

If (Ci)i∈I is a family of compact subsetsCi ⊆ R
ni , we identify (xi)i∈I ∈

∏

i∈I U
⊤Ci with the set{(i, y) | i ∈ I, y ∈ xi} for convenience of notation. Note that

this induces a membership predicate and subset relation, which are explicitely given by

(j, z) ∈ (xi)i∈I ⇐⇒ z ∈ xj and(xi)i∈I ⊆ (yi)i∈I ⇐⇒ ∀i ∈ I.xi ⊆ yi

where(xi)i∈I and(yi)i∈I ∈
∏

i∈I U
⊤Ci, j ∈ I andz ∈ Cj . Moreover, we obtain two

continuous maps
⋂

,
⋃

, whose explicit definition reads

3 : (
∏

i∈I

U
⊤Ci)

2 →
∏

i∈I

U
⊤Ck, ((xi)i∈I , (yi)i∈I) 7→ (xi3yi)i∈I

where3 ∈ {
⋂

,
⋃

}. Note that, domain theoretically,
⋂

is the least upper bound and
⋃

gives us the greatest lower bound of two elements of
∏

i∈I U
⊤Ci. We always con-

sider sub-domains of the upper space or the interval domain as equipped with the Scott
topology.

The symbol⇒ is used for the continuous function space. In particular, for semi
rectanglesA,B, we consider the set(A ⇒ U

⊤B) of functionsf : A → U
⊤B which

are continuous with respect to the Euclidean topology onA and the Scott topology on
U

⊤B. Similarly, (U⊤A ⇒ U
⊤B) denotes the set of functions that are continuous w.r.t.

the Scott topology onU⊤A andU
⊤B; the same applies to the interval domain.

We extend the ordinary arithmetical operations to the upperspace without further
mention. In particular, we writea3b = {x3y | x ∈ a, y ∈ b}, where3 ∈ {+,−, ∗, /}
anda, b ∈ U

⊤
R

n. (We adopt the standard convention thata/b =⊥ if 0 ∈ b.)
It is a straightforward exercise to see that Scott continuous functions of type

A → U
⊤B are precisely the semi continuous functions of set-valued analysis [4]. More

concretely, we have thatf : A → U
⊤B is Scott continuous, iff

∀x ∈ A∀ǫ > 0∃δ > 0∀x′ ∈ Bǫ(x).f(x′) ⊆ f(x) +Bδ

whereBǫ(x) = {x′ ∈ A | ‖x− x′‖ < ǫ} andBδ = Bδ(0). Note that we have the Scott
continuousextension mapping

E : (A⇒ U
⊤

B) → (U⊤
A ⇒ U

⊤
B), f 7→ λx.

l

y∈x

f(y),

3



and it is an easy exercise to show that this greatest lower bound is actually given by
direct image, i.e.E(f)(x) =

⋃

{f(y) | y ∈ x}.

3 Flows and Flow Automata

We begin our study of hybrid automata by first discussingflow automata, where the
continuous evolution in every control state is an explicitly given flow function. This
will subsequently be shown to be equivalent to the case that the continuous evolution is
specified by a vector field in Section 6. For flow automata, every discrete control state
comes with a flow function that behaves like the solution of aninitial value problem,
and governs the evolution of the continuous variables in that state.

Definition 1. A flow is a continuous functionf : R
n × [0,∞) → R

n, which is contin-
uously differentiable w.r.t. its last argument, such thatf(x, 0) = x andf(x, s + t) =
f(f(x, s), t) for all x ∈ R

n ands, t ∈ [0,∞).

That is, a flowf : R
n × [0,∞) → R

n behaves like the solution of an initial value
problemḟ(t) = v(f(t)), f(0) = x, wherev is defined on the whole of Euclidean space
R

n. Note that flows typically arise as solutions of initial value problems:

Lemma 1. Supposev : R
n → R

n is a Lipschitz vector field. Iff(x, ·) denotes the
(unique) solution of the initial value problemf(x, t) = v(f(x, t)), f(x, 0) = x, thenf
is a flow. We say thatf is theflow induced byv.

We now introduce continuous flow automata.

Definition 2. A flow automatonin R
n is a tupleF = (Q, inv, flow, res, init) where

– Q is a finite set of discrete control states
– inv = (inv(q))q∈Q is a family ofstate invariantswith inv(q) ⊆ R

n

– flow = (flow(q))q∈Q is a family offlow functionsflow(q) : R
n × [0,∞) → R

n

– res = (res(p, q))p,q∈Q is a family of reset relationswith res(p, q) : inv(p) →
P(inv(q))

– init = (init(q))q∈Q is a family of initial stateswith init(q) ⊆ inv(q).

We call a flow automatoncompact, if inv(q), init(q) ∈ U
⊤

R
n are compact for all

q ∈ Q and res(p, q)(x) ∈ U
⊤inv(q) is a compact subset ofinv(q) for all p, q ∈ Q

and all x ∈ inv(q). A stateof a flow automaton is a tuple(q, x) with q ∈ Q and
x ∈ inv(q). We writeSF = {(q, x) | q ∈ Q, x ∈ inv(q)} for the state space ofF and
iF = {(q, x) ∈ S | x ∈ init(q)} for the set of initial states.

Although our interest in the flow function will be restrictedto valuesflow(q)(x, t),
wherex ∈ inv(q), the flow function is defined on the whole of Euclidean space for
convenience.

The above definition of flow automata, while slightly different, is equivalent to the
standard definition given e.g. in [3]. While our control states are in one-to-one corre-
spondence to the control locations ofloc.cit., the transitions between control states are

4



modelled in terms of a finite multisetV ⊆ Q × Q of transitions, and an action predi-
cateact(v) ⊆ R

n × R
n is assigned to every transitionv ∈ V . In this terminology, the

automaton can change its state, say from state(q, x) to state(q′, x′) iff there exists a
transition(q, q′) ∈ V with (x, x′) ∈ act(v). In our terminology, this can be modelled
by the reset relationres(q, q′) = λx.{y ∈ inv(q) | ∃(q, q′) ∈ V.(x, y) ∈ act(q, q′)}.

For the remainder of the paper, we assume that all flow automata are compact. Our
main interest lies in the comparison of the denotational semantics and the operational
semantics of a flow automaton. The latter is given in terms of alabelled transition
system, where a label is either a non-negative real numbers,that signifies time, orτ ,
indicating that the automaton is changing its discrete control state.

Definition 3. SupposeF = (Q, inv, flow, res, init) is a flow automaton and letΣ =
[0,∞) ∪ {τ}. Theassociated transition systemTF is the tuple(SF ,→), whereSF is
the state space ofF and→⊆ S ×Σ × S is defined by the following two clauses:

flow transitions (q, x) →t (q′, x′) iff q = q′, flow(q)(x, t0) ∈ inv(q) for all t0 ∈ [0, t]
andflow(q)(x, t) = x′

jump transitions (q, x) →τ (q′, x′) iff x′ ∈ res(q, q′)(x)

For statess, s′ ∈ S, we writes →t
∗ s

′ if there is a finite sequence of statess1, . . . , sk

with s →δ1 s1 →δ2 · · · →δk sk = s′ with δ1, . . . , δk ∈ Σ and
∑

δk∈[0,∞) δk = t. We
write init →t

∗ s iff there existsi ∈ iF with i→t
∗ s.

AnF -trajectoryis a finite or infinite sequence(ti, qi, fi)i<N whereN ∈ N ∪ {∞}
such that(ti)i<N is non-decreasing in[0,∞), (qi)i<N is a sequence inQ and fi :
[ti−1, ti] → R

n is a function (we use the convention thatt−1 = 0) that, for all i < N ,
satisfies

– f0(t−1) ∈ init(q0) and(qi, fi(ti−1)) →t (qi, fi(ti−1 + t)) for all t ∈ [ti−1, ti]
– (qi, fi(ti)) →

τ (qi+1, fi+1(ti)).

We denote the set of possible states of the automatonF at timet byRF (t) and the set
of all states the automaton can visit up to timet byVF (t), formally defined by

RF (t) = {s ∈ SF | init →t
∗ s} and VF (t) =

⋃

{RF (s) | s ≤ t}

wheret ∈ [0,∞).

Note that by assumption,flow(qi)(fi(ti−1), t) = fi(ti−1 + t). Compared with the defi-
nition of trajectories in [2], it is straightforward to verify that, under the correspondence
outlined after Definition 2, our definition of trajectories gives rise to the same semantics.

We now turn to the main issue of the present paper and describethe necessary
ingredients needed to perform domain theoretic analysis ofa flow automatonF .
Our main goal is to define a domain theoretic semantic function JF K : [0,∞) →
∏

q∈Q U
⊤inv(q). The functionJF K associated to every time pointt ∈ [0,∞) an ele-

ment of
∏

q∈Q U
⊤inv(q). That is, to every point in timetwe associate a family(sq)q∈Q,

with sq ⊆ inv(q), of compact sets such that{(q, x) | x ∈ sq} = RF (t). Having com-
putedRF , it is easy to derive a mechanism for computing the possibly visited states
VF (t) at timet by unfolding the definition ofVF . We demonstrate later, that it is also
possible to obtainVF directly as a fixed point.

5



The goal of the construction is to give acontinuoussemantics of flow automata: if
the automaton iseffectively given, i.e. bothflow andres arise as limits of sequences of
finitary approximations withflow =

⊔

k∈N
fk andres =

⊔

k∈N
rk, then we can effec-

tively obtainσk : [0,∞) →
∏

q∈Q inv(q) such thatJF K =
⊔

k∈N
σk. This provides us

with three important properties:

1. Everyσk is aconservative approximationof the semantics ofF , for k ≥ 0
2. The semantics ofF can be computed up to an arbitrary degree of accuracy
3. The algorithm for computingσk can be implemented on a digital computer without

loss of precision

Clearly, continuity of the semantics mappingJ·K can only be achieved if we restrict
attention to flow automata, whose components are continuous. This motivates the next
definition.

Definition 4. A flow automatonF = (Q, inv, flow, res, inv) is continuous, if res(p, q) :
inv(p) → U

⊤inv(q) is Scott continuous for allp, q ∈ Q. We say thatF is separated, if

– x ∈ res(p, q)(y) implies thatres(q, r)(x) = ∅ for all p, q, r ∈ Q andy ∈ inv(p)
– x ∈ init(q) implies thatres(q, r)(x) = ∅ for all q, r ∈ Q

While the continuity condition onres is clearly enforced by our goal to be able to
approximate the semantics of flow automata, the separation condition tells us that there
are no transient states, i.e. the automaton cannot perform state changes fromq0 to q1,
and subsequently fromq1 to q2 without remaining in stateq1 for a non-zero amount of
time.

We will see later that separation and continuity imply that the automaton under
scrutiny is non-zeno. While we believe that all of our results can be established even
for non-separated automata under the additional assumption that the automata are non-
zeno, the main benefit of the separation property is that it isvery easy to verify.

For a continuous flow automaton, the familyres(p, q)p,q∈Q induces a generalised
IFS on the extended upper spaces ofinv(p), for p ∈ Q, as we will see in Definition 5
later on. The following example discusses the requirementsintroduced in Definition 4.

Example 1.We consider the following variantF of a thermostat automaton, see e.g.
[14]. LetQ = {on, off} with inv(q) = [1, 3] for q = on, off. The flow functions are
given by the differential equationsflow(on)(x0, ·) = the unique solution oḟx = −x+
5, x(0) = x0, and similarly,flow(off)(x0, ·) = the unique solution oḟx = −x, x(0) =
x0, with initial state(on, 2). We fix two subsetsφ, ψ ⊆ [1, 3] and letres(on, off)(x) =
{x} ∩ ψ. The functionres(off, on) is given byx 7→ ψ, if x ∈ [0, 1], andx 7→ ∅
otherwise. Graphically, the automaton can be displayed as follows, wherex′ denotes
the value ofx after the change of control states.

x=2
// �~}|xyz{(on)
ẋ = −x+ 5
x ∈ [1, 3]

x ∈ φ

x′ = x
//

�~}|xyz{(off)
ẋ = −x
x ∈ [1, 3]

x ∈ [0, 1]

x′ ∈ ψ
oo

We now discuss several alternatives for the setsφ andψ, and relate them to continuity
of the induced automaton.

6



1. Supposeψ = (1, 2). Thenres(off, on) does not take values inU⊤[1, 3], as(1, 2)
is not compact, henceres(off, on) is not a well defined function of type[1, 3] →
U

⊤[1, 3].
2. Supposeφ = (2, 3]. Then theF is not continuous, as forx = 2 andǫ > 0, we fail

to findδ s.t. for allx′ ∈ Bδ(x) we haveres(on, off)(x′) ∈ res(on, off)(x) +Bǫ.
3. If bothφ andψ are compact, thenF is continuous.
4. We have thatF is separated, iffφ ∩ [0, 1] = φ ∩ ψ = ∅ andφ ∩ {2} = ∅.

To verify continuity of the reset functions in practice, note that Scott continuity is pre-
served by function composition, hence all combinations of Scott continuous functions
will be Scott continuous. In particular, we note that the following functions are Scott
continuous, and thus can be used as building blocks for resetfunctions.

Proposition 2. SupposeA,B ∈ U
⊤

R
n.

1. All step functions
aց b : A → U

⊤
B, x 7→

{

b x ∈ ao

⊥ otherwise

are continuous fora ∈ U
⊤A, b ∈ U

⊤B, whereao denotes the interior ofa.
2. All co-step functions

aտ b : A → U
⊤

B, x 7→

{

b x ∈ a

⊤ otherwise

are continuous fora ∈ U
⊤A, b ∈ U

⊤B.
3. All functions

⊲⊳ b : A → U
⊤

B, x 7→ {x} ∩ b

are continuous forb ∈ U
⊤B

4. If f1, f2 : A → U
⊤B are continuous, then so isf1 ∪ f2 : A → U

⊤B, x 7→
f1(x) ∪ f2(x).

5. If (fi)i∈I is directed (w.r.t. the pointwise ordering), then
⊔

i∈I fi : A → U
⊤B, x 7→

⊔

i∈I fi(x) is continuous.

The previous proposition gives some general construction principles for continuous hy-
brid automata, and can be applied to show that a large class offlow automata are actually
continuous. We now turn to the separation property. The following example, which is
a variation of the bouncing ball automaton [19] shows, that the separation property is
vital for the computability of the semantic function associated with a flow automaton.

Example 2.Consider the automatonF = (Q, init, flow, res, inv) with

– Q = {q}
– inv(q) = [0, 1]
– flow(r, t) = r + a · t
– res(x) = {2x,−2x} ∩ [0, 1]
– init(q) = {0}

x=0
// wvutpqrsq

ẋ = a
x ∈ [0, 1] ABC

FED
x′∈{2x,−2x}∩[0,1]

����

wherea ∈ R is a computable real number, as depicted on the right above. Suppose
we can effectively find a sequence of functionsRk : [0, 1] → U

⊤[0, 1] such that

7



⊔

k∈N
Rk = RF . Then clearlyR(1) = {0} iff a = 0, andR(1) ∩ [1/2, 1] 6= ∅ iff

a > 0. AsR(1) =
⋂

k∈N
Rk(1), this implies that we can semi-decide whethera = 0.

Together with a semi decision procedure fora 6= 0, we arrive at a decision procedure
for a = 0, which is impossible, see e.g. [21].

Recall that a flow automaton iszeno, if it admits a trajectory(ti, qi, fi)i<∞ with
supi<∞ ti < ∞. The key consequence of separation, which makes it possibleto com-
pute the semantic function associated with a flow automaton,is that separated automata
are non-zeno. This is the content of the next proposition.

Proposition 3. SupposeF is separated and continuous. ThenF is non zeno.

Note that, while the fact that an automaton is separated is sufficient for it being non-
zeno, the separation property is not necessary. Consider for example the automaton

�~}|xyz{(up)
ẋ = 1

x ∈ [−1, 1]

x = 1
// �~}|xyz{(trans)

ẋ = 1
x ∈ [−1, 1]

x = 1
// �~}|xyz{(down)

ẋ = −1
x ∈ [−1, 1]

x = −1

xx

with reset relationsres(up, trans) = res(trans, down) = λx.{x} ∩ {1} and
res(down, up) = λx.{x} ∩ {−1} and initial state(up, 0). Then clearlyF is non-
zeno, butF is not separated. This suggests that the separation property can be relaxed,
and one just needs to require that there is no finite loop(q0, x0), (q1, x1), . . . , (ql, xl)
with xi+1 ∈ resqi,qi+1

(xi) andx0 ∈ resql,q0
(xl), but we refrain from doing so, as the

technical complications would obscure the techniques at the heart of our analysis.

4 Denotational Semantics of Continuous and Separated Automata

We now turn to the main objective of the present paper and describe a computa-
tional method for obtainingRF for a continuous and separated flow automatonF .
Our technique will compute the functionRF as least fixpoint of a functional of type
([0,∞) ⇒ U) → ([0,∞) ⇒ U), whereU =

∏

q∈Q U
⊤inv(q). We first introduce some

terminology to make the notation more readable.

Definition 5. SupposeF = (Q, inv, flow, res, init) is a flow automaton. The function

fF : U × I[0,∞) → U ,

((xq)q∈Q, α) 7→ ({flow(q)(yq, t) | yq ∈ xq, t ∈ α, ∀s ≤ t.flow(q)(yq, s) ∈ inv(q)})q∈Q

is called theextended flow function, and

rF : U → U , (xq)q∈Q 7→ (
⋃

p∈Q

E(res(p, q))(xp))q∈Q

is the extended reset function. If the automatonF is clear from the context, we omit the
corresponding subscript.

8



While the extended reset function collects all the functionsres(p, q) in a single map, the
rationale behind the definition of the extended flow functionis moreover that we need
to cut out those portions of the flows that leave or re-enter a state invariant. Pictorially,
this leaves us with the shaded region displayed in Figure 1. It is easy to see that both

inv(q)α

flow(q)

ttt −1 0 1

f

t 2

 0 1

f2

f

Fig. 1. The functionsfF (α, ·) (left) andρ♯ (right)

the extended flow function, and the extended reset function are Scott continuous.

Lemma 4. If F is continuous, then bothfF andrF are Scott continuous.

With this notation, we are now ready to introduce the key concept of the present paper:
the forward action associated with a flow automaton. As we will see later, the least
fixpoint of this operator captures the set of of states the automaton can engage in at
time t and, moreover, can be effectively computed.

Definition 6. SupposeF is a flow automaton. The operator

ΦF : ([0,∞) ⇒ U) → ([0,∞) ⇒ U), ρ 7→ λt.fF (iF , t) ∪
⋃

s≤t

fF (rF (ρ(s), t− s))

is called theforward actionassociated withF .

The forward action combines the discrete action and the continuous flow, and can be
seen as a generalisation of the fixpoint operator associatedwith an IFS [6]. Our goal is
to show that the least fixpoint of the forward action is precisely the functionRF that
computes reachable states. In order to compute this fixpointeffectively, we first have
to ensure thatΦF is compatible with approximations, i.e.ΦF is well-defined and Scott
continuous.

Lemma 5. BothΦF (ρ), for ρ ∈ ([0,∞) ⇒ U), andΦF are Scott continuous.

Continuity ofΦF now guarantees the existence of a least fixpoint ofΦF , which we
denote byJF K throughout. We now examine this fixpoint and show that it precisely
captures the set of allF -trajectories.

In order to show soundness, it is convenient to formulate trajectories as maps into
the upper space. In order to turn the trajectories into Scottcontinuous functions, we
let the induced function take a non-singleton set as value whenever the discrete control
state changes. Below,sgn(x) ∈ {−1, 0,+1} is the sign ofx ∈ R.

9



Lemma 6. Supposef−1 : [−1, 0] → R andf+1 : [0, 1] → R are continuous. Then
the functionf ⊕ g : [−1, 1] → U

⊤
R, defined byt 7→ {fsgn(t)(t)}, if t 6= 0, and

t 7→ {f(0), g(0)} otherwise, is Scott continuous.

ForF -trajectories, we have the following corollary. Note that the condition on trajecto-
ries is automatic for continuous and separated automata.

Corollary 7. SupposeF is a flow automatonρ = (ti, qi, fi)i<N is aF -trajectory with
supi ti = ∞ in caseN = ∞. Then

ρ♯ : [0,∞) → U , t 7→ {(qi, fi(t)) | t ∈ [ti−1, ti]}

where q ∈ Q, is Scott-continuous. Moreover,RF (t) =
⋃

{ρ♯(t) | ρ is anF −
trajectory}, if F is a flow automaton.

The functionρ♯ is visualised on the right hand side of Figure 1. The next statement is a
stepping stone for proving the soundness of our approach. Weshow, that applyingΦF ,
we do not lose any trajectories; hence starting the fixpoint iteration from the everywhere
undefined function, the least fixpoint is guaranteed to coverall trajectories.

Lemma 8. SupposeF is separated and continuous,ρ is an F -trajectory andσ ∈
([0,∞) ⇒ U) with σ ⊑ ρ♯. ThenΦF (σ) ⊑ ρ♯.

Note that the proof of the previous theorem relies on separatedness. Using the above
result, correctness of the fixpoint construction is very easy to show.

Corollary 9 (Correctness).SupposeF is continuous and separated. Thens ∈ JF K(t)
if init →t

∗ s for all s ∈ SF and all t ∈ [0,∞).

While the previous result asserts soundness, we now turn to computational adequacy of
the construction, i.e. we show thatRF = JF K, whereJF K is the least fixpoint ofΦF .

Theorem 10 (Computational Adequacy).SupposeF is separated and continuous.
Thens ∈ JF K(t) iff init →t

∗ s for all s ∈ SF and all t ≥ 0.

The proof of the theorem in fact demonstrates, that any functionρ ∈ ([0,∞) ⇒ U) with
ρ ⊑ JF K, that does not arise as anF -trajectory, necessarily leads to a violation of the
separatedness property. Unfolding the definition ofVF , we also obtain computational
means to obtain the states of a flow automatonF that can be visited up to timet, in
terms of the least fixpointJF K of the forward action associated withF . This then gives
VF (t) =

⋃

s≤tRF (s). However, we can also obtainVF as a fixpoint of an operator in
its own right.

Definition 7. The operator

ΨF : ([0,∞) ⇒ U) → ([0,∞) ⇒ U), ρ 7→ fF (iF , [0, t])∪
⋃

s≤t

fF (rF (ρ(s), [0, t− s]))

is thevisited states operatorassociated withF .

The properties ofΨF are similar to those ofΦF , in particular,ΨF is Scott continuous,
and the least fixpoint captures the set of visited states. More formally:

10



Theorem 11. Supposeρ : [0,∞) → U is the least fixpoint ofΨF . Thenρ = VF .

While Theorem 10 and Theorem 11 are important on their own, asthey allow us to
obtain the semantics of hybrid automata as a least fixpoint ina suitable function space,
they also allow us to derive new results about the functionRF that yields the states
reachable at timet for continuous and separated automata:

Corollary 12. 1. RF (t) andVF (t) are compact for everyt ∈ [0,∞).
2. RF andVF are Scott continuous.

5 Approximation of Flow Automata

We have seen that the semanticsJF K : [0,∞) → U of a flow automatonF can be
computed as the least fixpoint of a functional on([0,∞) ⇒ U). While this gives a
mathematical means of understanding the semantics, we now show, that this also in-
duces a method to compute the semantics up to an arbitrary degree of accuracy.

To do this, we restrict attention to countable bases of the involved domains, that
is, to finitely representable objects, that generate all of the involved domains by means
of directed suprema. We show, that we can effectively compute the least fixpoint of
the functional up to an arbitrary degree of accuracy, if we approximate all continuous
ingredients of the automaton. We begin by introducing the bases of the domains we are
interested in. For the remainder of the section, we fix a countable dense ordered subring
D = {d0, d1, . . . } with decidable equality and order, and computable ring operations.
We putDk = {d0, . . . , dk}. We only treat the case of computingRF as a least fixpoint;
the setup can be easily adapted to accommodate alsoVF .

Definition 8. We let, for an arbitrary setS ⊆ R, IRn
S = {[a1, b1] × · · · × [an, bn] ∈

IR
n | a1, . . . , an, b1, . . . , bn ∈ S} ∪ {R} denote the set of rectangles with endpoints

in S, augmented with the least elementR. If A ⊆ R
n is a semi rectangle, thenIAS =

{A ∩ b | b ∈ IR
n
S} denotes the set of rectanglesR ∈ IR

n that are contained inA
and have corners inS, again with a bottom element. We distinguish two kinds of step
functions:

aցi b : A → B, x 7→

{

b x ∈ ao

⊥ otherwise,
and aց b : A → B, x 7→

{

b a≪ x

⊥ otherwise

whereB is a dcpo withb ∈ B in both cases;A ⊆ R
n is a semi rectangle witha ∈ IA in

the case ofaցi b, andA is a dcpo witha ∈ A for aց b. We use the following bases:

1. If A ⊆ R
n is a semi-rectangle with corners inD ∪ {±∞}, then the setIAD of

rectangles contained inA and corners inD is called thestandard baseof IRn.
2. If A ∈ IR

n
D, then the setU⊤AD = {∪1≤i≤kDi | i ∈ N, Di ∈ IAD} of finite unions

of rectangles with corners inD is therectangular baseof U⊤A.
3. If (Ai)D is a base of the dcpoAi, then(A1 × · · ·×An)D = (A1)D × · · ·× (Ak)D

is the base ofA1 × · · · ×Ak induced by the components.
4. If AD andBD are bases of the dcposA andB, respectively, then(A ⇒ B)D =

{
⊔

i≤i≤k ai ց bi ∈ (A ⇒ B) | a1, . . . , ak ∈ AD, b1, . . . bk ∈ BD} is the rectan-
gular base of(A ⇒ B).

11



5. Finally, if A ⊆ R
n is a semi rectangle with corners inD∪{±∞} andBD is a base

of the dcpoB, then(A ⇒ B)D = {
⊔

1≤i≤k ai ցi bi ∈ (A ⇒ B) | a1, . . . , ak ∈
IAD, b1, . . . , bk ∈ BD is the induced base of of(A ⇒ B)

where we indicate by
⊔

1≤i≤k ai ց bi ∈ (A ⇒ B) that we consider only consider
consistent step functions [8, Section 2], similarly for

⊔

1≤i≤k ai ցi bi.

In words, ifA,B ⊆ R
n are semi-rectangles,IAD is the set of rectangles contained inA

with corners inD andU
⊤AD is the set of finite unions of rectangles with corners inD.

For the function space,(A ⇒ U
⊤B)D is the induced base of the space of functions of

one or more real variables;(U⊤A ⇒ U
⊤B)D is the induced base of the function space

of a compact set valued variable.
It is easy to see that the sets introduced above are indeed bases of the corresponding

domain. We now use these bases to show, that the fixpoint operatorΦF associated to a
flow automaton can be effectively computed, given approximations of the components
of the automaton. In order to make assertions about the computability of functions in
the domain theoretic model of computation, we have to fix an enumeration of the base
of the involved domains. We do not do this explicitely here, but instead assume that
the bases(·)D above come with an effective enumerationι : N → (·)D, which is fix
throughout. In particular, the enumeration gives rise to a notion of effective sequence:
If A is a dcpo whose base is enumerated viaι : N → AD, then a sequence(ak)k∈N in
AD is effective, if ak = ι(f(k)) for some total recursive functionf .

First, note that composition of base functions yields a basefunction, and that the
extension function is effectively computable.

Lemma 13. Supposef ∈ (A ⇒ U
⊤B)D andg ∈ (U⊤B ⇒ U

⊤C)D. Then

1. g ◦ f ∈ (A ⇒ U
⊤C)D andg ◦ f is effectively computable.

2. E(f) ∈ (U⊤A ⇒ U
⊤B)D andE(f) is effectively computable.

The next lemma gives a basis representation of subtraction,which is needed in the
definition of the fixpoint functionalΦF associated withF , see Definition 6.

Lemma 14. The functionsMk : [0,∞)2 → I[0,∞), defined byMk =
⊔

{a × b ց
b − a | a, b ∈ I[0,∞)Dk

} satisfyMk ∈ ([0,∞)2 ⇒ I[0,∞))D for all k ∈ N, and
⊔

k∈N
Mk = λ(x, y).y − x.

Building on these basic facts, we can now show, that the leastfixpoint of the operator
ΦF associated with a flow automaton is effectively computable.This of course hinges
on the fact that the automaton is effectively given:

Definition 9. SupposeF = (Q, init, flow, res, inv) is a flow automaton. We say thatF
is effectively givenif it comes with

– an effective sequence(iqk)k∈N in (U⊤inv(q))D with
⊔

k∈N
iqk = init(q)

– an effective sequence(f q
k )k∈N in (Rn× [0,∞) ⇒ IR

n)D with
⊔

k∈N
f q

k = flow(q)

– an effective sequence(rp,q
k )k∈N in (inv(p) ⇒ U

⊤inv(q))D with
⊔

k r
p,q
k =

res(p, q)

12



for all q ∈ Q, resp. all(p, q) ∈ Q2 and inv(q) ∈ U
⊤

R
n
D for all q ∈ Q. The family

of sequences(f q
k )k∈N, (iqk)k∈N (whereq ∈ Q) and(rp,q

k )k∈N (where(p, q) ∈ Q2) are
called aneffective presentationofF .

That is to say that, for an effectively given flow automaton, the initial states, the flow
functions and the reset functions are computable. It is easyto see that every effectively
given flow automaton induces a computable extended flow function, and a computable
extended reset function. Spelling this out, Lemma 13 and Lemma 14, together with the
Scott continuity ofΦF , allow us to prove our second main theorem:

Theorem 15. SupposeF is an effectively given flow automaton. Then we can effec-
tively obtain a sequence(σk) with

⊔

k∈N
σk = JF K.

6 Hybrid Automata

In this section, we transfer our results on flow automata to hybrid systems, where the
continuous behaviour of the system in every given control state is described directly
by a vector field. This is achieved by associating the equivalent flow automaton to the
hybrid automaton under consideration. If the hybrid automaton is effectively given,
we show, that the same also holds for the induced flow automaton. We thus obtain an
effective framework for the analysis of hybrid automata. The following is a variant of
the standard definition of a hybrid automaton [12,2].

Definition 10. A hybrid automatonis a tupleH = (Q, inv, vect, res, init) where
Q, inv, res, init are as in Definition 2, andvect = (vectq)q∈Q is a family of vector
fieldsvect(q) : R

n → R
n where allvect(q) are assumed to be globally Lipschitz, i.e.

‖vect(q)(x) − vect(q)(y)‖ ≤ L‖x− y‖, for all q ∈ Q, x, y ∈ R
n and someL ∈ R.

In contrast to the standard definition, the trajectories of the real variables are described
by a differential equation rather than differential inclusion. We require this restriction
in view of the domain theoretic treatment of differential equations [9], which in general
gives a strict over-approximation to the solution of differential inclusion.

We recall from Lemma 1, that every Lipschitz vector fieldv : R
n → R

n induces
a flow functionf : R

n × [0,∞) → R
n. The main reason for restricting attention to

vector fields that are globally Lipschitz is that the inducedflows are globally defined;
we believe that similar results can be obtained for vector fields whose associated flows
don’t diverge. Replacing the vector field by the induced flow function, every hybrid
automatonH induces a flow automatonF ; in this case, we writeJHK for JF K.

Definition 11. SupposeH = (Q, inv, vect, res, init) is a hybrid automaton and
flow(q) is the flow induced byvect(q). The automatonF = (Q, inv, flow, res, init)
is called theflow automaton induced byH . We say thatH is continuous (resp. sepa-
rated), if the induced flow automaton is continuous (resp. separated). We say thatH is
effectively givenif it comes with

– an effective sequence(iqk)k∈N in (U⊤inv(q))D with
⊔

k∈N
iqk = init(q)

– an effective sequence(vq
k)k∈N in (IRn ⇒ IR

n)D with
⊔

k∈N
vq

k = vect(q)

13



– an effective sequence(rp,q
k )k∈N in (inv(p) ⇒ U

⊤inv(q))D with
⊔

k r
p,q
k =

res(p, q)

for all q ∈ Q, resp. all(p, q) ∈ Q2 and inv(q) ∈ U
⊤

R
n
D for all q ∈ Q. The family

of sequences(iqk)k∈N, (vq
k)k∈N (whereq ∈ Q) and(rp,q

k )k∈N (where(p, q) ∈ Q2) are
called aneffective presentationofH .

We have seen in Theorem 15, that the functionJF K associated with a flow automaton,
which captures the states reachable byF at timet ∈ [0,∞), is effectively computable,
if F is effectively given. In order to associate an effectively given flow automaton to
an effectively given hybrid automaton, we therefore have toproduce approximations
fk ∈ (

∏

q∈Q inv(q)×[0,∞) ⇒ U) of the flow function induced by a hybrid automaton.
In other words, we have to solve the initial value problems defined by the vector field
that defines the hybrid automation. This is achieved by instantiating results from [9,10],
where it is shown how to solve initial value problems in a domain theoretic framework.

Theorem 16. SupposeH is an effectively given hybrid automaton. Then so is the in-
duced flow automatonF . Moreover, we can construct an effective presentation ofF
from an effective presentation ofH .

Together with Theorem 15, we have now shown, that the semantic functionJHK, asso-
ciated with an effectively given hybrid automaton, is computable:

Theorem 17. SupposeH is effectively given, continuous and separated. Then the func-
tion JHK : [0,∞) → U is effectively computable.

Moreover, as all our constructions are based on bases of the domains involved, the
algorithms underlying Theorems 17 and 15 are based on properdata types, and can be
directly implemented on a digital computer: we choose the dyadic (or rational) numbers
for D, and then define data types that directly represent the bases[0,∞)D andUD,
as well as the bases of the function space([0,∞) ⇒ U)D. Computing with dyadic
(or rational) numbers then allows us to manipulate elementsof the data types without
any loss of arithmetical precision. Moreover, we have shownthat the fixpoint operator,
that gives rise to the semantic functionJHK of a hybrid automaton, can be effectively
computed on the described data types.

Conclusions and Future Work. Of course, much remains to be done. While the
presentation in this paper is geared towards demonstratingthat a domain theory has all
the necessary tools to facilitate the algorithmic analysisof hybrid automata, we antici-
pate that major improvements will be made on the efficiency ofthe involved algorithms.
In particular, we are working towards rigorous estimates ofthe convergence speed and
the complexity of the described fixpoint algorithms in termsof the Hausdorff distance
in U , which will also allow us to make concrete assertions about the computational
complexity of our method. For now, we have concentrated on computing the semantic
functionJHK associated with a hybrid automaton. Future work will bring aframework
for computing the set of reachable states of a hybrid automaton, and a real time logic
with associated model checking procedure for the automatedverification of hybrid au-
tomata.

14



References

1. S. Abramsky and A. Jung. Domain Theory. In S. Abramsky, D. Gabbay, and T. S. E.
Maibaum, editors,Handbook of Logic in Computer Science, volume 3. Clarendon Press,
1994.

2. R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.Theoret. Comp. Sci,
138(1):3–34, 1995.

3. R. Alur, T. Henzinger, and P.-H. Ho. Automatic symbolic verification of embedded systems.
IEEE Transactions on Software Engineering, 22(3):181–201, 1996.

4. J.-P. Aubin.Viability Theory. Birkhäuser, 1991.
5. A. Edalat. Dynamical systems, measures and fractals via domain theory.Information and

Computation, 120(1):32–48, 1995.
6. A. Edalat. Power domains and iterated function systems.Information and Computation,

124:182–197, 1996.
7. A. Edalat, M Krznaríc, and A. Lieutier. Domain-theoretic solution of differential equations

(scalar fields). InProceedings of MFPS XIX, volume 83 ofElect. Notes in Theoret. Comput.
Sci., 2004.

8. A. Edalat and A. Lieutier. Domain theory and differentialcalculus (functions of one variable.
Math. Struct. Comp. Sci., 14, 2004.

9. A. Edalat and D. Pattinson. A domain theoretic account of picard’s theorem. InProc. ICALP
2004, number 3142 in Lect. Notes in Comp. Sci., pages 494–505, 2004.

10. A. Edalat and D. Pattinson. Domain theoretic solutions of initial value problems for un-
bounded vector fields. In M. Escardó, editor,Proc. MFPS XXI, Electr. Notes in Theoret.
Comp. Sci., 2005. to appear.

11. G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. Scott.Continuous
Lattices and Domains. Cambridge University Press, 2003.

12. T. Henzinger. The theory of hybrid automata. In M. Inan and R. Kurshan, editors,Verification
of Digital and Hybrid Systems, volume 170 ofNATO ASI Series F: Computer and Systems
Sciences, pages 265–292. Springer Verlag, 2000.

13. T. Henzinger, P.-H. Ho, and H. Wong-Toi. HYTECH: A model checker for hybrid systems.
International Journal on Software Tools for Technology Transfer, 1(1–2):110–122, 1997.

14. T. Henzinger, P.-H. Ho, and H. Wong-Toi. Algorithmic analysis of nonlinear hybrid systems.
IEEE Transactions on Automatic Control, 43:540–554, 1998.

15. T. Henzinger, B. Horowitz, R. Majumdar, and H. Wong-Toi.Beyond HYTECH: Hybrid
systems analysis using interval numerical methods. InProc. HSCC 2000, volume 1790 of
Lect. Notes in Comp. Sci., pages 130–144. Springer, 2000.

16. J. E. Hutchinson. Fractals and self-similarity.Indiana University Mathematics Journal,
30:713–747, 1981.

17. J. Lygeros, D. Godbole, and S. Sastry. Verified hybrid controllers for automated vehicles.
IEEE Transactions on Automatic Control, 43(4):522–539, 1998.

18. O. Müller and T. Stauner. Modelling and verification using linear hybrid automata – a case
study.Mathematical and Computer Modelling of Dynamical Systems, 6(1):71–89, 2000.

19. S. Simic, K. Johansson, S. Sastry, and J. Lygeros. Towards a geometric theory of hybrid
systems. In N. Lynch and B. Krogh, editors,Proc. HSCC 2000, volume 1790 ofLect. Notes
in Comp. Sci., pages 421–436, 2000.

20. C. Tomlin, G. Pappas, and S. Sastry. Conflict resolution for air traffic management : A study
in muti-agent hybrid systems.IEEE Transactions on Automatic Control, 43(4):509–521,
1998.

21. K. Weihrauch.Computable Analysis. Springer, 2000.

15


