
Making Components Move: A Separation of Concerns
Approach ⋆

Dirk Pattinson, Martin Wirsing

Institut für Informatik, LMU München

Abstract. We present a new calculus for mobile systems, the main feature of
which is the separation between dynamic and topological aspects of distributed
computations. Our calculus realises the following basic assumptions: (1) every
computation executes in a uniquely determined location (2)processes modify
the distributed structure by means of predefined operations, and (3) the under-
lying programming language can be changed easily. This paper introduces our
calculus, and shows, that this separation of concerns leadsto a perfect match be-
tween the logical, syntactical and algebraic theory. On themethodological side,
we demonstrate by means of two examples, that the strict distinction between
topological and computational aspects allows for an easy integration of features,
which are missing in other calculi.

1 Introduction

With the success of the Internet, mo-
bile systems have been promoted as
new computational paradigm in which
computation can be distributed over
the net and highly dynamic, with the
network itself changing continuously.
In practice, however, such systems are
not well accepted since users fear se-
curity problems, or more generally,
the problems with controlling the be-
haviour of mobile systems. As a rem-
edy, process calculi, modal logics and
other formal techniques have been pro-
posed and studied which provide theo-
retical foundations for mobile systems
and allow one to analyse and verify
properties of such systems.

The most well-known example is
the π-calculus [8] of Milner which
provides an abstract basis for mobil-
ity where communicating systems can
dynamically change the topology of
the channels. The Ambient calculus
[5] of Cardelli and Gordon focuses on
the handling of administrative domains
where mobile processes may enter a
domain or exit from a domain and in
this way may change the topology of
the network. Similarly, the Seal calcu-
lus [17] of Vitek and Castagna aims
at describing secure mobile computa-
tions in a network that is hierarchically
partitioned by localities.

In this paper we continue this line
of research by proposing a new basic
calculus for mobile processes called

⋆ This work has been partially sponsored by the project AGILE,IST-2001-39029.

BasicSail with focus on explicit local-
ities and dynamic reconfiguration of
networks. A configuration is a hierar-
chy of administrative domains, each
of which is controlled by a process
and which may contain other subcon-
figurations. Configurations may be dy-
namically reconfigured by entering an-
other configuration or by exiting from
a configuration. This is similar to the
Ambient calculus; in contrast to other
approaches we aim at a clear sepa-
ration between processes and config-
urations: processes show behaviour,
whereas the configurations provide the
topological structure. BasicSail ab-
stracts from a concrete process calcu-
lus: We aim at studying the dynamic
reconfiguration of configurations in-
dependently of the underlying notion
of process. Our approach is centred
around three assumptions, which we
now briefly discuss:

Assumption 1. Every computation
takes place in a uniquely determined
location.

This assumption in particular
forces a two-sorted approach: We need
to distinguish between elements which
relate to the spatial structure and those,
which drive the computation process.
Since our primary interest is the study
of mobile computation, we would like
to be as independent as possible from
the concrete realisation of processes,
and therefore make

Assumption 2. The distributed part of
the calculus is independent of the

underlying programming language or
process calculus.

However, a computation needs
some means to change the distributed
and spatial structure (otherwise our
study would end here). That is, we
need a clean mechanism, through
which the distributed structure can be
modified :

Assumption 3. Processes modify the
distributed structure of the computa-
tion through interfaces only.

Our calculus is modelled after
these assumptions. Regarding inde-
pendence of the underlying program-
ming language, we assume that the
processes, which control the computa-
tions, already come with a (fixed) op-
erational semantics, in terms of a la-
belled transition system; this allows
us to realise interfaces as a particular
set of distinguished labels. As already
mentioned before, the separation be-
tween processes and locations is taken
care of by using a two sorted approach.

The main technical contribution of
the paper is the study of the algebraic
and logical properties of the basic cal-
culus, and of its extension with lo-
cal names. We introduce the notion of
spatial bisimulation and give an alge-
braic and a logical characterisation of
the induced congruence. Our main re-
sult here is, that if one abstracts from
the concrete realisation of the com-
putations, we obtain a perfect match
between structural congruence, logical
equivalence and spatial congruence.

2

Methodologically, we want to advo-
cate the separation between the con-
cepts “mobility” and “computation”
on a foundational basis; we try to make
this point by giving two extensions
of the calculus, which are missing in
other calculi and can be smoothly in-
tegrated into BasicSail, thanks to the
separation between spatial structure
and computation.

We introduce the basic calculus,
that is, the calculus without local
names, in Section 2. The algebraic the-
ory of he calculus is investigated in
Section 3, and Section 4 transfers these
results to a logical setting. We then
extend the calculus with local names
(Section 5). Further extensions, which
demonstrate the versatility of our ap-
proach, are discussed in Section 6.
Finally, Section 7 compares our ap-
proach to other calculi found in the lit-
erature.

2 Basic Sail: The Basic
Calculus

This section introduces BasicSail, our
testbed for studying mobile compo-
nents. In order to ensure independence
from the underlying programming lan-
guage (cf. Assumption 1), BasicSail
consists of two layers. The lower
layer (which we assume as given)
represents the programming language,
which is used on the component level.
The upper level represents the dis-
tributed structure, which is manipu-
lated through programs (residing on
the lower level) by means of pre-

defined interfaces. Technically, we as-
sume that the underlying programming
language comes with a labelled transi-
tion system semantics, which manip-
ulates the distributed structure (on the
upper level) by means of a set of dis-
tinguished labels.

The distinction between processes
(or programs) and the locations, in
which they execute (and the struc-
ture of which they modify), forces
us to work in a two-sorted environ-
ment, where we assume the programs
(and their operational semantics) as
given, and concentrate on the dis-
tributed structure. Our basic setup is as
follows:

Notation 1. Throughout the paper, we
fix a setN of names and the setL =
{in , out , open } × N of labels and a
transition system(P,−→), whereP is
a set (of processes) and−→⊆ P×L×
P. We assume that(P,−→) is image
finite, that is, for every(P, l) ∈ P ×L,

the set{P ′ | P
l

−→ P ′} is finite.
We write inn for the pair

(in , n) ∈ L and similarly for
out , open and call the elements of
L basic labels. The setP is the set of
basic processes.

The prototypical example of tran-
sition systems, which can be used
to instantiate our framework, are of
course process calculi. We present one
such calculus, which will also be used
in later examples, next.

Example 1.TakeP to be given as the
least set according to the following

3

grammar:

P ∋ P,Q ::= 0 | P ‖ Q | α.P |!P

whereα ∈ L ranges over the basic
labels. The transition relation−→ is
generated by the following rules

α.P
α

−→ P

P
α

−→ P ′

P ‖ Q
α

−→ P ′ ‖ Q
,

modulo structural congruence≡,
given by the axiomsP ‖ Q ≡ Q ‖ P ,
P ‖ 0 ≡ P , P ‖ (Q ‖ R) ≡ (P ‖
Q) ‖ R and!P ≡ P ‖!P . For conve-
nience, we often omit the trailing inert
process and writeα for α.0.

Intuitively, α.P is a process which
can perform anα action and continue
asP ; the termP ‖ Q represents the
processesP and Q running concur-
rently and !P represents a countable
number of copies ofP .

Note that we use this concrete syn-
tax for processes just in order to il-
lustrate our approach; the general the-
ory is independent of the syntactical
presentation and just assumes that pro-
cesses form a set and come with a tran-
sition system over the setL of labels.

Given such a transition system
(P,−→), the distributed structure
(which is our primary interest) is built
on top of(P,−→) as follows:

Definition 1. The setC of basiccon-
figurationsis the least set according to
the grammar

C ∋ A,B ::= 0 | n〈P 〉[A] | A,B

whereP ∈ P is a process andn ∈ N
is a name, modulo structural congru-
ence≡, given by the equations

A,B ≡ B,A A,0 ≡ A

A, (B,C) ≡ (A,B), C

We call the configuration building op-
erator “ ,” spatial composition.

Here, 0 is the empty configura-
tion, n〈P 〉[A] is a configuration with
namen, which is controlled by the
processP and has the subconfigura-
tion A. Finally, A,B are two config-
urations, which execute concurrently.
The next definition lays down the for-
mal semantics of our calculus, which
is given in terms of the reduction se-
mantics−→ of the underlying process
calculus:

Definition 2. The operational seman-
tics of BasicSail is the relation given
by the following rules the following
rules

P
inn
−→ P ′

m〈P 〉[A],n〈Q〉[B]⇒n〈Q〉[m〈P ′〉[A],B]

P
outn
−→ P ′

n〈Q〉[m〈P 〉[A],B]⇒m〈P ′〉[A],n〈Q〉[B]

P
openn
−→ P ′

m〈P 〉[A], n〈Q〉[B] ⇒ m〈P ′〉[A], B

together with the congruence rules

A =⇒ A′

A,B =⇒ A′, B

A =⇒ A′

n〈P 〉[A] =⇒ n〈P 〉[A′]

4

where we do not distinguish between
structurally congruent configurations.
The relation=⇒ is called spatial re-
duction.

In the examples, we often omit the
empty configuration, and writen〈P 〉[]
instead ofn〈P 〉[0]. Using the above
definition, we can study phenomena,
which arise in a distributed setting,
without making a commitment to any
kind of underlying language. In partic-
ular, we do not have to take internal ac-
tions of processes into account; these
are assumed to be incorporated into the
reduction relation−→ on the level of
processes.

We cannot expect to be able to em-
bed the full ambient calculus [5] into
our setting, due to the fact that in the
(original) ambient calculus, there are
no sorts available. However, we can
nevertheless treat many examples:

Example 2.We use the set of basic
processes from Example 1.

1. An agent, which has the capabil-
ity to enter and exit its home location
to transport clients inside can be mod-
elled as follows: Put

agent = a〈P 〉[]

client = c〈Q〉[]

home = h〈0〉[agent]

whereP =!(outh.inh.0) andQ =
in a.outa.0. In the configuration
home, client, we have the following
chain of reductions (whereP ′ =

inh.0 ‖ P andQ′ = out a.0):

home, client

=⇒ h〈0〉[], a〈P ′〉[], c〈Q〉[]

=⇒ h〈0〉[], a〈P ′〉[c〈Q′〉[]]

=⇒ h〈0〉[a〈P 〉[c〈Q′〉[]]

=⇒ h〈0〉[a〈P 〉[], c〈0〉[]].

This sequence of reductions shows a
guarded form of entry intoh: The
client has to enter the mediating agent
a, which then transports it intoh,
where the client then exits. Note that
in the basic calculus,c could enterh
directly, if c’s controlling process were
different. This can be made impossible
if one adds local names, as we shall do
later.

2. We model an agent, which re-
peatedly visits two network nodes, as
follows:

agent ≡ a〈P 〉[]

with P =!(inn1.outn1.0) ‖
!(inn2.outn2.0). The activity of a
once it is at eithern1 or n2 is not mod-
elled (but imaginea checks, whether
a node has been corrupted or is other-
wise non-functional). In the presence
of two nodesn1 andn2, we have the
(spatial) reductions, where we write
N1 and N2 for the controlling pro-
cesses ofn1 andn2:

n1〈N1〉[], n2〈N2〉[], a〈P 〉[]

=⇒n1〈N1〉[a〈P1〉[]], n2〈N2〉[]

=⇒n1〈N1〉[], n2〈N2〉[], a〈P 〉[]

=⇒n1〈N1〉[], n2〈N2〉[a〈P2〉[]]

=⇒ . . .

5

In the above, we have abbreviated
P1 = outn1.0 ‖ P and P2 =
outn2.0 ‖ P . Here, the programP
controlling a does not forcea to visit
n1 andn2 in any particular order, and
a could for example choose to en-
ter and leaven1 continuously, without
ever setting foot inton2.

3 Algebraic Theory of the
Basic Calculus

This section is devoted to the algebraic
theory of the basic calculus; extensions
of the calculus, in particular with lo-
cal names, are deferred until Section
5. In this section, we show that the al-
gebraic and the logical theory of the
basic calculus fit together seamlessly.
In more detail, we discuss the relation-
ship between three relations on pro-
cesses: spatial bisimulation (which we
introduce shortly), the induced spatial
congruence and structural congruence.

3.1 Basic Definitions and
Examples

Spatial bisimulation will defined as bi-
nary relation on configurations, sub-
ject to some closure properties; the
precise meaning of which is given as
follows:

Terminology 2. SupposeR ⊆ A×A
is a binary relation on a setA and
S ⊆ A × · · · × A is n + 1-ary. We
say thatR is closedunderS, if, when-
ever(a, b) ∈ R and(a, a1, . . . , an) ∈
S, there areb1, . . . , bn ∈ A with
(b, b1, . . . , bn) ∈ S and (ai, bi) ∈ R
for i = 1, . . . , n.

If R is closed underS, it is often
helpful to think ofR as an equivalence
on processes and ofS as a reduction
relation. In this setting,R is closed un-
derS if, whenevera andb are equiva-
lent (i.e.(a, b) ∈ R) anda reduces to
a′ (i.e. (a, a′) ∈ S), there is someb′

such thata′ andb′ are again equivalent
(i.e. (a′, b′) ∈ R) and b reduces tob′

(that is,(b, b′) ∈ R). So ifR is closed
underS, we think ofR as being some
bisimulation relation andR the corre-
sponding notion of reduction.

Definition 3 (Spatial Bisimulation).
Consider the following endorelations
onC:

1. Subtree reduction↓⊆ C ×
C, where C ↓ D iff C ≡
n〈P 〉[D] for somen ∈ N andP ∈ P

2. Forest reduction�⊆ C × C × C
whereC � (A,B) iff C ≡ A,B and
A is of the formA ≡ n〈P 〉[D] for
somen ∈ N , P ∈ P andD ∈ C.

3. Top-level names@n ⊆ C, where
n ∈ N andC ∈ @n iff C ≡ n〈P 〉[A]
for someP ∈ P andA ∈ C.

The largest relation≃⊆ C × C,
which is closed under spatial reduc-
tion=⇒, subtree reduction↓, forest re-
duction� and top-level names@n, for
all n ∈ N , is calledspatial bisimula-
tion.

Furthermore, spatial congruence
∼= is the largest spatial bisimulation,
which is a congruence with respect to
construction of configurations.

Note that, in the previous defini-
tion, we just require the congruence

6

property wrt. the construction of con-
figurations, that is we require

1. A0
∼= A1, B0

∼= B1 =⇒
A0, A1

∼= B0, B1 and
2. A ∼= B,n ∈ N , P ∈ P =⇒
n〈P 〉[A] ∼= n〈P 〉[B].

This not only justifies the name spa-
tial congruence – it furthermore allows
us to study the evolution of the tree
structure of (a set of) mobile processes
without reference to the underlying
process calculus. Note that the spatial
congruence is not the largest congru-
ence contained in the spatial bisimu-
lation (corresponding to closure under
contexts). Our notion of spatial con-
gruence follows the approach of dy-
namic bisimulation [9].

In a nutshell, two configurations
are spatially bisimilar, if they have
bisimilar reducts, bisimilar subtrees,
and the same top-level names. If two
configurations are spatially congruent,
one can furthermore substitute them
for one another, obtaining spatially
congruent processes. Although spatial
bisimulation is a very strong notion of
bisimilarity, it is not a congruence:

Example 3.Taken,m ∈ N with n 6=
m and letA ≡ n〈inm.0〉[] andB ≡
n〈0〉[]. ThenA ≃ B (since neitherA
norB can perform a spatial reduction),
but A 6∼= B, sinceA,m〈0〉[] does re-
duce, whereasB,m〈0〉[] does not.

Since we clearly want equivalent
configurations to be substitutable for
one another (which allows us to build
large systems in a compositional way),

spatial congruence is the notion of
equivalence we are interested in. By
definition, spatial congruence involves
the closure under all configuration
constructing operators, and is there-
fore not easy to verify.

Our first goal is therefore an alter-
native characterisation of spatial con-
gruence. As it turns out, we only need
to add one closure property to the def-
inition of spatial bisimulation in order
to obtain spatial congruence.

3.2 Spatial Congruence and
Spatial Bisimulation

We start on our first characterisation of
spatial congruence. The approach is as
follows: We consider labelled reduc-
tion, introduced in the next definition,
and show that (i) spatial congruence
is closed under labelled reduction, and
(ii) that spatial bisimulation + labelled
reduction is a congruence. This imme-
diately entails that spatial congruence
is spatial bisimulation plus closure un-
der labelled reductions. We begin with
the definition of labelled reduction:

Definition 4. Let l ∈ L. Define the re-

lation
l

=⇒⊆ C × C by the rules

P
l

−→ P ′

n〈P 〉[A]
l

=⇒ n〈P ′〉[A]

C
l

=⇒ C ′

C,D
l

=⇒ C ′,D

and call a relationB ⊆ C × C closed
under labelled reduction, if B is closed

under
l

=⇒ for all l ∈ L.

7

We use the name “labelled bisimu-
lation” for the closure of spatial bisim-
ulation under labelled reductions.

Definition 5. We takelabelled bisim-
ulation to be the largest symmetric re-
lation -⊆ C × C which is closed un-
der forest reduction, spatial reduction,
subtree reduction, labelled reduction
and top level names.

In order to be able to compare
spatial congruence and labelled bisim-
ulation, we need a proof principle,
which allows us to reason about la-
belled bisimulation using induction on
reductions. This principle works for
finitely branching systems only, and is
the content of the following two lem-
mas:

Lemma 1. Suppose (P,−→) is
finitely branching. Then the relations

=⇒, �, ↓ and
l

=⇒ (for all l ∈ L) are
image finite.

Proof. By structural induction using
the respective definitions.

Proposition 2. Assume that(P,−→)
is image finite and define a sequence
of relations∼i⊆ C × C inductively as
follows:

1. ∼0= C × C

2. C ∼i+1 D is the largest symmetric
relation s.t.

– C ∈ @n impliesD ∈ @n

– (C,C ′) ∈ R implies
∃D′.(D,D′) ∈ R andC ′ ∼i

D′ whereR is one of=⇒ or ↓

– C � (C1C2) implies
∃D1,D2.D � (D1,D2) and
C1 ∼i D1, C2 ∼i D2

– C
l

=⇒ C ′ implies∃D′.D
l

=⇒
D′ andC ′ ∼i+1 D

′ for l ∈ L

Then, ifC andD ∈ C, we have
C - D iff C ∼i D for all i ∈ N.

Proof. We abbreviate∼=
⋂

i∈N
∼i.

In order to see thatC - D whenever
C ∼i D, one shows that∼ is a spatial
bisimulation, which is closed under la-
belled reduction.

The converse follows from the fact
that all relations used in the definition
of ∼i are image finite (Lemma 1).

We note two easy consequences of
the above characterisation: in partic-
ular, controlling processes, which are
bisimilar (in the ordinary sense) do not
destroy the relations∼i and therefore
preserve labelled bisimulation. That is,
if we call the largest symmetric rela-
tion B ⊆ P × P, which is a (strong)
labelled bisimulation in the ordinary
sense aprocess bisimulation, we have
the following:

Lemma 3. 1. ∼i+1⊆∼i

for all i ∈ N.
2. Let n ∈ N , A,B ∈ C and

P,Q ∈ Prop. Then for alli ∈ N

n〈P 〉[A] ∼i+1 n〈Q〉[B] iff
P,Q are process-bisimilar andA ∼i

B.

The relationship between labelled
bisimulation and process bisimulation
can be formalised as follows:

8

Corollary 4. Let n ∈ N , A,B ∈ C
andP,Q ∈ Prop. Thenn〈P 〉[A] and
n〈Q〉[B] are labelled bisimilar iff
P,Q are process-bisimilar andA and
B are labelled bisimilar.

We are now ready to tackle the
first step of our comparison between
labelled bisimulation and spatial con-
gruence.

Lemma 5. Spatial congruence is
closed under labelled reduction.

Proof. Supposen ∈ N , C,D ∈ C

are spatially congruent andC
l

=⇒ C ′′.
ThenC is of the formC ≡ C0, C1

with C0 ≡ m〈P 〉[E] andP
l

−→ P ′

for someP ′ ∈ P andE ∈ C. We
proceed by case distinction onl ∈ L,
where we use a fresh namek ∈ N , i.e.
k does not occur as the name of a lo-
cation either inC or in D, and some
arbitraryR ∈ P.

Case l = inn: Consider the
context K[_] = n〈R〉[k〈R〉[]],_.
Then K[C] =⇒ C ′ with C ′ ≡
C1, n〈R〉[m〈P ′〉[E], k〈R〉[]]. Since
C ∼= D, we haveK[D] =⇒ D′

with C ′ ∼= D′. Since spatial con-
gruence is closed under forest reduc-
tion and top-level names, we can split
D′ ≡ D1, n〈R

′〉[F] for someR′ ∈ P
and F ∈ C, whereD1

∼= C1 and
n〈R′〉[F] ∼= n〈R〉[m〈P ′〉[E], k〈R〉[]].
Using closure under subtree reduction,
we obtain F ∼= m〈Q′〉[E′], k〈R〉[]
(sincek is fresh) withm〈Q′〉[E′] ∼=
m〈P ′〉[E]. Again using thatk is fresh,
we haveD ≡ D1,m〈Q〉[E′] for some

Q ∈ P with Q
inn
−→ Q′ with D1

∼=

C1 and m〈P ′〉[E] ∼= m〈Q′〉[E′];
since spatial congruence is a con-

gruence we finally obtainD
inn
=⇒

D1,m〈Q′〉[E′] ∼= C1,m〈P ′〉[E].
Casel = outn: Similar, using the

contextn〈R〉[_, k〈R〉[]].
Casel = openn: Similar, using

the contextn〈R〉[k〈R〉[]],_.

The converse of Lemma 5 needs
the proof principle of Proposition 2.

Lemma 6. Labelled bisimulation is a
congruence.

Proof. We have to show that labelled
bisimulation is a congruence wrt. the
construction of configurations, that is,
wrt. “putting in a box” and spatial
composition.

Congruence wrt. spatial composi-
tion: We show that the relationRi =
{(C,E), (D,E)|C,D,E ∈ C and
C ∼i D} is a subset of∼i for all
i ∈ N. The casei = 0 is trivial; for
the inductive step we show that any
pair ((C,E), (D,E)) ∈ Ri+1 satisfies
the properties defined in Prop. 2 with
∼i+1 replaced byRi. The cases of top
level names, forest reductions and la-
belled reductions follow directly from
the definitions of theRi+1 and the fact
that ∼i+1⊆∼i . For spatial reduction
supposeC,E =⇒ C ′. If eitherC =⇒
C0 and C ′ ≡ C0, E or E =⇒ E0

andC ′ ≡ C,E0 the result follows eas-
ily from the induction hypothesis. For
all other cases we have to show that
C,E andD,E have the same spatial
reductions, resulting in configurations,
which are∼i equivalent.

9

We only consider thein -rule; the
other cases are similar.

If C,E =⇒ C ′ by virtue of the
in -rule, either a component ofC en-
ters into a component ofE, or vice
versa. That is, we have one of the fol-
lowing two cases:

1. C ≡ C0, C1 with C0 ≡

m〈P 〉[F] and P
inn
−→ P ′ and E ≡

E0, E1 with E0 ≡ n〈Q〉[G], or
2. E ≡ E0, E1 with E0 ≡

m〈P 〉[F] and P
inn
−→ P ′ and C ≡

C0, C1 with C0 ≡ n〈Q〉[G].

We only treat the first case; the
second can be treated along similar
lines (using Lemma 3) . From the as-
sumptionC ∼i+1 D we obtain (us-
ing forest reduction and preservation
of top level names), that we can split
D ≡ D0,D1 with D0 ≡ m〈R〉[H]
andCj ∼i Dj for j = 0, 1. Using
closure under labelled reduction, we
haveR

inn
−→ R′ with m〈P ′〉[F] ∼i

m〈R′〉[H]. SinceC,E =⇒ C ′ we ob-
tainC ′ ≡ n〈Q〉[m〈P ′〉[F], G], C1, E1

and D,E =⇒ D′ with D′ ≡
n〈Q〉[m〈R′〉[H], G],D1, E1, from
which we obtainC ′ ∼i D

′ using that
∼i is a congruence.

Congruence wrt. putting in a box:
SupposeC,D ∈ C with C ∼i+1 D
andn ∈ N , P ∈ P. We have to show
that n〈P 〉[C] ≃i+1 n〈P 〉[D]. As be-
fore, the only interesting cases arise
through spatial reductions. So suppose
n〈P 〉[C] =⇒ C ′. If this is because
C =⇒ C ′′ andC ′ ≡ n〈P 〉[C ′′], we
findD′′ ∼i C

′′ with D =⇒ D′′, since
C ∼i+1 D. In this casen〈P 〉[D] =⇒

D′ with D′ ≡ n〈P 〉[D′′] and by ind.
hyp.C ′ ∼i D

′.
Now assumen〈P 〉[C] =⇒ C ′

using the out -rule. That is C ≡
C0, C1 with C1 of the form C1 ≡

m〈Q〉[E] andQ
outn
−→ Q′. With C ′

0 ≡

m〈Q′〉[E] we thus haveC0
outn
=⇒ C ′

0.
Using forest reduction, we can split
D ≡ D0,D1 with Dj ∼i Cj for

j = 0, 1. In particular, D0
outn
=⇒

D′

0 and D′

0 ∼i C ′

0. By assump-
tion, we haveC ′ ≡ C ′

0, n〈P 〉[C1].
PuttingD′ ≡ D′

0, n〈P 〉[D1], we ob-
tainn〈P 〉[D] =⇒ D′ andD′ ∼i C

′.

From the previous lemma, we ob-
tain the desired characterisation of spa-
tial congruence:

Corollary 7. Spatial congruence and
labelled bisimulation coincide.

Proof. By Lemma 5, spatial congru-
ence is contained in spatial bisimula-
tion. Lemma 6 proves the other inclu-
sion.

This result is our first characteri-
sation of spatial congruence in the ba-
sic calculus. Spatial congruence allows
us to observe the dynamic behaviour
of controlling processes plus the tree
structure of configurations. One there-
fore suspects, that spatial congruence
is a very intensional notion of equiva-
lence. In the following, we show that
spatial congruence is very intensional
indeed, by comparing it to the relation
of structural congruence on configura-
tions.

10

3.3 Spatial Congruence vs
Structural Congruence

Depending on the underlying labelled
transition system (P,−→), which
controls the behaviour of processes
(which in turn control the evolution of
configurations), it is clear that struc-
tural congruence is strictly contained
in spatial congruence: IfP,Q ∈ P
are bisimilar but not identical, we have
that n〈P 〉[] andn〈Q〉[] are not struc-
turally congruent, but spatially congru-
ent. This example relies on the exis-
tence of equivalent, but non-identical
processes inP. In this section, we
show, that this is indeed the only possi-
ble way in which we can have configu-
rations, which are spatially congruent,
but not structurally congruent. We now
proceed to show that spatial congru-
ence coincides with structural congru-
ence modulo process bisimilarity. We
start with the following:

Definition 6. Weak structural congru-
enceis the least relationR generated
by the rules of Definition 1, plus the
rule

C ≡ D P,Q process bisimilar
n〈P 〉[A] ≡ n〈Q〉[B]

wheren ∈ N , A,B ∈ C andP,Q ∈
P.

Thus weak structural congruence
not only identifies structurally congru-
ent configurations, but also configu-
rations with bisimilar controlling pro-
cesses. We think of weak structural
congruence as structural congruence
up to process bisimilarity.

Note that – coming back to the ex-
ample at the beginning of the section –
thatn〈P 〉[A] andn〈Q〉[A] are weakly
congruent forP,Q process bisimilar.
We have argued that this is an exam-
ple of a pair of configurations, which
are spatially congruent, but not struc-
turally congruent. Extending structural
congruence to include those configura-
tions, which only differ in the control-
ling process, structural and spatial con-
gruence can be shown to coincide:

Proposition 8. Weak structural con-
gruence and spatial congruence coin-
cide.

Proof. It follows directly from the def-
initions that weak structural congru-
ence (which we denote by≡ for the
purpose of this proof) is contained in
spatial congruence. We prove the con-
verse inclusion by contradiction: as-
sume that the setF = {(C,D) ∈ C |
C ∼= D,C 6≡ D} of felons is non
empty. ForC ∈ C, we define theheight
of C, ht(C), by induction as follows:
ht(0) = 0,ht(C,D) = ht(C) +
ht(D), ht(n〈P 〉[C ′]) = 1 + ht(C ′).

Since the standard ordering on
natural numbers is a well-ordering,
there is a pair(C,D) of felons, such
that ht(C) is minimal, that is, for all
(C ′,D′) ∈ F we have ht(C ′) ≥
ht(C). We discuss the different possi-
bilities forC.

CaseC ≡ C0, C1 with C0 6≡ 0 6≡
C1: Using forest reduction, we can
split D ≡ D0,D1 with Dj

∼= Cj for
j = 0, 1. Sinceht(C0) < ht(C) and
ht(C1) < ht(C), neither(C0,D0) nor

11

(C1,D1) are felons, that is,C0 ≡ D0

andC1 ≡ D1, henceC ≡ C0, C1 ≡
D0,D1 ≡ D, contradicting(C,D) ∈
F .

CaseC ≡ n〈P 〉[C0]: By subtree
reduction,D ≡ m〈Q〉[D0] with C0

∼=
D0. Sinceht(C0) < ht(C), the pair
(C0,D0) is not a felon, henceC0 ≡
D0.

By closure under top-level names,
furthermoren = m, and closure un-
der labelled reduction implies thatP
and Q are process bisimilar. Hence
n〈P 〉[C0] andm〈Q〉[D0] are weakly
congruent, contradicting(C,D) ∈ F .

CaseC ≡ 0: From C ∼= D we
concludeD ≡ 0, contradictingC 6≡
D.

This concludes our investigation of
the algebraic properties of BasicSail,
which we summarise as follows:

Theorem 9. SupposeC,D ∈ C. The
following are equivalent:

1. C andD are spatially congruent
2. C andD are labelled bisimilar
3. C and D are weakly structurally

congruent

4 The logical theory of
BasicSail

In the previous section, we have
looked at spatial congruence from an
algebraic viewpoint and have given
three different characterisations. This
section adopts a logical view and
gives a further characterisation of spa-
tial bisimulation in terms of a (modal

style) logic. Using our setup from the
previous section, this task is not overly
difficult, we just have to make the
(standard) assumption that the under-
lying processes are finitely branching.
Making this assumption, we obtain a
logic, which is completely standard
except for one binary modal operator,
which plays a role similar to the lin-
ear implication used in [4,2], except
for the fact that linear implication in
loc. cit. is the logical version of par-
allel composition, whereas the modal
operator we are about to introduce, is
the logical dual to “extending a par-
allel composition with one more pro-
cess”.

As before, our definitions and re-
sults are parametric in a setN of
names and the associated setL of la-
bels (cf. Notation 1). We begin with in-
troducing spatial logic. In essence, this
definition is modelled after the charac-
terisation given in Corollary 7.

Definition 7. The languageL of spa-
tial logic is the least set of formulas
according to the grammar

L ∋ φ,ψ ::= ǫ | @n | ff | φ→ ψ

| 〈R〉φ | 〈�〉φψ

wheren ∈ N , l ∈ L ∪ {τ} and R
ranges over the relations↓,=⇒ and

l
=⇒ for l ∈ L.

Intuitively, the formulaǫ allows us
to speak about the empty context and
@n allows us to observe the names of
locations. Formulas of type〈R〉φ al-
low us (as in standard modal logic) to

12

reason about the behaviour of a pro-
cess after evolving according to the re-
lation R. In our case, we can specify
properties of sub-configurations (using
↓), transitions (using=⇒) and labelled

reductions (using
l

=⇒). The most in-
teresting formula is of type〈�〉φψ: it
asserts that we can split a process into
a single node satisfyingφ and a re-
mainder, satisfyingψ.

Definition 8. The semantics of propo-
sitional connectives is as usual. For
the modal operators, we put, forC ∈
C:

C |= ǫ iff C ≡ 0

C |= @n iff C ∈ @n

C |= 〈R〉φ iff ∃C ′.(C,C ′) ∈ R

andC ′ |= φ

C |= 〈�〉φψ iff ∃C ′, C ′′.C � (C ′, C ′′)

andC ′ |= φ,C ′′ |= ψ

where R is as above. As usual,
Th(C) = {φ ∈ L | C |= φ} denotes
the logical theory ofC ∈ C. Two con-
figurationsC,D are logically equiva-
lent, if Th(C) = Th(D).

Note that we use the expression
“@n” above both as an atomic formula
of the logic and as a unary relation.
In this section, we show that logical
equivalence gives yet another charac-
terisation of spatial congruence, pro-
vided the underlying set of processes is
finitely branching. This follows from
the characterisation of spatial congru-
ence as spatial bisimulation + labelled
reduction by appealing to Proposition

2. We then obtain a characterisation of
spatial congruence in the sense of Hen-
nessy and Milner [7].

The main result of this section is as
follows:

Theorem 10. Suppose(P,−→) is im-
age finite. Then spatial congruence
and logical equivalence coincide.

Proof. We use the characterisation of
spatial congruence as labelled bisim-
ulation and Proposition 2. It follows
directly from the definition of spatial
logic, that formulas of spatial logic
cannot distinguish states, which are la-
belled bisimilar, hence labelled bisim-
ilarity is contained in logical equiv-
alence. For the converse, we use the
method of Hennessy and Milner [7]
and a variant of Proposition 2, replac-
ing “i + 1” by “ i” in the last clause of
the assumption (the meticulous reader
is invited to check that the Proposition
remains valid).

Suppose for a contradiction that
there is a pair of configurations
(C,D) ∈ C ×C such thatC andD are
logically equivalent, but not labelled
bisimilar. Let i be minimal such with
the property thatC 6∼i D butC ∼k D
for all k < i (such ann exists because
of Proposition 2).

SinceC and D are not labelled
bisimilar, we have – up to symmetry
– one of the following cases:

1. C ∈ @m butD 6∈ @m for some
m ∈ N . ThenC |= @m but D 6|=
@m, contradictingTh(C) = Th(D).

2. There isC ′ ∈ C such that
(P,P ′) ∈ R but there is noD′ ∈ C

13

with (D,D′) ∈ R andC ′ ∼i−1 D′,

whereR is one of↓,=⇒ or
l

=⇒ (for
l ∈ L).
Since i is minimal, this means that
for all D′ with (D,D′) ∈ R there
is a formula φD′ such thatD′ 6|=
φD′ but C ′ |= φD′ . Take φ =∧

D′:(D,D′)∈R〈R〉φD′ , which is well
defined by Lemma 1. ThenC |= φ
but D 6|= φ, contradictingTh(C) =
Th(D).

3. There areC0, C1 with C �

(C0, C1) but there is no(D0,D1) ∈
C × C with Dj ∼i−1 Cj (j = 0, 1)
andD � (D0,D1). The argument is
as above, using formulas of the form
〈�〉φψ.

Summing up, we have shown that

Spatial congruence = spatial
bisimulation + labelled reduction =
structural congruence up to process
bisimilarity = logical equivalence

Before extending these correspon-
dences to a more general setting, we
give some examples.

Example 4.We use the same setup as
in Example 2.

1. Consider the configurationC ≡
home, client from Example 2. We
have C |= 〈�〉)(@home, tt), corre-
sponding to the statement that there
is a top level node with the name
“home”.
Also,C |= 〈�〉(〈↓〉@agent, tt), which
expresses thatC has a subtree, one
node of which has the name “agent”.

2. Consider the configurationC ≡
n1〈P 〉[], n2〈Q〉[], similar to Example

2. Here,C |= 〈�〉(@n1, tt), i.e. there
is a location inC with the name “n1”.
Also, C |= 〈�〉(@n1, (〈�〉(@n2, ǫ))),
which says that all top level processes
contained inC have either the namen1

or n2.

5 Local Names

In the calculus of mobile ambients, lo-
cal names are essential for many exam-
ples. The treatment of local names is
derived from theπ-calculus, i.e. gov-
erned by structural rule of scope ex-
trusion (νnP) | Q ≡ νn(P | Q)
whenevern is not a freely occurring
name ofQ. In the ambient calculus,
local names cut across dynamics and
spatial structure, by adopting a second
structural rule:νn(k[P]) ≡ k[νnP] if
n 6= k, which allows to move the re-
striction operator up and down the tree
structure, induced by the nesting of the
ambient brackets.

If we want to remain independent
from the underlying process calculus,
we cannot adopt the latter rule. How-
ever, we can look at a calculus with
local names, where local names obey
scope extrusion a laπ-calculus.

The next definition extends the
syntax as to incorporate local names.
In order to deal with scope extrusion,
we also have to introduce the concept
of free names.

Definition 9. The setC of configura-
tions in the calculus with local names

14

is given by

C ∋ C,D ::= 0 | n〈P 〉[C]

| C,D | (νn)C

for n ∈ N andP ∈ P. GivenP ∈ P
andn ∈ N , we say thatn is free in P ,
if there are l1, . . . , lk and P1, . . . , Pk

such thatP
l1−→ P1

l2−→ · · ·
lk−→

Pk
l

−→ Q, where l is one ofinn,
outn and openn. We let fn(P) =
{n ∈ N | n free inP}.

For C ∈ C, the setfn(C) is defined
by induction on the structure ofC as
follows:

– fn(ǫ) = ∅
– fn(C,D) = fn(C) ∪ fn(D)

– fn(n〈P 〉[C]) = {n} ∪ fn(P) ∪
fn(C)

– fn(νnC) = fn(C) \ {n}

where structural congruence is
as in Definition 1, augmented
with α-equivalence and the rule
(νn)(A,B) ≡ (νnA), B whenever
n does not occur freely inB.

Theoperational semanticsis given
as in Definition 1, augmented with the
rule

C =⇒ C ′

(νn)C =⇒ (νn)C ′

for C,C ′ ∈ C andn ∈ N .

Note that, in order to be able to
state the rule forα-equivalence, we
need a notion of substitution on the un-
derlying processes, which we do not
make explicit here.

Before investigating the logical
and algebraic theory of the calculus

with local names, we give a short ex-
ample. Recall that in Example 2, we
had an agent in a home location, the
sole purpose of which was to trans-
port clients inside the home-location.
However, as we remarked when dis-
cussing this example, nothing prevents
the client process to enter the home-
location directly. This shortcoming can
now be remedied in the calculus with
local names.

Example 5.We can now model an
agent, which has the capability to enter
and exit its home location and to trans-
port clients inside with local names as
follows: We let “client” and “agent” as
in Example 2 and put

home = (νh)h〈0〉[agent]

Using scope extrusion, we have the
same chain of reductions as in Ex-
ample 2. However, sinceh is a pri-
vate name now, the client cannot enter
“home” without the help of “agent”.

The next issue we are going to
discuss is the algebraic and the log-
ical theory of the calculus with lo-
cal names. In order to obtain a simi-
lar characterisation as in the calculus
without local names, we have to ex-
tend the definition of spatial bisimula-
tion, and demand closure under name
revelations.

Definition 10. SupposeC ∈ C and
n, k ∈ N . We put

C
revn
=⇒ C ′ iff C ≡ (νk)C ′′

andC ′ ≡ C[n/k]

15

whenevern /∈ fn(C). The defini-
tion of spatial bisimulation is modi-
fied as follows: Spatial bisimulation is
the largest symmetric relation which
is closed under spatial reduction=⇒,
forest reduction�, subtree reduction
↓, top level names@n and under reve-
lation

revn
=⇒ (for all n ∈ N).

As before, spatial congruence is
the largest congruence, which is a spa-
tial bisimulation.

We now turn to the impact of
local names on the equivalences,
which we have discussed previously.
Since we make revelation an explicit
part of spatial bisimulation, every-
thing goes through as before, once the
equivalences are transferred (without
changes) to the calculus with local
names. We obtain:

– labelled bisimulationis the largest
spatial bisimulation, which is
closed under labelled reduction

– weak structural congruenceis
the least relation, which contains
structural congruence and all pairs
of the form (n〈P 〉[C], n〈Q〉[C])
for P,Q ∈ P process bisimilar.

Comparing these equivalences, we
obtain

Theorem 11. In the calculus with lo-
cal names, spatial congruence coin-
cides with labelled bisimulation and
with weak structural congruence.

Proof. We extend the respective re-
sults for the calculus without local
names. The arguments used in Lemma
5 remain valid, showing that spatial

congruence is closed under labelled re-
duction, implying that spatial congru-
ence is contained in labelled bisimilar-
ity.

In order to see that labelled bisim-
ulation is a congruence, one has to
consider revelation reductions, that is,
reductions of the form

revn
=⇒ on top of

the reductions considered in Lemma 6,
but they do not pose any problems.

The comparison of spatial congru-
ence and weak structural congruence is
as in Proposition 8.

In order to transfer the characteri-
sation result to a logical setting, we in-
troduce a hidden name quantifier a la
Gabbay / Pitts [6]:

Definition 11. The language ofspa-
tial logic with local namesis the least
set according to the following gram-
mar

L ∋ φ,ψ ::= ǫ | @n | ff | φ→ ψ

| 〈R〉φ | 〈�〉φψ | Hn.φ

GivenC ∈ C andφ ∈ L, satisfaction
C |= φ is as in Definition 7, plus the
clause

C |= Hn.φ iff C
revn
=⇒ C ′ andC ′ |= φ

for the hidden name quantifier. As be-
fore, Th(C) = {φ ∈ L | C |= φ} for
C ∈ C, andC,D ∈ C are calledlogi-
cally equivalent, if Th(C) = Th(D).

Since the relationrevn (for n ∈
N) is image-finite, Lemma 1 and
Proposition 2 remain valid in the cal-
culus with local names. We thus obtain

16

Theorem 12. In the calculus with lo-
cal names, spatial congruence and
logical equivalence coincide.

6 Further Extensions

This section shows, that the separa-
tion of dynamic and spatial aspects of
mobile components allows for seam-
less integration of extensions, which
are more difficult to model in other cal-
culi. First, we demonstrate that multi-
ple names can easily be handled, since
every process runs in precisely one lo-
cation. It is therefore a straightforward
extension to allow the controlling pro-
cess to change the name of that loca-
tion. The second extension can be seen
as orthogonal: Since the behaviour of
every location is governed by precisely
one process, new controlling processes
can easily be substituted into configu-
rations. This section intends to give an
idea regarding extensions of the Basic-
Sail calculus; we leave the investiga-
tion of the algebraic and logical theory
for further work.

6.1 Change of Names and
Multiple Names

In the ambient calculus, each ambient
has precisely one name, which does
not change throughout the reduction
process. One can argue that this does
not reflect the real world in a faithful
manner, since computing devices can
also have no names, multiple names
or change their names over time. The
explicit reference to the enclosing lo-
cation allows to model the change of

names elegantly in the Sail-calculus by
extending the set of labels, which in-
fluence the spatial reduction relation.

Since we want to keep the separa-
tion of the dynamical from the spatial
structure, we let the controlling pro-
cesses change the names of locations
through an interface (a set of distin-
guished labels) as before. This neces-
sitates to extend the set of labels for
the underlying process calculus:

Convention 3. We extend the setL
of labels to include primitives for
name changing as follows:L =
{in , out , open , up , down } × N ; as
before, (P,−→) is a labelled transi-
tion system with−→⊆ P × L× P.

Definition 12. In the calculus with
multiple names, configurations are
given by

C ∋ A,B ::= 0 | A,B | νnA

| (n1, . . . , nk)〈P 〉[B]

wherek ∈ N andn1, . . . , nk ∈ N .
The axioms and rules ofstructural

congruenceare those of Definition 9
augmented with

(n1, . . . , nk)〈P 〉[B]

≡ (nσ(1), . . . , nσ(k))〈P 〉[B]

(n, n, n1, . . . , nk)〈P 〉[B]

≡ (n, n1, . . . , nk)〈P 〉[B]

whenever σ : {1, . . . , k} →
{1, . . . , k} is a bijection.

The operational semanticsis that
of Definition 9, augmented with the

17

rules

P
upn
−→ P ′

n〈P 〉[A] −→ n+n(P ′)[A]

P
downn
−→ P ′

n〈P 〉[A] −→ n−n(P ′)[A]

where n
−n deletesn from the list n

of names;n+n addsn to the listn of
names.

The idea of a term(n,m)〈P 〉[A]
is that of a location with two names,n
andm, running the programmeP and
which hasA as sub-locations. The ad-
ditional rule of structural congruence
captures the fact that there is no order
on the names. The gained expressivity
allows us to treat the following:

Example 6. 1. Anonymous loca-
tions are modelled by an empty set
of names. Take for example()〈P 〉[A]
for P ∈ P and A ∈ C. Note
that anonymous locations are anony-
mous also for processes from within,
that is, the same effect cannot be
achieved using local names. Indeed,
the processesνn(n)〈P 〉[k〈outn〉[]]
and()〈P 〉[k〈outn〉[]] differ in that the
former can perform a reduction un-
der the name binder, whereas the latter
cannot.

2. Consider the configuration
(n)〈downn.0〉[A], ()〈in n.0〉[B].
First, this shows that unnamed loca-
tions can perform movements. Second,
this example illustrates that the move-
ment only succeeds, if the unnamed
agent is lucky enough to enter into his
partnerbeforethe name disappears.

6.2 Dynamic Reconfiguration

We conclude by demonstrating the
strength of our approach by discussing
dynamic reconfiguration, another ex-
tension of the basic calculus. Here,
we use the one-to-one relation be-
tween locations and controlling pro-
cesses to model dynamic reconfigura-
tion, i.e. locations, which dynamically
change the programme they run. Slop-
pily speaking, this allows for down-
loading a new programme, which is
then run in an already existing loca-
tion. As with multiple names and the
change of names, the explicit reference
to the enclosing location allows for a
concise and elegant formulation of dy-
namic reconfiguration. Note that this
in particular necessitates the transmis-
sion of programmes (processes). The
extension of the calculus follows the
same scheme as the above extension
with multiple names: in order to keep
dynamic and spatial structure apart,
we introduce new labels, which act as
an interface, through which the con-
trolling process manipulates the spatial
structure.

Convention 4. We extend the setL
of labels to include primitives for
dynamic reconfiguration as follows:
L = {in , out , open } × N ∪
{send , rec , run } × P; as before,
(P,−→) is a labelled transition sys-
tem with−→⊆ P × L× P.

Note that this requires the underly-
ing transition system to have processes
occurring in the labels, since processes
need to be transmitted. Except for the

18

absence of channel names, this is for
example realised in the higher order
π-calculus (see [13,16]). For our pur-
poses, it suffices that processes can be
transmitted and received; we leave the
concrete (syntactical) mechanism ab-
stract.

Definition 13. In the calculus with dy-
namic reconfiguration, configurations
are given as in the calculus with local
names (but recall the extended set of
labels). Theoperational semanticsfor
the calculus with dynamic reconfigura-
tion is given by the rules of Definition
9, augmented with

P
sendR
−→ P ′ Q

recR
−→ Q′

n〈P 〉[C],m〈Q〉[D]⇒n〈P ′〉[C],m〈Q′〉[D]

P
runR
−→ P ′

n〈P 〉[C] =⇒ n〈R〉[C]

Note that in the actionrunR, R is a
process and the reduct ofP after the
runR reduction is forgotten.

Using dynamic reconfiguration
and communication, we can now
model a location, which updates the
process it executes:

Example 7.We model an electronic
device, which attempts to update the
code it is running (its operating sys-
tem). That is, it tries to replace the pro-
gramme which it is running by another
(newer) version. In order to model this
behaviour, we first have to be more
precise about the underlying set of pro-

cesses: We let

P,Q ∋ P ::= 0 | P ‖ Q | α.P |!P |

X | runQ.P | sendQ.P | recQ.P

whereX ∈ X ranges over a set of
(process valued) variables. The pro-
cess level transition relation from Ex-
ample 1 is augmented with

recX.P
recQ
−→ P [Q/X]

and the usual rules

sendQ.P
sendQ
−→ P

runQ.P
runQ
−→ P

Note that in particular process vari-
ablesX ∈ X do not generate reduc-
tions. Now consider

P = (recX.runX) ‖ O

running inside locationn, that is, the
configurationC = n〈P 〉[B], where
B aren’s sub-locations. In the vicin-
ity of a location which sends updates,
e.g.U = u〈!(send (recX.runX ‖
N))〉[], whereN stands for the “new”
firmware, we have

U,C =⇒

U, n〈run (recX.runX ‖ N) ‖ O〉[B]

which, executing therun -operation,
reduces to

U, n〈recX.runX ‖ N〉[B],

that is, a process which (again) waits
for an update, but now running the new
firmwareN .

19

As already mentioned in the intro-
ductory remark of this section, both
extensions, multiple names and dy-
namic reconfiguration, are to demon-
strate the extensibility of the calculus;
the study of the algebraic and logical
properties is left for further research.

7 Conclusions and Related
Work

As discussed above the first calculus
for mobile computation was theπ-
calculus [8]. Further calculi are the Fu-
sion calculus [12], Nomadic Pict [18]
and the distributed coordination lan-
guage KLAIM [10]. The study of hier-
archical re-configurable administrative
domains was introduced by the Ambi-
ent [5] and the Seal calculus [17]. Ba-
sicSail follows these lines but distin-
guishes processes and configurations
in an a priori way and concentrates on
a even simpler set of operations for re-
configuration.

The basic calculus and its vari-
ations were inspired by the Seal-
Calculus. [17]. However, the Seal-
Calculus is quite involved syntacti-
cally; the present calculus is a sim-
plification in order to study the effect
of the separation of dynamics from
the underlying topological structure,
which is also present in Seal. The sec-
ond source of inspiration was the cal-
culus of mobile ambients [5]. As we
have pointed out before, our principal
design decisions do not allow to em-
bed the full ambient calculus into our
framework. Spatial logics were studied

by Cardelli and Caires [2,3], although
to our knowledge not wrt. a clear char-
acterisation of the expressive power.
Such a characterisation (called “inten-
sional bisimulation”) was considered
by Sangiorgi for a variant of the am-
bient calculus [14,15].

Separation of Concerns in Mod-
els of software architecture has also
been addressed – albeit not in the con-
text of mobile code – in [1,11]. There
the authors differentiate between com-
ponents, which provide certain ser-
vices, and an additional layer, which
describes the composition of compo-
nents. In the context of explicit code
mobility, this approach can be seen as
orthogonal to ours; and it would cer-
tainly be interesting to have coordina-
tion and mobility in a single frame-
work.

Of course, there remains a wealth
of open problems: Most pressingly, we
have investigated neither the logical
nor the algebraic theory of the calcu-
lus with multiple names or the calculus
with reconfiguration.

References

1. F. Arbab. Abstract behaviour types: A
foundation model for components and
their composition. This Volume.

2. L. Caires and L. Cardelli. A spatial logic
for concurrency (part i). In N. Kobayashi
and B. Pierce, editors,Proc. TACS 2001,
volume 2215 ofLecture Notes in Com-
puter Science, pages 1–37. Springer, 2001.

3. L. Caires and L. Cardelli. A spatial logic
for concurrency (part i). In L. Brim,
P. Jaǹcar, M. K̀retìnsk̀y, and A. Kùcera,
editors, Proc. CONCUR 2002, volume

20

2421 of Lecture Notes in Computer Sci-
ence. Springer, 2002.

4. L. Cardelli and A. Gordon. Anytime,
anywhere: Modal logics for mobile ambi-
ents. InProc. POPL 2000, pages 365–377.
ACM, 2000.

5. L. Cardelli and A. Gordon. Mobile ambi-
ents. Theor. Comp. Sci., 240(1):177–213,
2000.

6. D. Gabbay and A. Pitts. A new approach
to abstract syntax involving binders. In
14th IEEE Symposium on Logic in Com-
puter Science (LICS 1999), pages 214–
224. IEEE Computer Society, 1999.

7. M. Hennessy and R. Milner. Algebraic
Laws for Non-determinism and Concur-
rency. Journal of the ACM, 32:137–161,
1985.

8. R. Milner. Communicating and Mobile
Systems: theπ-Calculus. Cambridge Uni-
versity Press, 1999.

9. U. Montanari and V. Sassone. Dy-
namic congruence vs. progressing bisimu-
lation for CCS.Fundamenta Informaticae,
16(2):171–199, 1992.

10. R. De Nicola, G. Ferrari, and R. Pugliese.
Klaim: a kernel language for agents inter-
action and mobility.IEEE Trans. Software
Engineering, 24(5):315–330, 1998.

11. O. Nierstrasz and F. Achermann. A cal-
culus for modelling software components.
This Volume.

12. J. Parrow and B. Victor. The fusion cal-
culus: Expressiveness and symmetry in
mobile processes. InThirteenth Annual
Symposium on Logic in Computer Science
(LICS 1998), pages 176–185. IEEE, IEEE
Computer Society, 1998.

13. D. Sangiorgi. Fromπ-calculus to Higher-
Orderπ-calculus — and back. In M.-C.
Gaudel and J.-P. Jouannaud, editors,Proc.
TAPSOFT 93, volume 668 ofLect. Notes
in Comp. Sci., pages 151–166, 1993.

14. D. Sangiorgi. Extensionality and inten-
sionality of the ambient logics. InProc.
POPL 2001, pages 4–13. ACM, 2001.

15. D. Sangiorgi. Separability, expressiveness,
and decidability in the ambient logic. In
17th IEEE Symposium on Logic in Com-
puter Science (LICS 2002). IEEE Com-
puter Society, 2002.

16. Davide Sangiorgi and David Walker.The
π-calculus: a Theory of Mobile Processes.
Cambridge University Press, 2001.

17. J. Vitek and G. Castagna. Seal: A frame-
work for secure mobile computation.In-
ternet Programming, 1999.

18. P. Wojciechowski and P. Sewell. Nomadic
pict: Language and infrastructure design
for mobile agents. IEEE Concurrency,
8(2):42–52, 2000.

21

