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Abstract. We present a new calculus for mobile systems, the main featr
which is the separation between dynamic and topologicaasmf distributed
computations. Our calculus realises the following bassuamptions: (1) every
computation executes in a uniquely determined locationp(@resses modify
the distributed structure by means of predefined operatieomd (3) the under-
lying programming language can be changed easily. Thisrgagreduces our
calculus, and shows, that this separation of concerns teaalperfect match be-
tween the logical, syntactical and algebraic theory. Omtie¢thodological side,
we demonstrate by means of two examples, that the strichdligin between
topological and computational aspects allows for an eaggyiation of features,
which are missing in other calculi.

1 Introduction The most well-known example is
the w-calculus [8] of Milner which
provides an abstract basis for mobil-

With the success of the Internet, moity where communicating systems can
bile systems have been promoted alynamically change the topology of
new computational paradigm in whiclthe channels. The Ambient calculus
computation can be distributed ovej5] of Cardelli and Gordon focuses on
the net and highly dynamic, with thethe handling of administrative domains
network itself changing continuouslywhere mobile processes may enter a
In practice, however, such systems atmain or exit from a domain and in
not well accepted since users fear seéris way may change the topology of
curity problems, or more generallythe network. Similarly, the Seal calcu-
the problems with controlling the bedus [17] of Vitek and Castagna aims
haviour of mobile systems. As a remat describing secure mobile computa-
edy, process calculi, modal logics antlons in a network that is hierarchically
other formal techniques have been prgartitioned by localities.

posed and studied which provide theo- In this paper we continue this line

retical foundations for mobile system®f research by proposing a new basic

and allow one to analyse and verifgealculus for mobile processes called
properties of such systems.

* This work has been partially sponsored by the project AGISH;2001-39029.



BasicSail with focus on explicit local-underlying programming language or
ities and dynamic reconfiguration ofprocess calculus.

networks. A configuration is a hierar-

chy of administrative domains, each However, a computation needs
of which is controlled by a processsome means to change the distributed
and which may contain other subcor@nd spatial structure (otherwise our
figurations. Configurations may be dystudy would end here). That is, we
namically reconfigured by entering anneed a clean mechanism, through
other configuration or by exiting fromwhich the distributed structure can be
a configuration. This is similar to themodified :

Ambient calculus; in contrast to other _ _
approaches we aim at a clear Sepg\_ssumptlon 3. Processes modify the

ration between processes and confiiStributed structure of the computa-
urations: processes show behaviodfon through interfaces only.
whereas the configurations provide the

topological structure. BasicSail ab- Our calculus is modelled after

stracts from a concrete process calc[[pesotl9 assu:cntpr;uons. q Rle gardlng inde-
lus: We aim at studying the dynami endence ot the underlying program-

reconfiguration of configurations in-"Ng language, we assume that the

dependently of the underlying notiorProceSSIes’th'Ch cont_r:;l thef_cogqputa—
of process. Our approach is centredP"S: @ready come with a (fixed) op-

around three assumptions, which Wgr?lt'%n?l ser_r;antlcs, tm t(?rtmhg of”a la-
now briefly discuss: elled transition system; this allows

us to realise interfaces as a particular
Assumption 1. Every  computation set of distinguished labels. As already

takes place in a uniquely determine@ientioned before, the separati_on be-
location. tween processes and locations is taken

care of by using a two sorted approach.
This assumption in particular ~ The main technical contribution of

forces a two-sorted approach: We nedlie paper is the study of the algebraic
to distinguish between elements whicBnd logical properties of the basic cal-
relate to the spatial structure and thosgyllus, and of its extension with lo-
which drive the computation processcal hames. We introduce the notion of
Since our primary interest is the studgpatial bisimulation and give an alge-
of mobile computation, we would likebraic and a logical characterisation of
to be as independent as possible frofie induced congruence. Our main re-
the concrete realisation of processesult here is, that if one abstracts from
and therefore make the concrete realisation of the com-
putations, we obtain a perfect match
Assumption 2. The distributed part of between structural congruence, logical
the calculus is independent of thequivalence and spatial congruence.
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Methodologically, we want to advo-defined interfaces. Technically, we as-
cate the separation between the cosume that the underlying programming
cepts “mobility” and “computation” language comes with a labelled transi-
on a foundational basis; we try to maké&on system semantics, which manip-
this point by giving two extensionsulates the distributed structure (on the
of the calculus, which are missing irupper level) by means of a set of dis-
other calculi and can be smoothly intinguished labels.
tegrated into BasicSail, thanks to the The distinction between processes
separation between spatial structur@r programs) and the locations, in
and computation. which they execute (and the struc-
We introduce the basic calculusture of which they modify), forces
that is, the calculus without localus to work in a two-sorted environ-
names, in Section 2. The algebraic thenent, where we assume the programs
ory of he calculus is investigated inand their operational semantics) as
Section 3, and Section 4 transfers thegiven, and concentrate on the dis-
results to a logical setting. We thenributed structure. Our basic setup is as
extend the calculus with local namefollows:
(Section 5). Further extensions, which
demonstrate the versatility of our apNotation 1. Throughout the paper, we
proach, are discussed in Section x a set\ of names and the set =
Finally, Section 7 compares our ap{in,out,open} x N of labels and a

proach to other calculi found in the lit-transition systenf?, — ), whereP is
erature. a set (of processes) and~C P x L x
P. We assume thgtP, —) is image
finite, that is, for evenfP,l) € P x L,
the set{ P’ | P LN P’} is finite.
We write inn for the pair
This section introduces BasicSall, ou@ln’n) € L and similarly for
: . out ,open and call the elements of
testbed for studying mobile compo- ; .
. L basic labels The setP is the set of
nents. In order to ensure independen

e .
from the underlying programming Ian-%"JlSIC processes

guage (cf. Assumption 1), BasicSail The prototypical example of tran-

consists of two layers. The Iowersition systems, which can be used

layer (W?'CtT] we assumg als glvengo instantiate our framework, are of
represents the programming fanguagg, e process calculi. We present one

which is used on the component Iev‘_akuch calculus, which will also be used
The upper level represents the d'?ﬁ later examples, next
tributed structure, which is manipu- ' '

lated through programs (residing ofExample 1.TakeP to be given as the
the lower level) by means of predeast set according to the following

2 Basic Sail: The Basic
Calculus
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grammar: whereP € P is a process andh € A/
is a name, modulo structural congru-
P>P,Q:=0|P||Q|aP|!P ence=,given by the equations

wherea € £ ranges over the basic 4+ B =B84  A0=4
labels. The transition relation— is A,(B,C)=(4A,B),C

generated by the following rules We call the configuration building op-

erator “,” spatial composition

PP
aP-5%P PlQ-5P|Q Here, 0 is the empty configura-
tion, n(P)[A] is a configuration with
modulo structural congruence=, namen, which is controlled by the
given by the axioms” || Q = Q || P, processP and has the subconfigura-
Plo=P P (Q] R) = (P | tionA. Finally, A, B are two config-
Q) || Rand!P = P ||!P. For conve- urations, which execute concurrently.
nience, we often omit the trailing inerfThe next definition lays down the for-
process and write for «.0. mal semantics of our calculus, which
Intuitively, «. P is a process whichis given in terms of the reduction se-
can perform any action and continue mantics— of the underlying process
as P; the termP || @ represents thecalculus:
processesP and ¢ running concur-
rently and!P represents a countabl
number of copies oP.

Definition 2. The operational seman-
Sics of BasicSail is the relation given
by the following rules the following

Note that we use this concrete syriules
tax for processes just in order to il-
lustrate our approach; the general the
ory is independent of the syntacticafn
presentation and just assumes that pro- outn
cesses form a set and come with a tran- rP—7r
sition system over the sét of labels. n(Q)m(PA]B]=m{P"JAl,n{Q) Bl

Given such a transition system

p 2% pr
(PYAl,n(Q)B]=n(Q)m(P"fA],B]

openn

(P,—), the distributed structure P—=r
(which is our primary interest) is built m(P)[A],n(Q)[B] = m(P")[A], B
on top of(P, —) as follows: together with the congruence rules
Definition 1. The setC of basiccon- A=A
figurationsis the least set according to A,B= A",B
the grammar

A= A
C>A,B:==0|n(P)A]| A, B n(P)[A] = n(P)[A']



where we do not distinguish betweein /.0 || P andQ’ = out a.0):
structurally congruent configurations. )
The relation— is called spatial re- home;client

duction = h(0)[}, a(P")]}, {@)1]
_ = h{0)[}, a(P")[e(Q")]]
In the examples, we often omit the — 1{0)[a(P)[c(Q]]
empty configuration, and write(P)][] e h{(OY[a(P) ], c(O)]]

instead ofn(P)[0]. Using the above

definition, we can study phenomenaghis sequence of reductions shows a
which arise in a distributed settingguarded form of entry intoh: The
without making a commitment to anygjient has to enter the mediating agent
kind of underlying language. In partic-, \hich then transports it intch,
ular, we do not have to take internal aGyhere the client then exits. Note that
tions of processes into account; thesg the basic calculus; could enterh
are assumed to be incorporated into thﬁrecﬂy’ if ¢'s controlling process were
reduction relation— on the level of gjfferent. This can be made impossible

processes. if one adds local names, as we shall do
We cannot expect to be able to emzter.

bed the full ambient calculus [5] into 5 \we model an agent, which re-
our setting, due to the fact that in theatedly visits two network nodes, as
(original) ambient calculus, there argg|ows:

no sorts available. However, we can

nevertheless treat many examples: agent = a(P)]]

1
Example 2.We use the set of basicVth l(inng.outn1.0) |

processes from Example 1. (inny.out ny.0). The activity of a
once it is at eithen; or n, is not mod-
1. Anagent, which has the capabilélled (but imagineu checks, whether
ity to enter and exit its home locatior® Node has been corrupted or is other-
to transport clients inside can be modvise non-functional). In the presence

elled as follows: Put of two nodesn; andns, we have the
(spatial) reductions, where we write
agent = a(P)]] N; and N, for the controlling pro-

cesses ofi; andns:

client = ¢(Q)]]

home = h(0)[agent] n1(N1)[], n2(N2) ], a{P)]]
==>n1(N1)[a(P)[]], n2(N2) ]
where P =l(outhinh0) andQ = —py (V)] ma(No)], a(P)]
ina.outa.0. In € contriguration
home, client, we have the fgllowing = (Nl n2(No)la(P)]
—

chain of reductions (where?’ =



In the above, we have abbreviated If R is closed undesS, it is often

P, = outn;.0 || P and P, = helpful to think of R as an equivalence
outns.0 || P. Here, the programP on processes and ¢f as a reduction
controlling ¢ does not force: to visit relation. In this settingR is closed un-
ny1 andne in any particular order, andder S if, whenevera andb are equiva-
a could for example choose to enient (i.e.(a,b) € R) anda reduces to
ter and leaven; continuously, without o’ (i.e. (a,a’) € S), there is some’

ever setting foot intas. such that2’ andd’ are again equivalent
(i.e. (d/,b') € R) andb reduces td/’
3 Algebraic Theory of the (that is,(b,b') € R). So if R is closed
Basic Calculus under.S, we think of R as being some

bisimulation relation andr the corre-
This section is devoted to the algebrai§ponding notion of reduction.

theory of the basic calculus; extensions
of the calculus, in particular with lo-Definition 3 (Spatial Bisimulation).
cal names, are deferred until Sectiogonsider the following endorelations
5. In this section, we show that the alonC:
gebraic and the logical theory of the 1. Subtree reduction|C C x
basic calculus fit together seamlesslx, Where oo Difc =
In more detail, we discuss the relation-’ o

: : n(P)|D] for somen € N andP € P
ship between three relations on pro- 2. Forest reductionyC C x C x C
cesses: spatial bisimulgtion (which we he.reC o (A, B) iff O = A B and
introduce shortljy), the mdluced spatlaA is of the formA = n(P)[D] for
congruence and structura congruence. N.PePandD e C.
. o 3. Top-level name&n C C, where
3.1 Basic Definitions and neNandC e @niff ¢ = n(P)[A]

Examples for someP € P and A e C.

Spatial bisimulation will defined as bi- .
nary relation on configurations, sub- h_T:e_ Iarlgestd relaélon:g .CIX g
ject to some closure properties; thi/Nich 1S closed under spatial reduc-

precise meaning of which is given allon =, subtree reduction, fores re-
follows: duction® and top-level namean, for

_ all n € N, is calledspatial bisimula-
Terminology 2. Suppose? C A x A tion.
is & binary relation on a set and Furthermore, spatial congruence
SCAx---x Aisn + l-ary. We ~

_ _ = is the largest spatial bisimulation,
say thatR is closedunders, if, when- \yhich is a congruence with respect to

ever(a,b) € Rand(a,a1,...,as) € construction of configurations.
S, there areby,...,b, € A with

(b,b1,...,by) € S and(a;,b;) € R Note that, in the previous defini-
fori=1,...,n. tion, we just require the congruence



property wrt. the construction of conspatial congruence is the notion of
figurations, that is we require equivalence we are interested in. By
definition, spatial congruence involves
the closure under all configuration
constructing operators, and is there-
fore not easy to verify.

Ouir first goal is therefore an alter-
This not only justifies the name spahative characterisation of spatial con-
tial congruence — it furthermore allowgruence. As it turns out, we only need
us to study the evolution of the tredo add one closure property to the def-
structure of (a set of) mobile processdsition of spatial bisimulation in order
without reference to the underlyind0 obtain spatial congruence.
process calculus. Note that the spatial
congruence is not the largest congri8.2 Spatial Congruence and
ence contained in the spatial bisimu-  Spatial Bisimulation

lation (corresponding to closure unde\rNe start on our first characterisation of

contexts). Our notion of spatial con-___ . .
spatial congruence. The approach is as

g;un?iréclfisfion:ljl\gtsiot:([a9f pproach of dyf_ollovx_/s: We con_sider labelled _rgduc—
In a nutshell two. configurationstlon’ introduced |_n the next definition,
are spatially bisimilar, if they havead SNOW that (i) spatial congruence
o L is closed under labelled reduction, and
bisimilar reducts, bisimilar subtrees

gi) that spatial bisimulation + labelled
and the same top-level names. If tw

. ) . reduction is a congruence. This imme-
configurations are spatially congruent,. . .

. diately entails that spatial congruence
one can furthermore substitute them o .
L ._ IS spatial bisimulation plus closure un-
for one another, obtaining spatially

i Althouah t_dfer labelled reductions. We begin with
congruent processes. ough spa 'fﬂwe definition of labelled reduction:
bisimulation is a very strong notion o

bisimilarity, it is not a congruence:  Definition 4. Let! € L. Define the re-
lation :l>g C x C by the rules

1. A =2 A, By =2 B —
AO,Al =~ By, By and

2.A 2 Bne N,PeP
n(P)[A] = n(P)[B.

Example 3.Taken, m € N with n #
m and letA = n(inm.0)[] and B = p_t, p
n{0)[]. ThenA ~ B (since neitherd ]

nor B can perform a spatial reduction), n{P)[A] = n(P)[4]
but A 2 B, since A, m(0)[] does re- }

duce, wherea®, m/(0)[] does not. =/

. . C,D == ' D
Since we clearly want equivalent
configurations to be substitutable fognd call a relationB C C x C closed
one another (which allows us to buildinder labelled reductionf 3 is closed
large systems in a compositional way}mder:l> forall I € L.
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We use the name “labelled bisimu- - C ©  (CiCy) implies

lation” for the closure of spatial bisim- iDy,Ds.D O (Dy,D5) and
ulation under labelled reductions. Cq ~; D1, Cy ~; Dy

o N — ¢ =% ¢’ implies3D’.D =
Definition 5. We takelabelled bisim- D'andC’ ~;sy D' forl e £

ulationto be the largest symmetric re-
lation £C C x C which is closed un- Then, ifC' and D € C, we have
der forest reduction, spatial reductionC < D iff C ~; D forall i € N.
subtree reduction, labelled reduction
and top level names. Proof. We abbreviate~= (o ~i-
In order to see that’ & D whenever
In order to be able to compare’ ~, D, one shows that is a spatial
spatial congruence and labelled bisinbisimulation, which is closed under la-
ulation, we need a proof principlebelled reduction.
which allows us to reason about la- The converse follows from the fact
belled bisimulation using induction orthat all relations used in the definition
reductions. This principle works forof ~; are image finite (Lemma 1).
finitely branching systems only, and is
the content of the following two lem-  We note two easy consequences of
mas: the above characterisation: in partic-
ular, controlling processes, which are
Lemma 1. Suppose (P,—) is bisimilar (in the ordinary sense) do not
finitely branching. Then the relationsdestroy the relations-; and therefore
=, 0O, ] and:l> (for all I € £) are preserve labelled bisimulation. That s,
image finite. if we call the largest symmetric rela-
tion B C P x P, which is a (strong)
Proof. By structural induction usinglabelled bisimulation in the ordinary
the respective definitions. sense grocess bisimulationwe have

the following:
Proposition 2. Assume thatP, —)

is image finite and define a sequendeemma 3. 1. ~; 1Cn~;
of relations~;C C x C inductively as for all 7 € N.

follows: 2. Letn € N, A,B € C and
P,Q € Prop. Thenforalli e N
Lo~=CxC n(P)[A] ~i1 n(Q)[B] if

2. C ~;y1 Disthe largest symmetricP’Q are process-bisimilar andt ~;
relation s.t. B.

— C € @QnimpliesD € @n

- (C,c € R implies The relationship between labelled
iD'.(D,D’) € RandC’ ~; bisimulation and process bisimulation
D' whereR is one of—>or | can be formalised as follows:
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Corollary 4. Letn € N, A,B € C C; and m(P)[E] = m(Q)[E';
and P, € Prop. Thenn(P)[A] and since spatial congruence is a con-

n(Q)[B] are labelled bisimilar iff gruence we finally obtainD 2%
P, Q are process-bisimilar andl and D, m(Q')[E'] = C,, m(P")[E].
B are labelled bisimilar. Casel = out n: Similar, using the

We are now ready to tackle theconteXt"<R>[—’k<R>H_]' o _
first step of our comparison between Casel = openn: Similar, using
labelled bisimulation and spatial contn® context(R)[k{R)[]], _.

gruence. The converse of Lemma 5 needs

Lemma 5. Spatial congruence isthe proof principle of Proposition 2.

closed under labelled reduction. Lemma 6. Labelled bisimulation is a

Proof. Supposen € N, C,D < ¢ congruence.

are spatially congruent ard = C". Proof. We have to show that labelled
ThenC'is of the form €' = (50’01 bisimulation is a congruence wrt. the
with Cy = m(P)[E] and P — P’ construction of configurations, that is,
for someP’ € P andE € C. We wrt. “putting in a box” and spatial

proceed by case distinction ére £, composition.

where we use a fresh narmec N, i.e. Congruence Wrt. Spatia| Composi_

k does not occur as the name of a Iqjon: We show that the relatiof; =
cation either inC' or in D, and some {(C. E), (D,E)|C,D,E € C and

arbitrary R € P. C ~; D} is a subset of; for all
Case! = inn: Consider the ; ¢ N. The case = 0 is trivial; for

context K[ | = n(R)[k(R)[]],_. the inductive step we show that any

Then K[C] = C'" with ' = pair((C,E), (D, E)) € R, satisfies

C1,n(R)[m(P")[E], k(R)[]]. ~ Since the properties defined in Prop. 2 with
C = D, we haveK[D] = D' ~,., replaced byR;. The cases of top
with ¢’ = D'. Since spatial con-|evel names, forest reductions and la-
gruence is closed under forest redugelied reductions follow directly from
tion and top-level names, we can splihe definitions of thek,,; and the fact
D" = Dy,n(R)[F] for someR' € P that ~;,C~; . For spatial reduction
and ' € C, whereD; = Cp and suppose’, E = C'. If either C =
n(R)[F] = n(R)[m(P)[E],k(R)[l. Cy andC’ = Cy,E or E = E,
Using closure under subtree reductiojndc’ = C, E, the result follows eas-
we obtain ' = m(Q")[E'], k(R)[] ily from the induction hypothesis. For
(sincek is fresh) withm(Q')[E'] = all other cases we have to show that
m(P")[E]. Again using thak is fresh, ¢ E and D, E have the same spatial
we haveD = D1, m(Q)[E"] for some reductions, resulting in configurations,
Q € P with Q =2 Q' with D; = which are~; equivalent.



We only consider then-rule; the D’ with D’ = n(P)[D"] and by ind.
other cases are similar. hyp.C’" ~; D'.

If C,E = C’ by virtue of the Now assumen(P)[C] = ('
in-rule, either a component @ en- using the out-rule. That is C
ters into a component of/, or vice Cy,C; with C; of the form C;
versa. That is, we have one of the folm(Q)[E] andQ = @'. With C}) =

lowing two cases: m(Q')|E] we thus haveCy == ¢,
1.C = C,C with Cy = ;J)sin_g fgre% red_tjr::tilc;n, we ((:janf split
m(P)[F] and P 2% Pl andp = ~ = DoP W Ey o & Tor
By, By with Ey = n(Q)[G], or J , = 0, 1., In partlc,ular, Dy
2.E = Ey B with B, = Dj and Dy ~; C{. By assump-

tion, we haveC’ = C{,n(P)[C1].
Putting D’ = D{,n(P)[D;], we ob-
tainn(P)[D] = D' andD’ ~; C".

We only treat the first case; the
second can be treated along similar From the previous lemma, we ob-
lines (using Lemma 3) . From the astain the desired characterisation of spa-
sumptionC' ~;,1 D we obtain (us- tial congruence:
ing forest reduction and preservation
of top level names), that we can spliCorollary 7. Spatial congruence and
D = Dy, Dy with Dy = m(R)[H] labelled bisimulation coincide.
andC; ~; D; for j = 0,1. Using
closure under labelled reduction, w@roof. By Lemma 5, spatial congru-
have R 2% R’ with m(P')[F] ~; ence is contained in spatial bisimula-
m(R')[H]. SinceC, E = C’ we ob- tion. Lemma 6 proves the other inclu-
tain ¢’ = n(Q)[m(P")[F],G],C1, E, sion.
and D,E = D' with D' =
n(Q)[m(R')[H],G|,Dy,Ey,  from This result is our first characteri-
which we obtainC’ ~; D’ using that sation of spatial congruence in the ba-
~; IS a congruence. sic calculus. Spatial congruence allows

Congruence wrt. putting in a box:us to observe the dynamic behaviour
SupposeC, D € C with C ~;.1 D of controlling processes plus the tree
andn € N, P € P. We have to show structure of configurations. One there-
that n(P)[C] ~;+1 n(P)[D]. As be- fore suspects, that spatial congruence
fore, the only interesting cases arisis a very intensional notion of equiva-
through spatial reductions. So suppodence. In the following, we show that
n(P)[C] = (. If this is because spatial congruence is very intensional
C = C" andC’ = n(P)[C"], we indeed, by comparing it to the relation
find D" ~; C" with D = D", since of structural congruence on configura-
C ~11 D. Inthis casen(P)[D] = tions.

m(P)[F] and P 2% P’ andC
CQ, Cy with Cy = n<Q>[G]
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3.3 Spatial Congruence vs Note that — coming back to the ex-
Structural Congruence ample at the beginning of the section —

. : hatn(P)[A] andn(Q)[A] are weakly
Depending on the underlying Iabellectlcongruent forP, ) process bisimilar.

transition system —), which o
y (P’ ) We have argued that this is an exam-
controls the behaviour of processes

(which in turn control the evolution ofple of a pair of configurations, which

configurations), it is clear that struc2'® spatially congruent, but not struc-

. . . turally congruent. Extending structural
tural congruence is strictly containe . :
. . ] congruence to include those configura-
in spatial congruence: IP,Q ¢ P

L ) . tions, which only differ in the control-
are bisimilar but not identical, we haV(?in rocess. structural and spatial con-
that n(P)[] andn(Q)]] are not struc- 9 P : P

turally congruent, but spatially congru—gruence can be shown to coincide:

ent. This example relies on the exisprgposition 8. Weak structural con-

tence of eq_uwalent, t_’UI non_"dem'cabruence and spatial congruence coin-
processes irnP. In this section, we cide

show, that this is indeed the only possi-

ble way in which we can have configuProof. It follows directly from the def-
rations, which are spatially congruentinitions that weak structural congru-
but not structurally congruent. We novence (which we denote by for the
proceed to show that spatial congrysurpose of this proof) is contained in
ence coincides with structural congruspatial congruence. We prove the con-
ence modulo process bisimilarity. Weverse inclusion by contradiction: as-
start with the following: sume that the sef = {(C,D) € C |

C = D,C # D} of felons is non

e ey, For ¢ . wedfn e
9 of C, ht(C), by induction as follows:

by the rules of Definition 1, plus theht(O) = 0,ht(C,D) = ht(C) +

rule C h(D) Wt(n(P)C]) = 1+ h(C).
C=D  PQ process bisimilar Since the standard ordering on
n(P)[A] = n(Q)[B] natural numbers is a well-ordering,
wheren € N, A,B € CandP,Q ¢ there is a pair(_C’,_D) of felo_ns, such
P. that ht(C) is minimal, that is, for all

(C',D") € F we haveht(C') >
Thus weak structural congruencét(C). We discuss the different possi-
not only identifies structurally congru-bilities for C.
ent configurations, but also configu- CaseC = Cy, Cy with Cy £ 0 #
rations with bisimilar controlling pro- C;: Using forest reduction, we can
cesses. We think of weak structuradplit D = Dy, Dy with D; = C; for
congruence as structural congruence= 0, 1. Sinceht(Cy) < ht(C) and
up to process bisimilarity. ht(C1) < ht(C), neither(Cy, Do) nor
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(C1, Dy) are felons, that is¢y = Dy style) logic. Using our setup from the
andC; = D1, henceC = Cy,Cy = previous section, this task is not overly
Dy, Dy = D, contradicting(C, D) € difficult, we just have to make the
F. (standard) assumption that the under-
CaseC = n(P)[Cy]: By subtree lying processes are finitely branching.
reduction,D = m(Q)[Dy] with Cy = Making this assumption, we obtain a
Dy. Sinceht(Cy) < ht(C), the pair logic, which is completely standard
(Co, Do) is not a felon, henc€; = except for one binary modal operator,
Dy. which plays a role similar to the lin-
By closure under top-level namesear implication used in [4,2], except
furthermoren = m, and closure un- for the fact that linear implication in
der labelled reduction implies thd® loc. cit. is the logical version of par-
and ) are process bisimilar. Henceallel composition, whereas the modal
n{P)[Cy] and m(Q)[Do] are weakly operator we are about to introduce, is
congruent, contradictingC, D) € F. the logical dual to “extending a par-
CaseC = 0: FromC = D we allel composition with one more pro-
concludeD = 0, contradictingC # cess”.
D. As before, our definitions and re-
sults are parametric in a seét of
This concludes our investigation of,ames and the associated £eof la-
the algebraic properties of BasicSaibeg|s (cf. Notation 1). We begin with in-
which we summarise as follows: troducing spatial logic. In essence, this
definition is modelled after the charac-

Theorem 9. SupposeC’, D € C. The terisation given in Corollary 7.

following are equivalent:
Definition 7. The languagd. of spa-
tial logic is the least set of formulas
according to the grammar

1. C and D are spatially congruent

2. C andD are labelled bisimilar

3. C' and D are weakly structurally
congruent

Lo ¢, ¢u=elQ@n|fflo—1

R O
4 The logical theory of By ] {Or0v
BasicSail wheren € N, € LU{r} andR

ranges over the relationg,— and
In the previous section, we havel, o7 ¢ ,.

looked at spatial congruence from an

algebraic viewpoint and have given Intuitively, the formulae allows us
three different characterisations. Thito speak about the empty context and
section adopts a logical view anddn allows us to observe the nhames of
gives a further characterisation of spdecations. Formulas of typeR)¢ al-
tial bisimulation in terms of a (modallow us (as in standard modal logic) to

12



reason about the behaviour of a pr@. We then obtain a characterisation of
cess after evolving according to the respatial congruence in the sense of Hen-
lation R. In our case, we can specifynessy and Milner [7].

properties of sub-configurations (using The main result of this section is as

1), transitions (using=-) and labelled follows:

reductions (using_i>). The most in- Theorem 10. SupposéP, —) is im-

teresting formula is of typ&O)¢v: it 450 finite. Then spatia] congruence

asserts that we can split a process inéchd logical equivalence coincide.

a single node satisfyingg and a re-

mainder, satisfyingp. Proof. We use the characterisation of
spatial congruence as labelled bisim-

Definition 8. The semantics of propo-ylation and Proposition 2. It follows

sitional connectives is as usual. Fodirectly from the definition of spatial

the modal operators, we put, féf € |ogic, that formulas of spatial logic

C: cannot distinguish states, which are la-
_ belled bisimilar, hence labelled bisim-
Cle iff C =0 ilarity is contained in logical equiv-
C = @n iff C' € @Qn alence. For the converse, we use the
CE (R iff3C.(C,C"YeR method of Hennessy and Milner [7]
andC’ = ¢ and a variant of Proposition 2, replac-

i ing “i + 1" by “¢” in the last clause of
C k= (O)¢y iff 3¢, C".0 0 (¢, C”)the assumption (the meticulous reader
andC’ = ¢,C" =1 s invited to check that the Proposition
) remains valid).
where R is as above. As usual, gyhnose for a contradiction that
Th(C) = {6 € L | C |= ¢} denotes ynere 'is a pair of configurations

the Iogical theory of” € C. Two con- (C, D) € C x C such thatC and D are
figurationsC, D are logically equiva- |5gically equivalent, but not labelled
lent, if Th(C') = Th(D). bisimilar. Leti be minimal such with

the property thaC »; D butC ~p D

Note that we use the expressioP Wk < h its b
«@n” above both as an atomic formula®' 21l ¥ < 7 (such am exists because

of the logic and as a unary relation”' | roPOsition 2)
Since C' and D are not labelled

In this section, we show that Iogicah imilar. we have to ot
equivalence gives yet another chara@>'miarn w ve — Up fo symmetry

terisation of spatial congruence, pro- one of the following cases:
vided the underlying set of processesis 1. C € @m but D ¢ @m for some
finitely branching. This follows fromm € N. ThenC = @m but D (£
the characterisation of spatial congru@m, contradictingTh(C') = Th(D).
ence as spatial bisimulation + labelled 2. There isC’ € C such that

reduction by appealing to Propositiof P, P’) € R but there is naD’ € C

13



with (D,D’) € RandC’ ~;_y D', 2. Here,C = (O)(Qnq,tt), i.e. there
where R is one of |, =—> or N (for is a location inC' with the name #,”

l € L). Also, C = (O)(@ny, ((O)(Qna, ))),
Since i is minimal, this means thatwhich says that all top level processes
for all D’ with (D,D’) € R there contained irC' have either the name
is a formula ¢ such thatD’ [ Ofne.

¢p but c’ ): ¢p. Take ¢ =

Nbpr(p,pner{R)¢pr, which is well

deflned by Lemma 1. Thet & ¢ 5 Local Names

but D = ¢, contradictingTh(C) =

Th(D).

3. There areCy,C; with C ¢ Inthe calculus of mobile ambients, lo-
(Co,C1) but there is no(Dy, D;) € calnames are essential for many exam-
C x Cwith D; ~;—y Cj (j = 0,1) ples. The treatment of local hames is
andD O (Dy, Dy). The argument is derived from ther-calculus, i.e. gov-
as above, using formulas of the fornerned by structural rule of scope ex-
(OYp . trusion (vnP) | Q@ = vn(P | Q)

whenevern is not a freely occurring

Summing up, we have shown thatname of@. In the ambient calculus,

Spatial congruence = spatial  local names cut across dynamics and
bisimulation + labelled reduction = spatial structure, by adopting a second
structural congruence up to processstructural rulevn(k[P]) = k[vnP] if

bisimilarity = logical equivalence n # k, which allows to move the re-
striction operator up and down the tree
structure induced by the nesting of the
Ambient brackets.

If we want to remain independent
Example 4.We use the same setup aom the underlying process calculus,
in Example 2. we cannot adopt the latter rule. How-
ever, we can look at a calculus with
local names, where local hames obey
scope extrusion a la-calculus.

The next definition extends the
syntax as to incorporate local names.
order to deal with scope extrusion,

Before extending these correspon-
dences to a more general setting, wi
give some examples.

1. Consider the configuratiofi =
home, client from Example 2. We
have C = (©))(@Qhome,t), corre-
sponding to the statement that there
is a top level node with the nam(?n

“home". we also have to introduce the concept
Also, hich
80, € [= {O)((1)@agent, #), whi of free names.

expresses that’ has a subtree, one

node of which has the name “agent”.
2. Consider the configuratioff = Definition 9. The setC of configura-

n1(P)[],n2(Q)[], similar to Example tions in the calculus with local names

14



is given by with local nhames, we give a short ex-
ample. Recall that in Example 2, we

C>C,D :=0|n(P)C] had an agent in a home location, the
|C,D | (vn)C sole purpose of which was to trans-

port clients inside the home-location.

forn € N andP € P. GivenP € P However, as we remarked when dis-
andn € N, we say that is freein P, cussing this example, nothing prevents

if there arely,...,l;, and P;,..., P, the client process to enter the home-

such thatp -+, p, -2, ... &, location directl)_/. This shortcoming can

P, -4 Q. wherel is one ofinn, "W be remedied in the calculus with
local names.

outn and openn. We letfn(P) =

{n € N[ nfreeinP}. Example 5.We can now model an
For C' € C, the setn(C) is defined agent, which has the capability to enter

by induction on the structure @' as and exit its home location and to trans-

follows: port clients inside with local names as
—fn(e) =0 follows: We let “client” and “agent” as
- In(n(P)[C]) = {n} U Mn(P) U home = (vh)h(0)[agent]
fn(C)
— fn(vnC) = m(C) \ {n} Using scope extrusion, we have the

~same chain of reductions as in Ex-
where structural congruence ISample 2. However, sincé is a pri-
as in Definition 1, augmented aie name now, the client cannot enter

with a-equivalence and the rule«,ome” without the help of “agent”.
(vn)(A,B) = (vnA), B whenever

n does not occur freely if. The next issue we are going to
Theoperational semantids given discuss is the algebraic and the log-
as in Definition 1, augmented with thécal theory of the calculus with lo-

rule cal names. In order to obtain a simi-
C=/C lar characterisation as in the calculus

(vn)C = (vn)C’ without local names, we have to ex-

for C,C’ € Candn € N. tend the definition of spatial bisimula-

tion, and demand closure under name

Note that, in order to be able taevelations.
state the rule fora-equivalence, we .
need a notion of substitution on the unl;)eflnmon 10. SupposeC’ € C and
derlying processes, which we do noTIL’k € N. We put
make explicit here.

Before investigating the logical
and algebraic theory of the calculus

Cc= ' iff C=(vk)C”
andC’ = C[n/k]
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whenevern ¢ fn(C). The defini- congruence is closed under labelled re-
tion of spatial bisimulation is modi-duction, implying that spatial congru-
fied as follows: Spatial bisimulation isence is contained in labelled bisimilar-
the largest symmetric relation whichty.
is closed under spatial reductioa=-, In order to see that labelled bisim-
forest reduction®, subtree reduction ulation is a congruence, one has to
1, top level name&n and under reve- consider revelation reductions, that is,
lation == (for all n € N). reductions of the form==" on top of
As before, spatial congruence ishe reductions considered in Lemma 6,
the largest congruence, which is a spadut they do not pose any problems.
tial bisimulation. The comparison of spatial congru-

Wi he i fence and weak structural congruence is
e now turn to the impact of ;. Proposition 8.

local names on the equivalences,

which we have discussed previously. In order to transfer the characteri-
Since we make revelation an explicisation result to a logical setting, we in-
part of spatial bisimulation, every-troduce a hidden name quantifier a la
thing goes through as before, once tt®abbay / Pitts [6]:

equivalences are transferred (without

changes) to the calculus with locaP€finition 11. The language ofspa-
names. We obtain: tial logic with local namess the least

o o set according to the following gram-
— labelled bisimulatioris the largest .,

spatial bisimulation, which is

closed under labelled reduction Lo o,hu=c|@n|ff|d— v
— weak structural congruences ’

the least relation, which contains | (B} | {O)¢9 | Hn.g

structural congruence and all pairgyjyen ¢ € C and¢ € L, satisfaction
of the form (n(P)[C],n(Q)[C]) ¢ & 4 is as in Definition 7, plus the
for P, € P process bisimilar. - 5se

C . th i I revn
oo PG TESE CQUIVAIENCES W L Hn.g iff 0 =2 ¢’ andC’ = ¢

Theorem 11. In the calculus with lo- for the hidden name quantifier. As be-
cal names, spatial congruence coinfore, Th(C) = {¢ € L | C |= ¢} for
cides with labelled bisimulation andC € C, andC, D € C are calledlogi-
with weak structural congruence.  cally equivalentif Th(C) = Th(D).

Proof. We extend the respective re- Since the relatiorrevn (for n €

sults for the calculus without localN) is image-finite, Lemma 1 and
names. The arguments used in Lemnf&xoposition 2 remain valid in the cal-
5 remain valid, showing that spatiatulus with local names. We thus obtain
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Theorem 12. In the calculus with lo- names elegantly in the Sail-calculus by
cal names, spatial congruence andxtending the set of labels, which in-

logical equivalence coincide. fluence the spatial reduction relation.
Since we want to keep the separa-
6 Further Extensions tion of the dynamical from the spatial

structure, we let the controlling pro-
This section shows, that the separ@esses change the names of locations
tion of dynamic and spatial aspects ahrough an interface (a set of distin-
mobile components allows for seamguished labels) as before. This neces-
less integration of extensions, whickitates to extend the set of labels for
are more difficult to model in other calthe underlying process calculus:
culi. First, we demonstrate that multi-
ple names can easily be handled, sinée&nvention 3. We extend the sef
every process runs in precisely one I 1abels to include primitives for
cation. It is therefore a straightforward’@me changing as follows =
extension to allow the controlling pro-{in,out,open,up,down} x N; as
cess to change the name of that lockefore, (P, —) is a labelled transi-
tion. The second extension can be se&AN system with—C P x £ x P.

as orthogo_nal:_ Since the behawo_ur OIgefinition 12. In the calculus with
every location is governed by preC|se|¥nuItipIe names, configurations are

one process, new controlling processes nb
can easily be substituted into configu9 y
rations. This section intends to give an
idea regarding extensions of the Basic- ¢ > 4 B =0 | 4, B | vnA
Sail calculus; we leave the investiga- | (n1,...,n)(P)[B]

tion of the algebraic and logical theory
for further work. wherek ¢ N andnl, oo, NE € N.

The axioms and rules dftructural
congruenceare those of Definition 9

6.1 Change of Names and augmented with

Multiple Names

In the ambient calculus, each ambient (nq,...,ng)(P)[B]

has precisely one name, which dqes = (Ng(1)s - - - » Mo (i) {P)[B]
not change throughout the reduction

process. One can argue that this does(n,n,n1,...,ng)(P)[B]

not reflect the real world in a faithful = (n,n1,...,n){(P)[B]
manner, since computing devices can

also have no names, multiple nameshenever o : {1,...,k} —
or change their names over time. Thél, ..., k} is a bijection.

explicit reference to the enclosing lo- The operational semantics that
cation allows to model the change obf Definition 9, augmented with the
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rules 6.2 Dynamic Reconfiguration

pESp We conclude by demonstrating the
n(P)[A] — ntn(P")[A] strength of our approach by discussing
dynamic reconfiguration, another ex-

p domn pr tension of the basic calculus. Here,
n(P)A] — n—(P[A] we use the one-to-one relation be-

tween locations and controlling pro-
wheren™" deletesn from the listn cesses to model dynamic reconfigura-
of names;n™™ addsn to the listn of tjon, i.e. locations, which dynamically
names. change the programme they run. Slop-
The idea of a ternn, m)(P)[A] pily _speaking, this allows for d_own_-
loading a new programme, which is

is that of a location with two names, ] -
then run in an already existing loca-

andm, running the programme& and As with il d th
which hasA as sub-locations. The ad-t'ﬁn' S "]:"t m““phe names an the
ditional rule of structural congruenceC ange of names, the explicit reference

captures the fact that there is no ordd? the enclosing location allows for a

on the names. The gained expressiviﬁPnCise and elegant formulation of dy-
allows us to treat the following: amic reconfiguration. Note that this

in particular necessitates the transmis-
Example 6. 1. Anonymous loca- sion of programmes (processes). The
tions are modelled by an empty saéxtension of the calculus follows the
of names. Take for examplg(P)[A] same scheme as the above extension
for P ¢ P and A € C. Note with multiple names: in order to keep
that anonymous locations are anonylynamic and spatial structure apart,
mous also for processes from withinwe introduce new labels, which act as
that is, the same effect cannot ban interface, through which the con-
achieved using local names. Indeedolling process manipulates the spatial
the processes/n(n)(P)[k(outn)[]] structure.
and()(P)[k(out n)[]] differ in that the ,
former can perform a reduction un_Conventlon 4. _We e’“e”‘?' t_h_e seL
der the name binder, whereas the Iatt8F Iabgls to mglude. primitves for

dynamic reconfiguration as follows:

cannot. ' I
2. Consider the configuration> = {im,out,open} x N U
("I'L)<dOWIlTLO>[A], ()(1nn0>[B] {send,rec ,run} X P, as befOI’e,

First, this shows that unnamed localP» —) is a labelled transition sys-

tions can perform movements. SecondEM With—& P x L x P.

this example illustrates that the move- Note that this requires the underly-
ment only succeeds, if the unnameghg transition system to have processes
agent is lucky enough to enter into higccurring in the labels, since processes
partnerbeforethe name disappears. need to be transmitted. Except for the
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absence of channel names, this is faesses: We let

example realised in the higher order

r-calculus (see [13,16]). For our pur- 2@ >P==0|P || Q| a.P [P |

poses, it suffices that processes can Be| runQ.P | send Q.P | rec Q.P

transmitted and received; we leave the

concrete (syntactical) mechanism agyhereX € X fanges over a set of

stract. (process valued) variables. The pro-
cess level transition relation from Ex-

Definition 13. In the calculus with dy- ample 1 is augmented with

nami_c reconf_iguration, configgrations rec X p ¢ PIQ/X]
are given as in the calculus with local
names (but recall the extended set of
labels). Theoperational semantider

. . . and the usual rules
the calculus with dynamic reconfigura-
tion is given by the rules of Definition send Q.P send@ p
9, augmented with

run@.P e p

send R rec R
P—"P Q—0Q Note that in particular process vari-
n(P)Cl,m(Q)D]=n(P")C],m(QfDlablesX e X do not generate reduc-
tions. Now consider

p==fpr
n(P)[C] = n(R)[C] P =(recXrunX)| O
running inside locatiom, that is, the
configurationC = n(P)[B], where
B aren’s sub-locations. In the vicin-
ity of a location which sends updates,
e.gU = u(!(send(rec X.run X ||

Using dynamic reconfigurationN)»H’ whereN stands for the “new”
and communication, we can NOW; - \ware. we have

model a location, which updates the
process it executes: UC—

~U,n{run (rec X.run X || N) || O)[B]
Example 7.We model an electronic
device, which attempts to update thhich, executing therun-operation,
code it is running (its operating systeduces to
tem). That |s it '_[ri_es to r(_aplace the pro- U,n(rec X.run X || N)[B],
gramme which it is running by another
(newer) version. In order to model thighat is, a process which (again) waits
behaviour, we first have to be mordor an update, but now running the new
precise about the underlying set of prdirmware N.

Note that in the actiorun R, R is a
process and the reduct d? after the
run R reduction is forgotten.
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As already mentioned in the intro-by Cardelli and Caires [2,3], although
ductory remark of this section, botho our knowledge not wrt. a clear char-
extensions, multiple names and dyacterisation of the expressive power.
namic reconfiguration, are to demonSuch a characterisation (called “inten-
strate the extensibility of the calculussional bisimulation”) was considered
the study of the algebraic and logicaby Sangiorgi for a variant of the am-
properties is left for further research. bient calculus [14,15].

Separation of Concerns in Mod-
els of software architecture has also
been addressed — albeit not in the con-
text of mobile code — in [1,11]. There
the authors differentiate between com-
Lﬁonents which provide certain ser-
vices, and an additional layer, which
describes the composition of compo-
nents. In the context of explicit code
mobility, this approach can be seen as
orthogonal to ours; and it would cer-
‘?alnly be interesting to have coordina-
'tion and mobility in a single frame-

7 Conclusions and Related
Work

As discussed above the first calcul
for mobile computation was ther-

calculus [8]. Further calculi are the Fu-
sion calculus [12], Nomadic Pict [18]
and the distributed coordination lan-
guage KLAIM [10]. The study of hier-

archical re-configurable administrativ
domains was introduced by the Ambi-
ent [5] and the Seal calculus [17]. Ba:
sicSail follows these lines but distin- Of course, there remains a wealth

guishes processes and configuranora?open problems: Most pressingly, we

in an a priori way and concentrates Rave investigated neither the logical
a even simpler set of operations for re- € or the algebraic theory of the calcu-

confll_%ureglon cul d it lus with multiple names or the calculus
e basic calculus and its VaerIth reconfiguration.

ations were inspired by the Seal-

Calculus. [17]. However, the Seal-

Calculus is quite involved syntacti-References

cally; the present calculus is a sim-

plification in order to study the effect 1. F. Arbab. Abstract behaviour types: A

of the separation of dynamics from foundation model for components and

the underlying topological structure,  eir composition. This Volume. ~
hich is al in Seal. Th . L. Caires and L. Cardelli. A spatial logic

whichis also p_rese_nt '_n eal. € SeC- for concurrency (part i). In N. Kobayashi

ond source of inspiration was the cal- and B. Pierce, editor®roc. TACS 2001

culus of mobile ambients [5]. As we  volume 2215 ofLecture Notes in Com-

have pointed out before, our principal3 pLutgr _Sc'enqgoiggs 1d‘3"7_- iprlnge_r,l Too_l-

design decisions do not allow to em-> - “@lres and L. Cardelli. A spatial logic

. . for concurrency (part i). In L. Brim,
bed the full ambient calculus into our  pjagar, M. Kretinsk, and A. Kidera,
framework. Spatial logics were studied editors, Proc. CONCUR 2002 volume

20



10.

11.

2421 of Lecture Notes in Computer Sci-12.

ence Springer, 2002.

L. Cardelli and A. Gordon. Anytime,
anywhere: Modal logics for mobile ambi-
ents. InProc. POPL 2000pages 365-377.
ACM, 2000.

. L. Cardelli and A. Gordon. Mobile ambi-

ents. Theor. Comp. S¢i240(1):177-213,
2000.

D. Gabbay and A. Pitts. A new approach
to abstract syntax involving binders. In
14th IEEE Symposium on Logic in Com-

puter Science (LICS 1999pages 214— 14.

224. |[EEE Computer Society, 1999.
M. Hennessy and R. Milner. Algebraic
Laws for Non-determinism and Concur-

15.

rency. Journal of the ACM32:137-161,
1985.

R. Milner. Communicating and Mobile
Systems: the-Calculus Cambridge Uni-
versity Press, 1999.

U. Montanari and V. Sassone.
namic congruence vs. progressing bisimu-
lation for CCS Fundamenta Informaticae
16(2):171-199, 1992.

R. De Nicola, G. Ferrari, and R. Pugliese.
Klaim: a kernel language for agents inter-
action and mobilitylEEE Trans. Software
Engineering 24(5):315-330, 1998.

O. Nierstrasz and F. Achermann. A cal-
culus for modelling software components.
This Volume.

21

13.

Dy-16.

18.

J. Parrow and B. Victor. The fusion cal-
culus: Expressiveness and symmetry in
mobile processes. lithirteenth Annual
Symposium on Logic in Computer Science
(LICS 1998) pages 176-185. IEEE, IEEE
Computer Society, 1998.

D. Sangiorgi. Fromr-calculus to Higher-
Order w-calculus — and back. In M.-C.
Gaudel and J.-P. Jouannaud, editénsc.
TAPSOFT 93volume 668 ofLect. Notes
in Comp. Sci.pages 151-166, 1993.

D. Sangiorgi. Extensionality and inten-
sionality of the ambient logics. IRroc.
POPL 2001 pages 4-13. ACM, 2001.

D. Sangiorgi. Separability, expressiveness,
and decidability in the ambient logic. In
17th IEEE Symposium on Logic in Com-
puter Science (LICS 2002)EEE Com-
puter Society, 2002.

Davide Sangiorgi and David WalkeFhe
m-calculus: a Theory of Mobile Processes
Cambridge University Press, 2001.

17. J. Vitek and G. Castagna. Seal: A frame-

work for secure mobile computatiorin-
ternet Programming1999.

P. Wojciechowski and P. Sewell. Nomadic
pict: Language and infrastructure design
for mobile agents. IEEE Concurrency
8(2):42-52, 2000.



