
The JPS Pathfinding System

Daniel Harabor and Alban Grastien
NICTA and The Australian National University

Email: firstname.lastname@nicta.com.au

Abstract

We describe a pathfinding system based on Jump Point
Search (JPS): a recent and very successful search strategy that
performs symmetry breaking to speed up optimal pathfind-
ing on grid maps. We first modify JPS for grid maps where
corner-cutting moves are not allowed. We then describe
JPS+: a new derivative search strategy that reformulates an
input graph into an equivalent symmetry-reduced form that
can be searched more efficiently. JPS and JPS+ were both
submitted to the 2012 Grid-based Path Planning Competition.

Introduction
Symmetry in grid-based pathfinding manifests itself when
we consider a path, traditionally defined as an ordered se-
quence of nodes, as consisting instead of an ordered se-
quence of vectors. Each vector ~d is associated with one
of the eight allowable movement directions (up, down, left,
right etc.) and has a magnitude of either 1 or

√
2, depend-

ing on whether it represents a straight or a diagonal move.
Such a formulation allows us to see that many paths on a grid
map, which share the same start and end node but which pass
through different intermediate nodes, are often just symmet-
ric permutations of each other; i.e. they are identical save
for the order in which the individual moves occur.

In the presence of symmetry, A* unnecessarily consid-
ers permutations of all shortest paths: from the start node
to every expanded node. Jump Point Search (Harabor and
Grastien 2011) is a simple but highly effective strategy
that eliminates many such symmetries. JPS is fast, opti-
mal, requires zero preprocessing, has zero memory overhead
and appears orthogonal to recent pathfinding algorithms;
e.g. (Björnsson and Halldórsson 2006; Pochter et al. 2010;
Goldenberg et al. 2010). We first adapt JPS to grid domains
where “corner-cutting” movement is not allowed. Then, we
introduce JPS+: a new search method which reformulates an
input graph into a symmetry-reduced equivalent that can be
searched much faster.

Jump Point Search
Jump Point Search (JPS) is the combination of A* search
with a simple node expansion operator that prunes potential

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: (a) When the move from p to x is straight only one
natural neighbour remains. (b) When the move from p to x
is diagonal, three natural neighbours remain. (c) Obstacles
around x cause some neighbours to become forced.

successors if they can be reached by path which is shorter
than, or symmetric to, the current path. JPS employs two
simple sets of rules: pruning rules and jumping rules.

Pruning Rules: Given a node x, reached via a parent
node p, we prune from the neighbours of x any node n for
which one of the following rules applies:

1. there exists a path π′ = 〈p, y, n〉 or simply π′ = 〈p, n〉
that is strictly shorter than the path π = 〈p, x, n〉;

2. there exists a path π′ = 〈p, y, n〉 with the same length as
π = 〈p, x, n〉 but π′ has a diagonal move earlier than π.

We illustrate these rules in Figure 1(a) and 1(b). Observe
that to test each rule we need to look only at the neighbours
of the current node x. Pruned neighbours are marked in grey.
Remaining neighbours, marked white, are called the natural
successors of node x. In Figure 1(c) we show that obstacles
can modify the list of successors for x: when the alternative
path π′ = 〈p, y, n〉 is not valid, but π = 〈p, x, n〉 is, we
will refer to n as a forced successor of x. The set of forced
successors in Figure 1(c) is different to the set identified
in (Harabor and Grastien 2011). In that work we assumed
corner-cutting (a.k.a. taking a diagonal shortcut around a
corner) is allowed. Here we explicitly require that both π
and π′ respect any such domain-specific movement rules.
When corner-cutting is not allowed this change has the fol-
lowing effect: only straight steps from p to x may produce
forced neighbours and each x may have up to 4 such neigh-
bours. This change preserves optimality; the argument is
identical to the one in (Harabor and Grastien 2011).

Jumping Rules: JPS applies to each forced and natural



Figure 2: (a) A straight jump from x to y; the recursion stops
due to node z which is forced. (b) A diagonal jump from x
to y; the recursion stops due to a non-failed straight jump.
Continuing would mean missing a potential turn due to z.

neighbour of the current node x a simple “jumping” proce-
dure; the objective is to replace each neighbour n with an
alternative successor n′ that is further away. Precise details
are given in (Harabor and Grastien 2011); we summarise the
idea here using a short example:

Example 1. In Figure 1(a) pruning reduces the num-
ber of successors of x to a single node n. JPS exploits this
property to immediately and recursively explore n. If the re-
cursion stops due to an obstacle that blocks further progress
(which is frequently the case), all nodes on the failed path,
including n, are ignored and nothing is generated. Other-
wise the recursion leads to a node n′ which has a forced
neighbour (or which is the goal). JPS generates n′ as a suc-
cessor of x; effectively allowing the search to “jump” from
x directly to n′ – without adding to the open list any inter-
mediate nodes from along the way. In Figure 1(b) node x
has three natural neighbours: two straight and one diagonal.
We recurse over the diagonal neighbour only if both straight
neighbours produce failed paths. This ensures we do not
miss any potential turning points of the optimal path.

In Figure 2(a) we illustrate a straight jump and in 2(b) a
diagonal jump. By jumping, JPS is able to move quickly
over the map without inserting nodes in the A* open list.
This is doubly beneficial as (i) it reduces the number of op-
erations and (ii) it reduces the number of nodes in the list,
making each list operation cheaper. Notice that this version
of JPS is performed entirely online, involves no preprocess-
ing and has no memory overhead.

JPS+
Jumping from one point to another in the grid avoids many
unnecessary A* open list operations. However, identifying
these jump points becomes the new bottleneck of the algo-
rithm. We therefore propose JPS+: an symmetry-breaking
method which replaces each adjacent neighbour of a node
with a jump point that lies in the same relative direction.

Figure 3(a) illustrates our graph reformulation idea for a
single node x. We simply search for a jump point in the di-
rection of each grid neighbour of x. In JPS, we discard all
nodes along a failed path. By comparison, JPS+ must store
the last node along a failed path. These sterile jump points
are required to guarantee optimality during search but are
never added to the A* open list. To see why they are neces-

Figure 3: (a) A jump point is computed in place of each grid
neighbour of node x. (b) When jumping from x to y we may
cross the row or column of the target t (here, both). To avoid
jumping over t we insert an intermediate successor y′ on the
row or column of t (whichever is closest to x).

sary, consider Figure 3(b). Here we reach x from p and try
to jump from x to y. Notice that each such jump may cross
the goal or column of the target node t. In JPS the diagonal
recursion would have terminated at node y′, having detected
the goal t along a non-failed straight jump. JPS+ simulates
this behaviour by explicitly inserting an intermediate node
y′ at the point where the jump to y crosses the column of
t. This condition is sufficient to preserve optimality during
search. The proof involves showing that JPS+ simulates ex-
actly the behaviour of JPS. We omit it for brevity.

Discussion
For the 2012 GPPC we configured JPS+ to reformulate the
entire map during an offline phase. Precomputation time is
at worst quadratic in the size of the input graph and produces
a symmetry-reduced graph which is much faster to search.
An alternative approach is to replace, during search, each
forced or natural neighbour with a newly identified jump
point successor. JPS+ requires very little memory: the re-
formulated graph is stored as an adjacency list that replaces
the original input graph. When the input graph is also stored
as an adjacency list, JPS+ has zero memory overhead.

Acknowledgments
We thank Patrik Haslum for helpful comments and discus-
sion. NICTA is funded by the Australian Government as
represented by the Department of Broadband, Communica-
tions and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.

References
Björnsson, Y., and Halldórsson, K. 2006. Improved heuris-
tics for optimal path-finding on game maps. In AIIDE, 9–14.
Goldenberg, M.; Felner, A.; Sturtevant, N.; and Schaeffer, J.
2010. Portal-based true-distance heuristics for path finding.
In SoCS.
Harabor, D., and Grastien, Al. 2011. Online graph pruning
for pathfinding on grid maps. In AAAI.
Pochter, N.; Zohar, A.; Rosenschein, J. S.; and Felner, A.
2010. Search space reduction using swamp hierarchies. In
AAAI.


