
Towards Search-Free Multi-Agent Path Finding

Adi Botea
IBM Research, Dublin, Ireland

Daniel Harabor, Ko-Hsin Cindy Wang
NICTA∗ and the Australian National University

Introduction
Multi-agent path finding (MAPF) has received a growing
interest in recent years. Approaches to this problem range
from centralized search (e.g., A*) in the combined state
space of all units to decoupled methods that split the com-
putation into several searches. For example, algorithms such
as FAR (Wang and Botea 2008) trade completeness and op-
timality for speed and scalability. FAR performs one indi-
vidual search for each unit, ignoring the presence of other
units. Very little additional search is required. Other algo-
rithms are more search intensive, searching, for example, in
a larger, combined state space. Not surprisingly, even the
fastest existing MAPF algorithms are CPU intensive, espe-
cially on instances of growing size.

The goal of this work is a MAPF method that performs
no or very little search at runtime. The key idea is taking
advantage of recent results in compressing all-pairs shortest
path (APSP) data. SILC (Sankaranarayanan, Alborzi, and
Samet 2005) and CPDs (compressed path databases) (Botea
2011) are techniques with powerful compression capabili-
ties, allowing to store in memory APSP data corresponding
to graphs of a considerable size. Given any start–target pair,
APSP can quickly provide the next move towards the target,
with no runtime search. Such a property is very useful in
MAPF, where it can eliminate not only a set of initial path
searches, but also subsequent searches (re-planning) caused
by factors such as collisions.

Our contributions are as follows: We introduce MARS
(Multi-Agent Ring Slidable), an algorithm that combines
ideas from the MAPP algorithm (Wang and Botea 2009) and
CPDs (Botea 2011) to eliminate expensive runtime searches.
We define a class of instances where MARS is complete. We
prove theoretical properties of the algorithm. To the best of
our knowledge, this could be the first work that aims at elim-
inating runtime search in MAPF.

MAPP, the selected baseline algorithm, is complete on
a subclass of instances called SLIDABLE (Wang and Botea
2009). The idea of using CPDs in MAPF is not limited to
MAPP. CPDs could possibly be studied in combination with
other MAPF algorithms as well, such as FAR (Wang and
Botea 2008) or Push and Swap (Luna and Bekris 2011).

∗NICTA is funded by the Australian Government.
Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Problem Description
We assume the input graph is undirected. An instance with n
units consists of n start–target pairs such that no units share
their start (or target). A move to an adjacent location l is
possible iff l is empty and no other unit plans to move to l at
the current moment. Given two arbitrary locations (nodes)
l and t in the graph, CPD(l, t) returns the first move along
an optimal path from l to t. We do not require solution opti-
mality.

MARS Algorithm
We define a class of instances on which our algorithm is
complete. It is an adaptation of the SLIDABLE class.
Definition 1 (RING-SLIDABLE class). An instance belongs
to the class RING-SLIDABLE if it satisfies the following con-
ditions:

1. There are no adjacent targets.
2. For any three consecutive locations l1 − l2 − l3, except

triples where l1 or l2 is a target, there is an alternate path
Ω such that Ω contains no target and does not contain l2.

3. In the initial state, each unit has a blank on an adjacent
position that is not a target.

4. Targets and initial positions do not overlap.
Definition 2 (Active move of u). Let l and t be the cur-
rent location and the target of a unit u. Let l′ be CPD(l, t)
and l′′ be CPD(l′, t). The active move of u from location
l is CPD(l, t), except for the following situation. When the
CPD(l, t) move leads to a foreign target (i.e., l′ is a foreign
target), the active move will take the unit along the alternate
path Ω(l, l′′). As soon as u reaches l′′, it reverts back to
CPD-provided active moves.

Compared to MAPP, MARS differs in two important
ways: CPDs quickly identify moves towards each unit’s tar-
get location without explicit state-space search; and we al-
low on-the-fly navigation around foreign targets.
Definition 3. The local zone of an active unit u contains two
adjacent locations: the current location of u, loc(u), and the
previous location pre(u), unless u is in its initial state.1

1This is similar to the private zone in MAPP. Our definition
could easily be relaxed to allow seeking a blank on any adjacent
position, not only behind a unit.



Algorithm 1 shows our method in pseudocode. Initially,
all units belong to the set A of active units. A unit is either
active or solved. They become solved as soon as they reach
their target. Active units are totally ordered. The active unit
with the highest priority is called the master unit ū.

Algorithm 1 MARS
1: while A 6= ∅ do
2: for all u ∈ A in decreasing order of priority do
3: if destination of active move is empty then
4: make active move
5: else if can bring a blank in front along Ω then
6: bring blank in front
7: make active move
8: else
9: do nothing

10: if u just reached target then
11: remove u from A {u is solved}
12: if u is the master and A 6= ∅ then
13: label a different active unit as the master ū
14: make sure ū has a blank on an alternate path

At line 5, Ω is the alternate path for the triple pre(u),
loc(u), and next(u), the next location indicated by the ac-
tive move. A blank can be brought in front of u along Ω iff:
Ω contains a blank at a position p; and no position in Ω be-
tween next(u) and p, including next(u) and p, belongs to the
local zone of a unit with a higher priority than u. Bringing
a blank in front of u is performed by pushing units one by
one along Ω from next(u) towards p, similarly to the way
the blank travels in the sliding-tile puzzle.

Line 14 makes sure that a freshly selected master unit can
make its first active move, since it guarantees that the alter-
nate path Ω associated with pre(ū), loc(ū) and next(ū) will
contain at least one blank. One simple way to ensure the
property stated on line 14 is to perform the so-called reverse
repositioning (Wang and Botea 2009). Reverse reposition-
ing undoes, in reverse global order, moves of the active units,
but not moves of the solved units. It can easily be proven
that a position with the desired property for ū can always be
reached with 0 or more reverse repositioning moves. The
idea is that, in the worst case, all active units could revert
to their original positions, where they have a blank next to
them (to bring to front if needed) according to Definition 1.
Lemma 1. In the nested for loop, every iteration that pro-
cesses ū allows it to make an active move towards the target.
Hence ū reaches the target in a finite number of iterations.

Proof. According to condition 3 in Definition 1 and line 14
in Algorithm 1, ū can always make the first active move. Af-
ter each active move, the position behind ū is empty and no
other unit can occupy it, since it belongs to the local zone of
ū. Therefore, Ω has at least one blank position. Furthermore,
all other units whose local zone could possibly intersect with
Ω have a lower priority. As a result, all conditions for bring-
ing a blank at the front along Ω (if needed) are satisfied.

We remark that the ability to reach the target is not re-
stricted to the master unit at hand. Many units could reach

their target without having the master unit status.
Lemma 2. After reaching its target, a unit does not interfere
with the rest of the problem.

Proof. All moves are either active moves (lines 4, 7), or
blank travel moves along alternate paths Ω (line 6), or re-
verse versions of such moves (line 14). All these explicitly
avoid foreign targets.

Theorem 1. Algorithm MARS terminates on a RING-
SLIDABLE instance, producing a valid solution.

Proof. Every unit with the master status gets solved, after
which it does not interfere with the rest of the problem.
Hence there will be no active units after a finite number of
iterations.

Discussion and Future Work
The pseudocode presented earlier assumes that the CPD and
the alternate paths Ω are readily available. CPDs can be pre-
computed once per map and reused over all instances on
that map (Botea 2011). The alternate paths could be pre-
computed as well. However, given a new instance, those
alternate paths that intersect a target would have to be re-
computed (Wang and Botea 2009). The runtime search in
MARS could be as small as re-computing such a subset of
alternate paths. This could potentially be performed quickly,
given that the two end points of a alternate path are so close
to each other. In effect, one advantage of MARS is the
speed. The price to pay is using memory for the CPD.

The definition of RING-SLIDABLE instances requires the
existence of alternate paths for every triple of adjacent lo-
cations. In contrast, SLIDABLE (Wang and Botea 2009)
imposes a similar condition only for triples along a pre-
computed path of a unit. This suggests that the RING-
SLIDABLE class might be more restricted than SLIDABLE.

In the future, we plan to implement and evaluate this
method in terms of speed, solution quality, and completeness
range, measured and the percentage of units and percentage
of instances that satisfy the RING-SLIDABLE conditions.

References
Botea, A. 2011. Ultra-fast Optimal Pathfinding without
Runtime Search. In Proceedings of AIIDE-11, 122–127.
Luna, R., and Bekris, K. E. 2011. Push and Swap: Fast Co-
operative Path-Finding with Completeness Guarantees. In
IJCAI-11, 294–300.
Sankaranarayanan, J.; Alborzi, H.; and Samet, H. 2005. Ef-
ficient query processing on spatial networks. In ACM work-
shop on Geographic information systems, 200–209.
Wang, K.-H. C., and Botea, A. 2008. Fast and Memory-
Efficient Multi-Agent Pathfinding. In ICAPS, 380–387.
Wang, K.-H. C., and Botea, A. 2009. Tractable Multi-Agent
Path Planning on Grid Maps. In IJCAI, 1870–1875.


