
Journal of Machine Learning Research 1 (2999) 1-48 Submitted 4/00; Published 10/00

Optimization of Ranking Measures

Quoc V. Le quocle@stanford.edu
Department of Computer Science, Stanford University, USA

Alex Smola alex@smola.org
Olivier Chapelle chap@yahoo-inc.com
Yahoo! Research, Mission College, Santa Clara, USA

Choon Hui Teo Choonhui.Teo@anu.edu.au

Statistical Machine Learning Program
NICTA and ANU, Canberra, 2600 ACT, Australia

Editor: Ralf Herbrich

Abstract

Web page ranking requires the optimization of sophisticated performance measures. Cur-
rent approaches only minimize measures indirectly related to performance scores. We
present a new approach which allows optimization of an upper bound of the appropriate
loss function.

This is achieved via structured estimation, where in our case the input corresponds
to a set of documents and the output is a ranking. Training is efficient since computing
the loss function can be done via a linear assignment problem. At test time, a sorting
operation suffices, as our algorithm assigns a relevance score to every (document, query)
pair. Moreover, we provide a general method for finding tighter nonconvex relaxations
of structured loss functions. Experiments show that the our algorithm yields improved
accuracies on several public and commercial ranking datasets.

1. Introduction

Web page ranking has traditionally been based on a hand designed ranking function such
as BM25 (Robertson et al., 1994). However ranking is now considered a supervised learning
problem and several machine learning algorithms have been applied to it (Burges et al.,
2005; Cao et al., 2006).

Traditional approaches in learning to rank optimize uniform ranking measures such as
number of mis-ordered pairs (Herbrich et al., 2000). However, it is often the case that the
users may be more interested in the most relevant items (first page) and ignore other items.
Thus it is more appropriate for a ranker to spend effort and get the topmost items right.
Performance measures have been developed in the information retrieval community which
pay more attention to the top of the ranking. Examples of such measures are the Normalized
Discounted Cumulative Gain (NDCG), Mean Reciprocal Rank (MRR), or Precision@k. They
are used to address the issue of evaluating rankers, search engines or recommender sytems
(Voorhees, 2001; Jarvelin and Kekalainen, 2002; Breese et al., 1998; Basilico and Hofmann,
2004).

c©2999 Olivier Chapelle, Quoc V. Le, Alex Smola, and Choon Hui Teo.

Chapelle, Le, Smola and Teo

Ranking methods have come a long way in the past years. Beginning with vector space
models (Salton, 1971; Salton and McGill, 1983), various feature based methods have been
proposed (Lee et al., 1997). Popular set of features include BM25 (Robertson et al., 1994)
or its variants (Robertson and Hull, 2000; Craswell et al., 2005). Following the intent of
Richardson et al. (2006) we show that when combining such methods with machine learning,
the performance of the ranker can be increased significantly.

Over the past decade, many machine learning methods have been proposed. Ordinal
regression (Herbrich et al., 2000; Joachims, 2002) using a SVM-like large margin method
is one of the popular approach. Perceptrons and online methods have been introduced in
(Crammer and Singer, 2002, 2005; Basilico and Hofmann, 2004) In the context of web search
ranking, Neural Networks have been proposed by Burges et al. (2005). These methods aim
at finding the best ordering function over the returned documents. However, as first noted
in ?, none of them address the fact that ranking at the top is more important.

Only recently two theoretical papers (Rudin, 2006; Cossock and Zhang, 2006) discuss
the issue of learning ranking with preference to top scoring documents. However, the cost
function of (Rudin, 2006) is only vaguely related to the cost function used in evaluating
the performance of the ranker. (Cossock and Zhang, 2006) argue that, in the limit of
large samples, regression on the labels may be sufficient and, indeed, their method becomes
competitive in the case of large numbers of observations.

Our work uses the framework of Support Vector Machines for Structured Outputs
(Tsochantaridis et al., 2005; Joachims, 2005; Taskar et al., 2004) to deal with the inherent
non-convexity of the performance measures in ranking. More precisely, we view ranking as
trying to learn an ordering of the data: the input is a set of documents (associated with
a given query) and the output is a ranking – or a permutation – of the documents. The
optimization problem we propose is very general: it covers a broad range of existing criteria
in a plug-and-play manner. It extends to position-dependent ranking and diversity-based
scores. In addition to a ranking specific loss, we also show how structured loss bounds can
be tightened in a general way.

Of particular relevance are three recent papers by Joachims (2005); Yue et al. (2007); ?
which address the complication of the information retrieval loss functions. More specifically,
they show that several ranking-related scores such as Precision@n, the Area under the
ROC curve and the Mean Average Precision (MAP) can be optimized by using a variant of
Support Vector Machines for Structured Outputs (SVMStruct). We use a similar strategy in
our algorithm to obtain an Optimization of Ranking Measures (ORM) using the inequalities
proposed by Tsochantaridis et al. (2005).

Finally, two other papers (Burges et al., 2007; Taylor et al., 2008) have attempted to
optimize directly a smoothed version of nonconvex cost functions by gradient descent. 1

2. Ranking

In the following we study the problem of ranking collections of objects d, such as webpages,
products, movies, such that the most relevant (or popular) objects are retrieved at the
beginning of the list. Typically we will do so given a query q. For instance, we might
want to sort a collection of scientific papers such that those related to the query ’machine

1. The current paper is an extended version of ? which is available on arXiv.

2

Learning Ranking

Table 1: Summary of notation

Variable Meaning
di document
qi i-th query
li number of documents for qi

Di =
{
di

1, . . . , d
i
li

}
documents for qi

(q, d) document-query pair
m number of queries for training
yi

j ∈ [0, . . . , ymax] relevance of document di
j

g(q, di) scoring function
π(D, q, g) permutation π obtained by sorting g(di, q)
∆(y, π) loss incurred by permutation π for labels y

learning’ are retrieved first.2 The basic assumption we make is that such a ranking can be
obtained by designing a scoring function g(d, q) which tells us how relevant document d is
for query q.

The requirement of being able to deal with each (document, query) pair independently
arises from reasons of practicality. To search through a large collection of documents effi-
ciently it is preferable to be able to score each document individually, in particular when
performing such operations in a distributed setting.

Users are often only interested in the most relevant documents rather than the entire
ranked list. For instance, for web search, it is likely that users will only want to look at the
first 10 retrieved results. Similarly, when retrieving documents, a user may only be willing
to consider viewing the best k documents. Alternatively, his satisfaction with the system
may depend on how many documents he needs to sift through until he finds a relevant one.
What is common to all those measures is that the order of the retrieved objects matters and
that in many cases we will care primarily about the retrieval of the most relevant documents
rather than all of them.

Our approach to ranking is centered around learning the scoring function g(d, q) with
desirable properties. This is in contrast to many past strategies in information retrieval
which rely on ingenious engineering to obtain good scoring functions. Obviously, engineering
still has its place in this framework — after all, we need to be able to obtain good features
of a (document, query) pair which can be used to define such a scoring function. Hence,
in this paper we take advantage of statistics and machine learning to guide us in finding
a function that is optimized for this purpose. The design of good features remains the
prerogative of an information retrieval expert.

2.1 The Problem

Let us formally define the problem in the language of machine learning. Assume that for
a query q we are given a collection of documents D := {d1, . . . , dl} with associated labels

2. A corresponding problem arises in computational advertising where we aim to find a good ordering of
ads for a given webpage such as to maximize revenue and click probability.

3

Chapelle, Le, Smola and Teo

y = {y1, . . . , yl} where yi ∈ {0, . . . , ymax}, which induce an order among the documents di.
Here ymax ∈ N is the maximum value of a label assigned to an object.

For instance, the label 0 may correspond to ‘irrelevant’ and ymax may correspond to
’highly relevant’. Often those labels are generated by (paid) experts. In other cases, they
are obtained from clickthrough data. Often ymax is fairly small. For instance, the Netflix
competition offers five different levels of appreciation of a movie. In fact, in some cases
we only have two labels: {0, 1}, i.e. irrelevant and relevant. Using the label information,
yi > yj implies that document di is preferable to document dj . It is our goal to find some
permutation π ∈ Πl (here Πl is the permutation group on l elements) of the documents
such that the documents with a high label value yi will show up at the beginning of the
sorted list. This permutation is obtained by sorting the documents according to a score
g(di, q) which is obtained from the scoring function g in descending order. We will refer to
this permutation as π(D, q, g).

Definition 1 (Permutations) In this paper, a permutation π maps from the set of doc-
uments to ranks. In other words, π(i) = j means that the i-th documents has rank j.
Whenever convenient we will also associate with π a matrix whose entries πij ∈ {0; 1} are
nonzero if and only if j = π(i). Finally, for some vector a, a[π] denotes the permuted vector
πa, that is a[π]i = aπ(i)

The performance of the system is evaluated by comparing π to the labels y. Obviously an
ideal case would be if for all i, j we have that yi > yj ⇐⇒ g(di, q) > g(dj , q). In other words,
the score g(d, q) mimics the order imparted by the labels y. We denote the loss function
measuring the discrepancy between y and π by ∆(y, π).

We are given a set of m instances of queries qi and m document collections Di ={
di

1, . . . , d
i
li

}
of cardinality li respectively and corresponding labels yi =

{
ri
1, . . . , r

i
li

}
. The

superscripts denote sample indices whereas the subscripts index elements within a sample.
One strategy would be to minimize the empirical risk

Remp[g] :=
1
m

m∑
i=1

∆(yi, π(Di, qi, g)) (1)

which is the sum over all empirical losses incurred on m instances.

2.2 Multivariate Ranking Losses

We now discuss permutation based losses ∆(y, π) in more detail. We consider losses which
can be computed by comparing y, the permutation sorting y into descending order, and
π, the proposed permutation of documents. It turns out that a large number of losses
commonly used in the information retrieval community fit this template. Note that such
scores are irreducibly multivariate, that is, they depend on the entire set of labels y and
the corresponding permutation. Losses arising from ’Winner Takes All’ (WTA), Mean Re-
ciprocal Rank (MRR) (Voorhees, 2001), Mean Average Precision (MAP), and Normalized
Discounted Cumulative Gain (NDCG) (Jarvelin and Kekalainen, 2002) all fulfill this prop-
erty.

4

Learning Ranking

Definition 2 (Multivariate Ranking Loss) Let a ∈ Rl and y ∈ {0, . . . , ymax}l and π ∈
Πl. Assume that b : {0, . . . , ymax}l → Rl is some label weighting function. Then a, b induce
a ranking loss via

∆(y, π) := max
π′∈Πl

[
a[π′]− a[π]

]>
b(y). (2)

Clearly, ∆(y, π) ≥ 0 for all y, π, since we have a maximization over π′ in (2). In other
words, (2) has the form of a regret, namely the difference between the scores for the best
performing permutation π′ and the proposed permutation π. Note that in general π′ is not
unique because there are often several relevant documents to a query. This loss formulation
is useful, since many performance measures in Information Retrieval are expressed in terms
of a retrieval score rather than a loss. This can be converted into a loss simply by considering
the regret between the best possible answer and the answer proposed by suggesting the
permutation π. Note that maximization with respect to π′ is easily computed by virtue of
the rearrangement inequality (Wayne, 1946):

Theorem 3 (Rearrangement Inequality) Let a, b ∈ Rn and let π ∈ Π. Moreover,
assume that a is sorted in decreasing order. Then 〈a, b[π]〉 is maximal for the permutation
sorting b in decreasing order.

We now show how most commonly used ranking losses can be cast into this form.

2.3 Examples

Winner-Takes-All (WTA): Assume that we are only interested in the first retrieved
document. That is, we are only interested in π−1(1). If the document dπ−1(1) is
relevant, we obtain a score of 1, otherwise we do not benefit from it, i.e. we have a
score of 0.

To rewrite this in terms of (2) we set yi = 1 for relevant documents and yi = 0
otherwise. Moreover, we define a to be the first canonical vector, i.e. ai = δi,1.
Finally, we let b be the identity map. In this case a[π]>b(y) = yπ−1(1), as required.
We have

WTA(π, y) = a[π]>b(y) where ai = δi,1 and b(y)i = yi (3)

Mean Reciprocal Rank (MRR): Assuming that there only exists one relevant docu-
ment we may want to measure the quality of π by how long it takes us to find this
particular, relevant document. Assume that this document occurs at position n. In
this case we would have had to look at n documents total until we found the relevant
one, yielding an efficiency of 1

n . If we need to perform many of such retrieval oper-
ations the average efficiency will be additive in 1

n , hence the mean reciprocal rank
is a good measure for single-item retrieval. It can be expressed in terms of an inner
product by letting yi = 1 for the relevant document and yi = 0 otherwise (b is again
the identity map). Moreover, we let ai = 1

i to mimic the ratio decay. By construction
we have that now a[π]>b(y) = 1

n as desired.

MRR(π, y) = a[π]>b(y) where ai = 1
i and b(y)i = yi. (4)

5

Chapelle, Le, Smola and Teo

In other words, the reciprocal rank is the inverse of the rank assigned to the most
relevant document. Again, this can be converted into a loss by means of (2).

Discounted Cumulative Gain (DCG): WTA and MRR only care about a single term
in π, namely the permutation mapping to the first and the relevant document respec-
tively. This may prove to be a bit too aggressive. For instance, in web page ranking
there may be quite a number of different yet all relevant webpages. For instance, when
querying information about the weather in San Francisco, there may be a number of
sites providing this information, all equally informative for a user. Hence all of them
would share the same rating. It would be desirable if they were all ranked fairly highly
according to π. The Discounted Cumulative Gains score (Jarvelin and Kekalainen,
2002) is one such measure which takes this explicitly into account.

In its basic form it has a logarithmic position dependency, that is, the benefit of seeing
a relevant document at position i is 1/ log2(i + 1). Following Burges et al. (2005),
it became usual to assign exponentially high weight 2yi to highly rated documents.
Thus the score associated with y and π is defined as

∑
i(2

yi − 1)/(log2 π(i) + 1). This
can be rewritten in inner product form using the definitions

DCG(π, y) = a[π]>b(y) where ai =
1

log2(i + 1)
and b(y)i = 2yi − 1. (5)

Clearly, if a relevant document is retrieved with a high rank the contribution to DCG
is significant.

DCG Variants (DCG@k) Another variant of DCG truncates the sum over the positions
after k documents. This is commonly abbreviated as DCG@k. In this case, instead
of (5) one uses ai = 1

log2(i+1) for all i ≤ k and ai = 0 otherwise. In search engines the
truncation level k is typically 10, as this constitutes the number of webpages returned
in a query.

Normalized Discounted Cumulative Gain (NDCG): A downside of DCG is that its
numerical range depends on y. For instance, a query with many associated relevant
documents will yield a considerably larger value of DCG at optimality than one with
only few relevant documents.

In order to normalize the effect of a single pair (D, q) one often resorts to normalizing
the DCG or the DCG@k score by the relative maximum. This leads to the Normalized
Discounted Cumulative Gains (NDCG) score and its truncated counterpart, defined
as follows:

NDCG(π, y) :=
DCG(π, y)

maxπ′ DCG(π′, y)
(6)

and NDCG@k(π, y) :=
DCG@k(π, y)

maxπ′ DCG@k(π′, y)
. (7)

6

Learning Ranking

All we need to do is modify the definition of b(y) in (5). We obtain

NDCG(π, y) = a[π]>b(y) where b(y)i =
2yi − 1

maxπ′ DCG(π′, y)
(8)

NDCG@k(π, y) = a[π]>b(y) where b(y)i =
2yi − 1

maxπ′ DCG@k(π′, y)
. (9)

It is the Normalized Discounted Gains Score at k which this paper focuses on, since
it provides a good trade off between range-dependency and it adds normalization to
ensure each query is given equal weight.

Precision@k: This measure allows one to deal with a precision/recall trade off for binary
classification. It simply measures the number of elements with the desired class label
among k retrieved terms. Joachims (2005) showed that this can be learned in linear
models by using a suitable convex upper bound. It turns out that this measure, too,
can be expressed in inner product form.

Assume we have two classes {0, 1} and that we want to retrieve objects of class 1. In
this case, we set yi to be the class label of object di. To obtain the dot product form
we define

Prec@k(π, y) = a[π]>b(y) where ai =

{
1
k if i ≤ k

0 else
and b(y)i = yi (10)

The main difference to NDCG@k is that Prec@k has no decay factor, weighing the
top k answers equally.

Expected rank utility (ERU): In recommender systems, e.g. for movie ratings, it is
often desirable to retrieve only terms which have a certain minimum degree of popu-
larity, say d. To retrieve movies below a minimum rating offers no value to the user.
Moreover, the position dependent decay is considered exponential. This choice of a
loss function is manifest in the Expected Rank Utility, which can be expressed in dot
product form, too:

ERU(π, y) = a[π]>b(y) where ai = 2
1−i
α−1 and b(y)i = max(yi − d, 0). (11)

Here d is a neutral vote and α is the viewing halflife. The normalized ERU can
also be defined in a similar manner to NDCG. The (normalized) ERU is often used
in collaborative filtering for recommender systems (Breese et al., 1998; Basilico and
Hofmann, 2004) where the lists of items tend to be very short.

The algorithm we are going to propose is able to deal with all losses presented here in a
systematic fashion without the need of designing customized solutions for each of them.
Unfortunately it seems that Mean Average Precision (MAP) can not be written in the form
(2). But for this particular measure, another formulation of SVMs with structured output
has been proposed Yue et al. (2007).

7

Chapelle, Le, Smola and Teo

2.4 A Linear Model

For reasons of computational convenience we choose a linear model to describe the score
function g(d, q):

g(d, q) = 〈φ(d, q), w〉 , (12)

where w denotes the parameters of the linear model. The vector φ(d, q) may be consist of
explicit features, such as BM25 (Robertson et al., 1994; Robertson and Hull, 2000; Craswell
et al., 2005), date information, page rank like information (Kleinberg, 1999; Page et al.,
1998), or click-through logs (Joachims, 2002). But we can also think of (12) as a generalized
linear model where φ is constructed using neural networks, decision trees, Reproducing
Kernel Hilbert Spaces, or other elementary estimators.

Note that there are quite different approaches than linear modeling. For instance,
Matveeva et al. (2006) use a cascade of rankers not unlike Viola and Jones (2004) and
Romdhani et al. (2000) in the context of face detection. In practice, successive stages for
eliminating irrelevant pages are clearly useful. Using techniques such as functional gradient
descent (Mason et al., 2000; Friedman et al., 1998) could be used to achieve this goal. In
practice, their deployment is quite application dependent and hence we omit a more detailed
discussion.

3. Learning

Recent developments in structured estimation by Tsochantaridis et al. (2005); Taskar et al.
(2004) have led to a large number of new algorithms which deal with what is essentially an
inverse optimization problem. We will be following this strategy for the purpose of finding
a good score function.

3.1 From Ranking to Regularized Risk Minimization

In (1) we already outlined that given a set of m observations, minimizing the empirical risk
may be a desirable goal. However, it is clear that if we do so at all cost, we are likely to
encounter overfitting. For instance, for a sufficiently rich enough function class we could
simply try finding some g such that g(di, q) = yi for all documents and queries. Hence we
need to impose additional regularity requirements in the form of a regularizer Ω : G→ R+

0 .
This means that instead of Remp[g] we aim to minimize the regularized risk functional

Rreg[g] :=
1
m

m∑
i=1

∆(yi, π(Di, qi, g)) + λΩ[g]. (13)

Here λ > 0 is a regularization constant. A popular choice for Ω in the case of linear models
is Ω[g] = 1

2 ‖w‖
2
2. This is the regularizer we will be using in this paper (hence we omit the

subscript in the remaining of this paper). Note, however, that different norms and exponents
are equally popular. For instance, for sparse expansions one typically uses Ω[g] = ‖w‖1.

The problem with (13) is that the regularized risk function is not convex. Indeed, it
is not even continuous in g, since π(D, q, g) may only take on a finite number of values.

8

Learning Ranking

Optimization problems of this kind have been addressed in recent years by structured esti-
mation (Taskar et al., 2004; Tsochantaridis et al., 2005). The basic idea is to upper bound
(13) by convex function in g and to minimize this upper bound.

3.2 Structured Estimation

Large margin structured estimation is a general strategy to solve estimation problems of
mapping X → Z by solving related optimization problems. More concretely it solves the
estimation problem of finding a matching z ∈ Z from a set of (structured) estimates, given
patterns x ∈ X, by finding a function f(x, z) such that

z∗(x) := argmax
z∈Z

f(x, z). (14)

This means that instead of finding a mapping X → Z directly, the problem is reduced to
finding a real valued function on X× Z.

In the ranking case, x corresponds to the collection of documents D with a matching
query q, whereas z denotes a permutation π. In order to take advantage of the optimization
framework offered by structured estimation we need to rewrite π(D, q, w)3 in the form of
π = argmaxπ′ f(D, q, π′). This is easily achieved by defining:

fw(D, q, π) :=
l∑

i=1

cπ(i)g(di, q) = c[π]>φ(D, q)w (15)

for a monotonically decreasing ci, and where φ(D, q) is a shorthand for the matrix

φ(D, q) := (φ(d1, q), . . . , φ(dl, q))
> . (16)

From the rearrangement inequality (Theorem 3), it is clear that the permutation maximizing
fw(D, q, π) is obtained by sorting in decreasing order the scores g(di, q). The choice of c
depends on the application and we will discuss it in Section 6. While this reformulation
does not immediately offer computational benefits, note that f is linear in w. This means
that any convex upper bound using f will also result in a convex upper bound with respect
to w and therefore be amenable to efficient optimization.

3.3 A Convex Upper Bound

We now describe the convex upper bounding technique of (Tsochantaridis et al., 2005;
Taskar et al., 2004). The basic strategy is to obtain a convex upper bound on the empirical
loss ∆(y, π(D, q, w)) of (13)

Definition 4 For a query q, associated documents D and labels y, define the loss for a
given function fw as

lconvex(fw, D, q, y) := max
π

fw(D, q, π)− fw(D, q, π̄) + a[π̄]>b(y)− a[π]>b(y), (17)

where π̄ is any maximizer of a[π]>b(y).

3. We use interchangeably g and w as g is the linear function with parameters w.

9

Chapelle, Le, Smola and Teo

Convexity of (17) with respect to fw follows from the fact that a pointwise maximum
of convex functions is convex. For the upper bound, we substitute π∗ := π(D, q, w), a
maximizer of fw(D, q, π) into the loss term to obtain

lconvex(fw, D, q, y) ≥ fw(D, q, π∗)− fw(D, q, π̄) + a[π̄]>b(y)− a[π∗]>b(y) (18)

≥ a[π̄]>b(y)− a[π∗]>b(y) = ∆(y, π∗). (19)

Combining equations (15) and (17), we obtain the following convex upper bound on the
regret incurred by ranking documents according to the score function g(d, q) = 〈φ(d, q), w〉:

lconvex(w,D, q, y) = max
π

[
c[π]>φ(D, q)w − a[π]>b(y)

]
− c[π̄]>φ(D, q)w + a[π̄]>b(y) (20)

We will discuss methods for minimizing (20) in Section 4. However, before we do so, let us
review an alternative tighter bound on the empirical risk.

3.4 A Tighter Nonconvex Upper Bound

The problem with the loss function (17) is that it is not tight enough in some cases. For
instance, for large values of fw the convex upper bound may keep on increasing while
the actual regret of performing suboptimal ranking is obviously bounded. ? establish that,
indeed, the structured max-margin setting is not statistically consistent (although it usually
works well in practice).4

Problems with the convex bound have first been observed in (Chapelle et al., 2007) where
the optimal solution using the convex loss function is w = 0 (using the Ohsumed dataset of
the Letor package). This is clearly a bad solution. Intuitively the problem stems from the
dependence on π̄. There might be indeed several permutations maximizing a[π]>b(y) and
it is not satisfactory to pick an arbitrary one. A better choice is to take the minimum over
all such maximizers π̃ via:

min
π̃∈Π̃

max
π

fw(D, q, π)− fw(D, q, π̃) + a[π̄]>b(y)− a[π]>b(y), (21)

with Π̃ = {π̃, a[π̃]>b(y) = maxπ a[π]>b(y)}. Pushing this idea further, note that

max
π

fw(D, q, π)− fw(D, q, π̃) + a[π̄]>b(y) ≥ a[argmax
π

fw(D, q, π)]>b(y)

holds for any choice of π̃. This can be seen by plugging argmaxπ f(w(D, q, π) into the left
hand side of the inequality. Hence we may take the minimum with respect to π̃ to obtain
a variational upper bound on the ranking regret. As a result, the “reference” permutation
π̃ is still almost as good as any permutation from Π. The resulting loss is:

lnonconvex(f,D, q, y) := min
π̃

max
π

[
fw(D, q, π)− fw(D, q, π̃) + max

π̄
a[π̄]>b(y)− a[π]>b(y)

]
= max

π

[
fw(D, q, π)− a[π]>b(y)

]
+ max

π̄
a[π̄]>b(y)−max

π̃
fw(D, q, π̃)

4. An exponential families version of the objective function, which is consistent, that is p(π|f) ∝ ef(π) leads
to an NP hard problem when computing the normalization, since it involves computing the permanent
of a matrix.

10

Learning Ranking

Combining this with (15) we can rewrite the non-convex loss as a function of w:

lnonconvex(w,D, q, y) = max
π

[
c[π]>φ(D, q)w − a[π]>b(y)

]
+ max

π̄
a[π̄]>b(y)−max

π̃
c[π̃]>φ(D, q)w (22)

We can see this nonconvex loss is very similar to the original convex one (20). The only
difference is in the third term: instead of considering the optimal ranking π̄, it involves the
current best ranking π̃(q, D, w) = arg maxπ̃ c[π̃]>φ(D, q)w. Several comments about this
new loss function:

1. It is smaller than the original loss. This can be seen by replacing π̃ with π̄.

2. It still an upper bound on the loss.

3. It is non-convex: the first two terms are convex, but the third one is concave.

In summary, we have a tighter upper bound on the loss, but the convexity is lost. Opti-
mization over this nonconvex upper bound is more difficult. However, as we shall see, DC
programming (An and Tao, 2005), also called the Concave-Convex Procedure (Yuille and
Rangarajan, 2003), or the MM algorithm (Hunter and Lange, 2004), can be used to find
approximate solutions to the optimization problem. The basic idea of all those methods is
to use successive linear upper bounds on the concave part of (22) for solving a sequence of
convex optimization problems.

4. Optimization

4.1 Objective Functions

Let us briefly review the objective functions arising from the convex and the nonconvex
upper bound of the regularized risk, since it is those which we need to minimize. With the
regularizer Ω[g] = 1

2 ‖w‖
2, and discarding constant terms, we have the following optimiza-

tion problem arising from the convex upper bound of Section 3.3.

minimize
w

λ

2
‖w‖2 +

m∑
i=1

max
π

[
c[π]>φ(Di, qi)w − a[π]>b(yi)

]
− c[π̄i]>φ(Di, qi)w (23)

where π̄i = argmax
π

a[π]>b(yi).

This is a convex minimization problem, being the combination of squared norm and the
maximum over a set of linear functions, hence it has a unique minimum value.

A similar optimization problem can be obtained by replacing the convex upper bound by
its nonconvex counterpart which was introduced in Section 3.4. We arrive at the following:

minimize
w

λ

2
‖w‖2 +

m∑
i=1

max
π

[
c[π]>φ(Di, qi)w − a[π]>b(yi)

]
−max

π
c[π]>φ(Di, qi)w (24)

Clearly, this problem is nonconvex. However, it is possible to obtain a succession of convex

11

Chapelle, Le, Smola and Teo

upper bounds which can be minimized in the same fashion as when minimizing (23). This
is the idea behind DC programming (An and Tao, 2005) and we now give a template of the
basic idea.

For a given function h(x) assume that u(x|x′) satisfies the conditions u(x|x) = h(x), u
is convex in x for all x′, and u(x|x′) ≥ h(x) for all x. In this case h(x) can be minimized
(for a local minimum) by using the iterative algorithm 1.

Algorithm 1 DC programming
Require: u(x|x′) such that u(x|x) = h(x), u is convex in x, and u(x|x′) ≥ h(x).
Require: Initial x

repeat
Update x′ ←− x
Improve estimate via x = argmin

x
u(x|x′)

until converged, e.g. by measuring u(x|x′)− h(x)

An upper bound in (24) can be obtained by a linear approximation of the concave term.
Denote by

π∗i (w) := argmax
π

c[π]>φ(Di, qi)w (25)

the best ranking for document collection Di and query qi given the current weight vector.
In this case the following bound holds:

max
π

c[π]>φ(Di, qi)w ≥ c[π∗i (w
′)]>φ(Di, qi)w (26)

The equality holds for w = w′. Hence we may use (26) to successively improve the solu-
tion of the nonconvex optimization problem (24). Plugging (26) into (24) and using the
above algorithmic template we obtain Algorithm 2 for solving the nonconvex optimization
problem.

The resulting optimization problem is very similar to (23) with the only difference that
the reference permutation π̄i has been replaced by π∗i (w), the currently best estimate of
the permutation ranking the documents. Given the similarity it turns out that both the
convex upper bound and a given step in Algorithm 2 can be solved by the same optimization
approach. Key is the computation of subgradients of the objective function with respect to
the parameter vector w.

4.2 Linear Assignment Problem

To compute the objective functions (23) or (24), we need to compute a maximum over the
set of permutations. We are not only interested in the maximum, but also in the maximizer
since this will be needed for the subgradient computation. The maximizer of interest is:

π̃ := argmax
π

c[π]>φ(D, q)w − a[π]>b(y) (27)

= argmax
π

tr πE where Eij = ci 〈φ(dj , q), w〉 − aib(y)j . (28)

12

Learning Ranking

Algorithm 2 Successive convex approximation
Find an initial solution, by standard regression for instance:

w∗ := argmin
w

λ

2
‖w‖2 +

m∑
i=1

||φ(Di, qi)w − b(yi)||22.

repeat
Compute π∗i := argmaxπ c[π]>φ(Di, qi)w∗ for all i ∈ {1, . . . ,m}.
Solve the optimization problem

w∗ := argmin
w

λ

2
‖w‖2 +

m∑
i=1

max
π

[
c[π]>φ(Di, qi)w − a[π]>b(yi)

]
− c[π∗i]

>φ(Di, qi)w

until converged

As explained in definition 1, we have identified the permutation π with its representation
as a permutation matrix.

The optimization problem of (28) is a so-called Linear Assignment Problem which can
be solved efficiently by a number of algorithms, including the Hungarian Marriage algorithm
of Kuhn (1955) and Munkres (1957). These papers implied an algorithm with O(l3) cost in
the number of terms. Later, Karp (1980) suggested an algorithm with expected quadratic
time in the size of the assignment problem (ignoring log-factors). Finally, Orlin and Lee
(1993) propose a linear time algorithm for large problems.

Once we find π̃ we may compute the gradient of (23). It is given by the sum over the
gradients of the individual upper bounds plus the derivative of the regularizer.

λw+
m∑

i=1

[c[π̃i]− c[π̄i]]
> φ(Di, qi) (29)

The gradient arising from Algorithm 2 is given by

λw+
m∑

i=1

[c[π̃i]− c[π∗i]]
> φ(Di, qi) (30)

Note that objective is differentiable everywhere except at points where one of the maximizers
π̃i is not unique. In this case, we select such a maximizer at random, which amounts to say
that we consider an arbitrary subgradient.

The only difference between the two problems above is that in the second case we use
π∗i instead of π̄i. Now that we have the derivatives we can substitute them directly into
algorithms which use gradient information for optimization.

13

Chapelle, Le, Smola and Teo

4.3 Nonsmooth optimization

Because of the max operation in objective functions (23) and (24), we can not use standard
optimization techniques5, but need to resort to nonsmooth optimization algorithms (?, Part
II). One of the most popular is the so-called bundle method (?) which combines the ideas
of cutting planes – by building iteratively a piecewise linear lower bound of the function –
and trust-region for stability. In the case of machine learning, Smola et al. (2007) proposed
a simplified bundle method in which the regularizer of the objective function acts as a
stabiliizer. It is described in Algorithm 3.

Algorithm 3 Bundle method for regularized empirical risk minimzation
Initialize w1 = 0
for t = 1 to maxiter do

Let Rt[w] := maxi≤t 〈∂wRemp[wt], w − wt〉+ Remp[wt]

wt+1 ← argmin
w

λ

2
‖w‖2 + Rt[w]

break if Remp[wt+1]−Rt[wi+1] < ε
end for

4.4 Online Algorithms

An alternative approach, in particular with large amounts of data, is to use a stochastic
gradient descent procedure, such as those proposed by Nesterov and Vial (2000); Bottou
and LeCun (2005) or more recently in the context of structured output learning by Ratliff
et al. (2007). Let us rewrite the optimization problems (23) and (24) as follows:

minimize
w

m∑
i=1

λ

2m
‖w‖2 + max

π

[
c[π]>φ(Di, qi)w − a[π]>b(yi)

]
− c[π̄i]>φ(Di, qi)w︸ ︷︷ ︸

:=rc
i (w)

(31)

minimize
w

m∑
i=1

λ

2m
‖w‖2 + max

π

[
c[π]>φ(Di, qi)w − a[π]>b(yi)

]
−max

π
c[π]>φ(Di, qi)w︸ ︷︷ ︸

:=rn
i (w)

(32)

Hence we may write the minimization problem as one of averaging over m risk terms rc
i (w)

and rn
i (w) respectively. For convex problems, that is, for rc

i (w) the following update scheme

w ←− w − ηt∂wrt(w) (33)

converges for a variety of schedules in choosing η. For instance, for ηt = (t+ c)−1 we obtain
O(t−1) convergence after t steps due to the added regularizer ‖w‖2 which ensures strong
convexity. For the nonconvex part, the same type of converge holds, but of course only to
a local minimum.

This procedure is also preferable to a full batch update since we only need to solve one
linear assignment problem and one sorting operation at a given time. In the batch setting,

5. It is noteworthy that, on nonsmooth problems, a smooth optimization algorithm such as BFGS has been
shown to find very good solutions (?). There is however no theoretical convergence guarantee in general.

14

Learning Ranking

we obtain an upper bound on all the losses whereas in the online setting we will effectively
have an upper bound for the improved estimate of the parameter vector. This allows for
faster convergence.

4.5 Constrained Quadratic Programming

A third option for solving the minimization problems (23) and (24) is to rewrite the problem
as a constrained quadratic program along the lines of Taskar et al. (2004); Tsochantaridis
et al. (2005). Rewriting the maximum operations in (23) as constraints we have the following
equivalent optimization problem:

minimize
w,ξ

λ

2
‖w‖2 +

m∑
i=1

ξi (34a)

subject to [c[π]− c[π̄i]]
> φ(Di, qi)w + [a[π̄i]− a[π]]> b(yi) ≤ ξi for all π (34b)

and π̄i = argmax
π

a[π]>b(yi).

This optimization problem is identical in form to those given by Taskar et al. (2004) and
Tsochantaridis et al. (2005). This allows us to read off the dual problem directly without
the need for further proof:

minimize
α

1
2

∑
i,j,π,π′

αiπαjπ′ k̄((Di, qi, π̄i, π), (Dj , qj , π̄j , π
′))−

∑
i,π

[a[π̄i]− a[π]]>b(yi)αiπ

subject to
∑
π

αiπ ≤ λ−1 and αiπ ≥ 0 for all i and π.

Here the kernel k̄ is given by the inner product of the compound feature maps of document
collections D, queries q and permutations π into a joint feature space via

k̄((D, q, π̄, π), (D′, q′, π̄′, π′)) := [c[π]− c[π̄]]> φ(D, q)φ(D′, q′)>
[
c[π′]− c[π̄′]

]
(35)
(36)

Finally, the optimal weight parameter w∗ is given by

w∗ =
∑
i,π

αiπφ(Di, qi)> [c[π]− c[π̄i]] . (37)

Solving and evaluating such an optimization problem presents a formidable challenge since
it contains an exponential number of variables αiπ. It turns out that by using column
generation (Tsochantaridis et al., 2005) one may find an approximate solution in polynomial
time. The key idea in this is to check the constraints (34b) to find out which of them are
violated for the current set of parameters and to use this information to improve the value of
the optimization problem. We omit details: suffice it to say that the same linear assignment
procedure which is used for computing the subgradients can again be used in this context.

15

Chapelle, Le, Smola and Teo

5. The SmoothGrad method

We now describe an alternative approach for optimizing ranking measures. The rationale is
to compare our upper bound with an approximation of the ranking score to assess whether
the approximation provides any benefit. The basic idea is to perform a direct gradient
descent optimization on a smoothed version of the NDCG measure. For this reason, we call
this method SmoothGrad; its performance will be evaluated in the experimental section. A
similar idea has been independently explored by Taylor et al. (2008).

Let us for rewrite the ranking score formula (9) as:∑
i,j

ajb(y)ihij ,

where hij is the indicator variable: ”Is document i at the j-th position in the ranking?”.
Having written the ranking score in this equivalent form, the only thing we have to do

now is to ”soften” the indicator variable hij . Several choices are possible. We consider the
following:

h̃ij = exp

(
−

(φ(di, q)>w − φ(dπ(j), q)>w)2

2σ2

)
,

where π(j) is the index of j-th document in the ranking induced by w, and σ is a parameter
controlling the amount of smoothing: when σ goes to 0, h̃ij converges to hij (because hij = 1
if and only if π(j) = i).

For a given query q, let us define the smooth score of this query as Aq,

Aq(w, σ) :=
∑

j

∑
i b(y)ih̃ij∑

i h̃ij

.

Note that Aq(w, σ) is continuous but non-differentiable at points where there is a tie
in the ranking. But since it is differentiable almost everywhere, we did not encounter any
problem with a conjugate gradient descent optimizer.

Finally we added an annealing procedure on σ in an outer loop in order to alleviate
the local minimum problem inherent to the minimization of a non-convex function. The
algorithm is described in Algorithm 4.

Algorithm 4 SmoothGrad: Minimization of a smooth score by gradient descent
1: Find an initial solution w0 (by regression for instance).
2: Set w = w0 and σ to a large value.
3: Starting from w, minimize by (conjugate) gradient descent

λ||w − w0||2 +
∑

q

Aq(w, σ).

4: Divide σ by 2 and go back to 3 (or stop if converged).

16

Learning Ranking

6. Experiments

We compare our proposed algorithm on three different datasets: the Ohsumed dataset,
part of the Letor package6 and two datasets from different web search engines. The reason
for choosing Ohsumed over Trec (the other dataset part of Letor) is that Trec contains
fewer queries and it has only 2 relevance levels and is thus less interesting from a ranking
perspective.

In both cases, we compare the NDCG at different truncation levels with some baseline
algorithms. Note that we only consider linear algorithms.

Even though there is no clear state-of-the-art algorithm, we have identified based on
the literature and our own experience two popular methods in web search ranking that we
will compare against: least-squared regression (Cossock and Zhang, 2006) on the output
relevance levels 0, 1, 2, 3, 4 and RankSVM (Herbrich et al., 2000; Joachims, 2002). Note that
even though regression is a very simple method, it can sometimes achieve better performance
than a more sophisticated method such as LambdaRank (Li et al., 2008, Figure 1). This
might be due in part to the fact that regression is provably consistent (Cossock and Zhang,
2006).

We also compared our method to SmoothGrad which attempts to directly minimize by
gradient descent a smooth version of the NDCG. This method, described in Section 5, is
similar in spirit to the one proposed by Taylor et al. (2008).

In our experiments, λ is chosen by the standard process of cross validation in a validation
set. The choice of ci is explained in details in each experiment.

6.1 Web search dataset 1

In this first experiment, we present results on a ranking dataset coming from a commercial
search engine. It consists of about 1500 queries and 50k (query,url) pairs. For each of
these pairs, a relevance grade has been assigned out of 5 possible relevance levels. Each
(query,url) pair is made of several hundred features. A fifth of the data is held out as a test
set and a fifth as a validation set. The regularization parameter is tuned on this validation
set. For each k from 1 to 10, the NDCG@k is independently optimized. The parameters ci

in (15) are chosen to be ci = max(k + 1− i, 0). We also tried to take ci = ai but the results
were not as good.

Results are shown in Figure 1. The gain in performance is about 2%, which is considered
very satisfactory in the web search ranking community. For each query, we add the NDCGs
from k = 1 to 10 and perform a Wilcoxon signed-rank test. The p-value corresponding to
the difference between our method and regression (resp RankSVM) is 3% (resp 7%). From
a computational point of view, the training is relatively fast. For all the different methods
described in Section 4, the training time is of the order of 15 minutes.

6.2 Web search dataset 2

In the second experiment, we use a different dataset from another search engine which has
1000 queries for training, 1000 queries for validation and 1000 for testing. The dataset has
5 levels of relevance and the number of documents per query is in the order of 50.

6. Available at http://research.microsoft.com/users/tyliu/LETOR/

17

http://research.microsoft.com/users/tyliu/LETOR/

Chapelle, Le, Smola and Teo

2 4 6 8 10
0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

k

N
D

C
G

k

SVMStruct
Regression
RankSVM
SmoothGrad

Figure 1: NDCG performance results on web search dataset 1.

The parameters ci in (15) are chosen to be ci = i−d, where d is an hyperparameter
controlling the decay of the coefficients. We train our model on the training set, cross
validate our λ, d using the validation set and predict on the test set. We report the results
of the experiments and compare against RankSVM, standard least square regression and
SmoothGrad. The results show that our methods perform very well on this dataset. The
improvement is statistically significant (p-value < 1%).

Choice of c Execpt the regularization parameter, the only design choice in our algorithm
are the ceofficients ci of equation (15). Since we have little theoretical guidance with regard
to this choice, we investigated experimentally on this dataset the effect of different ci.
Clearly ci needs to be a monotonically decreasing function. We chose ci = i−d for d ∈{

1
4 , 1

3 , 1
2 , 1, 2, 3

}
and ci = 1/ log2(i + 1) and ci = 1/ log2(log2(i + 1) + 1).

We found experimentally that the differences between the various schemes are not as
dramatic as the improvement obtained by using SVMStruct instead of other algorithms.
To summarize the results we show the difference in performance in Figure 3 for NDCG@10.
Note that the difference in terms of NDCG accuracy resulted by taking different ci will
decrease when the sample size increases. The rate of convergence is suspected to be 1/

√
m.

An possible interpretation is that the choice of ci can be considered prior knowledge. Thus
with increasing sample size, we will need to rely less on this prior knowledge and a reasonable
choice of ci will suffice.

18

Learning Ranking

2 4 6 8 10
0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

k

N
D

C
G

k

SVMStruct
RankSVM
Regression
SmoothGrad

Figure 2: NDCG performance results on web search dataset 2.

Figure 3: Maximum difference (in percent point) in NDCG@10 for different choices of c
with respect to 1/

√
m.

6.3 Ohsumed

The Ohsumed dataset has 106 queries and we used the same 5 splits training / validation /
test as provided in the Letor distribution. Each (query,document) pair has 25 features and
3 possible relevance scores.

On this dataset, the convex formulation gives the solution w = 0 even with very small
values of λ. As explained in Section 3.4, the problem is likely to be related to underfitting.
We then use the nonconvex formulation (24). Since this optimization problem is non-convex,

19

Chapelle, Le, Smola and Teo

the starting point is important. We set it to w0, where w0 is found by regression on the
grades. Also the regularizer is changed from ‖w‖2 to ‖w − w0‖2.

Finally we observed that optimizing the NDCG@k, as done above, gave unstable results
in particular during the model selection phase. This is probably because the dataset if very
small. Instead we optimize the NDCG@10 which gives a more stable indicator of the quality
of a solution.

We compare our nonconvex method against RankSVM and RankBoost in Figure 4. The
standard results for RankSVM and RankBoost are included in the LETOR baselines. Even
though there is 2% improvement for NDCG, the difference is not statistically significant.
This may be because of the fact that the dataset is small (only 106 queries). We also note
that for NDCG@k for small k the performance of SmoothGrad is better than SVMStruct.
This might be because both methods are non-convex7, but SmoothGrad has a smooth objec-
tive function which might be easier to optimize. Nevertheless, both methods are comparable
with respect to NDCG@k for large k, which is anyway a more stable of performance when
the dataset is small as it is the case here.

2 4 6 8 10

0.44

0.46

0.48

0.5

0.52

0.54

k

N
D

C
G

k

SVMStruct
RankBoost
RankSVM
SmoothGrad

Figure 4: NDCG performance results on OHSUMED dataset.

7. Extensions

So far our discussion was primarily concerned with ranking without any further restrictions.
In practice, this is an overly idealized situation and we need to take redundancy constraints
and the like into account. We now present three extensions which can be used to adapt
ranking to more realistic settings.

7. Remember that for this dataset we use the non-convex formulation (24).

20

Learning Ranking

7.1 Diversity Constraints

Imagine the following scenario: when searching for ’Jordan’, we will find many relevant
webpages containing information on this subject. They will cover a large range of topics,
such as a basketball player (Mike Jordan), a country (the kingdom of Jordan), a river (in
the Middle East), a TV show (Crossing Jordan), a scientist (Mike Jordan), a city (both in
Minnesota and in Utah), and many more. Clearly, it is desirable to provide the user with a
diverse mix of references, rather than exclusively many pages from the same site or domain
or topic range.

One way to achieve this goal is to include an interaction term between the items to be
ranked. This leads to optimization problems of the form

minimize
π∈Π

∑
ijkl

πijπklcij,kl (38)

where cij,kl would encode the interaction between items. This is clearly not desirable, since
problems of the above type cannot be solved in polynomial time. This would render the
algorithm impractical for swift ranking and retrieval purposes.

However, we may take a more pedestrian approach, which will yield equally good per-
formance in practice, without incurring exponential cost. This approach is heavily tailored
towards ranking scores which only take the top n documents into account. We will require
that among the top n retrieved documents no more than one of them may come from the
same source (e.g. topic, domain, subdomain, personal homepage). Nonetheless, we would
like to minimize the ranking scores subject to this condition. For this to work we need
to restrict the set of possible ranking such that they are compatible with the diversity
constraints.

Definition 5 Denote by B := {B1, . . . , Bn} a partition of the set {1, . . . , l} into n subsets,
that is ∪iBi = {1, . . . , l} and Bi ∩ Bj = ∅ for all i 6= j. Then we define Π(B, k) to be the
set of retrieval matrices where all π ∈ Π(B, k) satisfy

π ∈ {0, 1}k×l and
∑

j

πij = 1 and
∑

i

∑
j∈Bs

πij ≤ 1 for all i, j, s. (39)

The set Π(B, k) represents all rankings of k out of l objects which have no redundancy
within each of the sets Bs. For instance, assume that 6 documents were retrieved from 3
domains, e.g. via a split into {1, 2, 3} , {4, 5} and {6}. Moreover, assume that we wanted
to retrieve only two documents. In this case, pairs such as (1, 5) or (6, 4) are legitimate,
whereas pairs of the form (1, 3), (5, 4) are clearly not.

Retrieving the best k documents subject to the constraints imposed by Π(B, k) at de-
ployment time is easy since all we need to do is compute the scores g(di, q) and sort the
list. Subsequently we pick documents in descending order of their scores, choosing at most
one from each set Bi. The latter can be achieved in linear time given that we already have
B at our disposition. This simple procedure maximizes an objective function of the form

f(D, q, π) :=
k∑

i=1

cig(dπ(i), q) = c>πg(D, q) (40)

21

Chapelle, Le, Smola and Teo

where the coefficients ci are chosen in descending order just as in (15). With some abuse of
notation we identified π(i) with the single nonzero element in row i of π ∈ Π(B, k). Note
that (40) is identical to (15) with the exception that we only consider the first k terms
whereas (15) considers a ranking order of all documents.

The slightly more tricky part is how to deal with the modified set of retrieval matrices
for training purposes. One may check that (20) and (22) apply without modification, with
the only exception that now the maximization over the entire set of permutation matrices is
replaced by a maximization over π ∈ Π(B, k). It is clear that imposing additional constraints
will lead to a permutation retrieving less informative documents. It is arguably more useful,
though, to obtain a diverse set of potentially less relevant documents covering a number of
topics rather than many relevant documents on a single topic.

Key in solving this new optimization problem is the ability to perform maximization
over all π ∈ Π(B, k).

Optimization problem (28) now becomes:

maximize
π

tr πE subject to π ∈ Π(B, k) (41)

The above integer linear program can be relaxed by replacing the integrality constraint
πij ∈ {0, 1} of (39) by πij ≥ 0 leading to a linear program which can be solved efficiently

The following theorem shows that this relaxation will lead to integral solutions:

Theorem 6 (Heller and Tompkins (1956)) An integer matrix A with Aij ∈ {0,±1} is
totally unimodular if no more than two nonzero entries appear in any column, and if its
rows can be partitioned into two sets such that:

1. If a column has two entries of the same sign, their rows are in different sets;

2. If a column has two entries of different signs, their rows are in the same set.

Corollary 7 The linear programming relaxation of Π(B, k) has an integral solution.

Proof All we need to show is that each term πij in the constraints of Π(B, k) only shows
up exactly twice with coefficient 1. This is clearly the case since Π(B, k) is a partition of
{1, . . . , l}, which accounts for one occurrence, and the assignment constraints which account
for the other occurrence. Hence Theorem 6 applies.

An experimental evaluation of this setting is the subject of future research. In particular,
being able to obtain publicly accessible sets of type B is a major challenge.

7.2 Ranking Matrix Factorization

An obvious application of our framework is matrix factorization for collaborative filtering.
The work of Srebro and Shraibman (2005); Rennie and Srebro (2005); Srebro et al. (2005b)
suggests that regularized matrix factorizations are a good tool for modeling collaborative
filtering applications. More to the point, Srebro and coworkers assume that they are given
a sparse matrix X arising from collaborative filtering, which they would like to factorize.

More specifically, the entries Xij denote ratings by user i on document/movie/object
j. The matrix X ∈ Rm×n is assumed to be sparse, where zero entries correspond to

22

Learning Ranking

(user,object) pairs which have not been ranked yet. The goal is to find a pair of matrices
U, V such that UV > is close to X for all nonzero entries. Or more specifically, such that
the entries [UV >]ij can be used to recommend additional objects.

However, this may not be a desirable approach, since it is, for instance, completely
irrelevant how accurate our ratings are for undesirable objects (small Xij), as long as we
are able to capture the users preferences for desirable objects (large Xij) accurately. In
other words, we want to model the user’s likes well, rather than his dislikes. In this sense,
any indiscriminate minimization, e.g. of a mean squared error, or a large margin error for
Xij is inappropriate.

Instead, we may use a ranking score such as those proposed in Section 2.2 to evaluate
an entire row of X at a time. That is, we want to ensure that Xij is well reflected as a
whole in the estimates for all objects j for a fixed user i. This means that we should be
minimizing

Remp[U, V,X] :=
∑

i

lconvex([UV >]i·, Xi·) (42)

where lconvex is defined as a ranking score. It is understood that the loss is evaluated
over the nonzero terms of Xij only. Weimer et al. (2008) use this formulation to perform
collaborative filtering on large scale datasets.

Note that by linearity this upper bound is convex in U and V respectively, whenever
the other argument remains fixed. Moreover, note that Remp[U, V,X] decomposes into m
independent problems in terms of the users Ui·, whenever V is fixed, whereas no such
decomposition holds in terms of V .

In order to deal with overfitting, regularization of the matrices U and V is recommended.
The trace norm ‖U‖2F + ‖V ‖2F can be shown to have desirable properties in terms of gen-
eralization (Srebro et al., 2005a). This suggests an iterative procedure for collaborative
filtering:

• For fixed V solve m independent optimization problems in terms of Ui·, using the
Frobenius norm regularization on U .

• For fixed U solve one large-scale convex optimization problem in terms of V .

Since the number of users is typically considerably higher than the number of objects, it
is possible to deal with the optimization problem in V efficiently by means of subgradient
methods. Details can be found in (Weimer et al., 2008).

7.3 General Position Dependent Loss for Matching

The linear assignment problem that we used to match documents with positions in a list
can also be used for general position dependent loss functions. For instance, suppose that
we want to have a given topic at a given place in a list (e.g. domestic news, international
news, entertainment). In this case we might have overall score functions g(di, q, j) which
tell us the benefit of placing document di at position j, where j denotes the category.

More generally, we can encode matching problems in this fashion where we try finding
a function g(i, j) which determines the match quality between i and j. One may check
that this also leads to a linear assignment problem which can be solved efficiently in much

23

Chapelle, Le, Smola and Teo

the same way as what we discussed in this paper. Caetano et al. (2007) use this idea for
matching graphs arising from computer vision problems.

8. Summary and Discussion

In this paper we proposed a general scheme to deal with a large range of criteria com-
monly used in the context of web page ranking and collaborative filtering. Unlike previous
work, which mainly focuses on pairwise comparisons we aim to minimize the multivari-
ate performance measures, or rather a number of upper bounds of them. This has both
computational savings, leading to a faster algorithm and practical ones, leading to better
performance. This is a practical approximation of the mantra of (Vapnik, 1982) of estimat-
ing directly the desired quantities rather than optimizing a surrogate function. There are
clear extensions of the current work:

• The key point of our paper was to construct a well-designed loss function for optimiza-
tion. In this form it is completely generic and can be used as a drop-in replacement
in many settings. We completely ignored language models (Ponte and Croft, 1998) to
parse the queries in any sophisticated fashion.

• Although the content of the paper is directed towards ranking, the method can be
generalized for optimizing many other complicated multivariate loss functions.

• We could use our method directly for information retrieval tasks or authorship iden-
tification queries. In the latter case, the query qi would consist of a collection of
documents written by one author.

• We may add personalization to queries. This is no major problem, as we can simply
add some personal data ui to φ(qi, di, ui) and obtained personalized ranking.

Note that the choice of a Hilbert space for the scoring functions is done for reasons of
convenience. If the applications demand Neural Networks or similar (harder to deal with)
function classes instead of kernels, we can still apply the large margin formulation. That
said, we find that the kernel approach is well suited to the problem.

Acknowledgments: We thank Yasemin Altun, Chris Burges, Tiberio Caetano, David
Hawking, Bhaskar Mehta, Bob Williamson, and Volker Tresp for helpful discussions. Part
of this work was carried out while Quoc Le and Alex Smola were with NICTA. National
ICT Australia is funded through the Australian Government’s Backing Australia’s Ability
initiative, in part through the Australian Research Council. This work was supported by
the Pascal Network.

References

L. T. H. An and P. D. Tao. The DC (difference of convex functions) programming and
DCA revisited with DC models of real world nonconvex optimization problems. Annals
of Operations Research, 133(1–4):23–46, 2005.

J. Basilico and T. Hofmann. Unifying collaborative and content-based filtering. In Proc.
Intl. Conf. Machine Learning, pages 65–72, New York, NY, 2004. ACM Press.

24

Learning Ranking

J. Bonnans, J. C. Gilbert, C. Lemaréchal, and C. Sagastizàbal. Numerical Optimization:
Theoretical and Practical Aspects. Springer, 2nd edition, 2006.

Léon Bottou and Yann LeCun. On-line learning for very large datasets. Applied Stochastic
Models in Business and Industry, 21(2):137–151, 2005.

J. S. Breese, D. Heckerman, and C. Kardie. Empirical analysis of predictive algorithms for
collaborative filtering. In Proceedings of the 14th Conference on Uncertainty in Artificial
Intelligence, pages 43–52, 1998.

C. J. Burges, Quoc V. Le, and R. Ragno. Learning to rank with nonsmooth cost functions. In
Schölkopf, J. Platt, and T. Hofmann, editors, Advances in Neural Information Processing
Systems 19, 2007.

C. J. C. Burges. Ranking as learning structured outputs. In S. Agarwal, C. Cortes, and
R. Herbrich, editors, Proceedings of the NIPS 2005 Workshop on Learning to Rank, 2005.

C.J.C Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullden-
der. Learning to rank using gradient descent. In Proc. Intl. Conf. Machine Learning,
2005.

T. S. Caetano, L. Cheng, Q. V. Le, and A. J. Smola. Learning graph matching. In Proceed-
ings of the 11th International Conference On Computer Vision (ICCV-07), pages 1–8,
Los Alamitos, CA, 2007. IEEE Computer Society.

Y. Cao, J. Xu, T. Y. Liu, H. Li, Y. Huang, and H. W. Hon. Adapting ranking SVM to
document retrieval. In SIGIR, 2006.

O. Chapelle, Q. Le, and A. Smola. Large margin optimization of ranking measures. In
NIPS workshop on Machine Learning for Web Search, 2007.

D. Cossock and T. Zhang. Subset ranking using regression. In Proceedings of Conference
on Learning Theory (COLT), 2006.

K. Crammer and Y. Singer. Pranking with ranking. In Advances in Neural Information
Processing Systems 14, Cambridge, MA, 2002. MIT Press.

K. Crammer and Y. Singer. Loss bounds for online category ranking. In P. Auer and R. Meir,
editors, Proc. Annual Conf. Computational Learning Theory, pages 48–62, Berlin, Ger-
many, 2005. Springer-Verlag.

N. Craswell, H. Zaragoza, and S. Robertson. Microsoft cambridge at trec-14: Enter-
prise track. In Proceedings of the Fourteenth Text REtrieval Conference (TREC 2005),
Gaithersburg, 2005.

J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view
of boosting. Technical report, Stanford University, Dept. of Statistics, 1998.

I. Heller and C. Tompkins. An extension of a theorem of dantzig’s. In H.W. Kuhn and
A.W. Tucker, editors, Linear Inequalities and Related Systems, volume 38 of Annals of
Mathematics Studies. 1956.

25

Chapelle, Le, Smola and Teo

R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries for ordinal
regression. In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors,
Advances in Large Margin Classifiers, pages 115–132, Cambridge, MA, 2000. MIT Press.

D. R. Hunter and K. Lange. A tutorial on MM algorithms. The American Statistician, 58:
30–37, 2004.

K. Jarvelin and J. Kekalainen. IR evaluation methods for retrieving highly relevant docu-
ments. In ACM Special Interest Group in Information Retrieval (SIGIR), pages 41–48.
New York: ACM, 2002.

T. Joachims. Optimizing search engines using clickthrough data. In Proceedings of the ACM
Conference on Knowledge Discovery and Data Mining (KDD). ACM, 2002.

T. Joachims. A support vector method for multivariate performance measures. In Proc.
Intl. Conf. Machine Learning, pages 377–384, San Francisco, California, 2005. Morgan
Kaufmann Publishers.

R.M. Karp. An algorithm to solve the m × n assignment problem in exptected time
o(mn log n). Networks, 10(2):143–152, 1980.

R. Khanna, U. Sawant, S. Chakrabarti, and C. Bhattacharyya. Structured learning for non-
smooth ranking losses. In International Conference on Knowledge Discovery and Data
Mining (KDD), 2008.

J. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the ACM, 46
(5):604–632, November 1999.

H.W. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2:83–97, 1955.

Quoc V. Le and A. J. Smola. Direct optimization of ranking measures. Journal of Machine
Learning Research, 2007. submitted.

D.L. Lee, H. Chuang, and K. Seamons. Document ranking and the vector space model.
IEEE Transactions on Software, 14(2):67–75, 1997.

A. Lewis and M. Overton. Nonsmooth optimization via BFGS. SIAM Journal on Opti-
mization, 2009. to appear.

P. Li, C. Burges, and Q. Wu. Mcrank: Learning to rank using multiple classification and
gradient boosting. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in
Neural Information Processing Systems 20, pages 897–904. MIT Press, Cambridge, MA,
2008.

L. Mason, J. Baxter, P. L. Bartlett, and M. Frean. Functional gradient techniques for
combining hypotheses. In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans,
editors, Advances in Large Margin Classifiers, pages 221–246, Cambridge, MA, 2000.
MIT Press.

26

Learning Ranking

I. Matveeva, C. Burges, T. Burkard, A. Laucius, and L. Wong. High accuracy retrieval
with multiple nested ranker. In ACM Special Interest Group in Information Retrieval
(SIGIR), pages 437–444, 2006.

J. Munkres. Algorithms for the assignment and transportation problems. Journal of SIAM,
5(1):32–38, 1957.

Y. Nesterov and J.-P. Vial. Confidence level solutions for stochastic programming. Technical
Report 2000/13, Université Catholique de Louvain - Center for Operations Research and
Economics, 2000.

J.B. Orlin and Y. Lee. Quickmatch: A very fast algorithm for the assignment problem.
Working Paper 3547-93, Sloan School of Management, Massachusetts Institute of Tech-
nology, Cambridge, MA, March 1993.

L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bring-
ing order to the web. Technical report, Stanford Digital Library Technologies Project,
Stanford University, Stanford, CA, USA, November 1998.

J.M. Ponte and W.B. Croft. A language modeling approach to information retrieval. In
ACM Special Interest Group in Information Retrieval (SIGIR), pages 275–281. ACM,
1998.

N. Ratliff, J. Bagnell, and M. Zinkevich. (online) subgradient methods for structured pre-
diction. In Eleventh International Conference on Artificial Intelligence and Statistics
(AIStats), March 2007.

J. Rennie and N. Srebro. Fast maximum margin matrix factoriazation for collaborative
prediction. In Proc. Intl. Conf. Machine Learning, 2005.

M. Richardson, A. Prakash, and E. Brill. Beyond pagerank: machine learning for static
ranking. In L. Carr, D. De Roure, A. Iyengar, C.A. Goble, and M. Dahlin, editors,
Proceedings of the 15th international conference on World Wide Web, WWW, pages
707–715. ACM, 2006. URL http://doi.acm.org/10.1145/1135777.1135881.

S. Robertson and D. A. Hull. The TREC-9 filtering track final report. In Proceedings of
the 9th Text REtrieval Conference, pages 25–40, 2000.

S. E. Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu, and M. Gatford. Okapi at
TREC-3. In Text REtrieval Conference 3. Department of Commerce, National Institute
of Standards and Technology, 1994. NIST Special Publication 500-226: Overview of the
Third Text REtrieval Conference (TREC-3).

S. Romdhani, B. Schölkopf, P. Torr, and A. Blake. Fast face detection, using a sequential
reduced support vector evaluation. TR 73, Microsoft Research, Redmond, WA, 2000. To
appear in: Proceedings of the International Conference on Computer Vision 2001.

C. Rudin. Ranking with a P-norm push. In Proceedings of the 19th Conference on Learning
Theory (COLT), volume 4005 of Lecture Notes in Artificial Intelligence, pages 589–604.
Springer, Berlin, 2006.

27

http://doi.acm.org/10.1145/1135777.1135881

Chapelle, Le, Smola and Teo

G. Salton, editor. The SMART retrieval system: experiments in automatic document pro-
cessing. Prentice-Hall, Englewood Cliffs, US, 1971.

G. Salton and M. J. McGill. Introduction to Modern Information Retrieval. MacGraw-Hill
(New York NY), 1983.

A. J. Smola, S. V. N. Vishwanathan, and Quoc V. Le. Bundle methods for machine learning.
In Daphne Koller and Yoram Singer, editors, Advances in Neural Information Processing
Systems 20, Cambridge MA, 2007. MIT Press.

N. Srebro and A. Shraibman. Rank, trace-norm and max-norm. In P. Auer and R. Meir,
editors, Proc. Annual Conf. Computational Learning Theory, number 3559 in Lecture
Notes in Artificial Intelligence, pages 545–560. Springer-Verlag, June 2005.

N. Srebro, N. Alon, and T. Jaakkola. Generalization error bounds for collaborative predic-
tion with low-rank matrices. In L. K. Saul, Y. Weiss, and L. Bottou, editors, Advances
in Neural Information Processing Systems 17, Cambridge, MA, 2005a. MIT Press.

N. Srebro, J. Rennie, and T. Jaakkola. Maximum-margin matrix factorization. In L. K. Saul,
Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Systems 17,
Cambridge, MA, 2005b. MIT Press.

B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. In S. Thrun, L. Saul,
and B. Schölkopf, editors, Advances in Neural Information Processing Systems 16, pages
25–32, Cambridge, MA, 2004. MIT Press.

M. Taylor, J. Guiver, S. Robertson, and T. Minka. Softrank: optimizing non-smooth rank
metrics. In WSDM ’08: Proceedings of the international conference on Web search and
web data mining, pages 77–86. ACM, 2008.

A. Tewari and P.L. Bartlett. On the consistency of multiclass classification methods. Journal
of Machine Learning Research, 8:1007–1025, 2007.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for
structured and interdependent output variables. J. Mach. Learn. Res., 6:1453–1484,
2005.

V. Vapnik. Estimation of Dependences Based on Empirical Data. Springer, Berlin, 1982.

P. A. Viola and M. J. Jones. Robust real-time face detection. International Journal of
Computer Vision, 57(2):137–154, 2004.

E. Voorhees. Overview of the trect 2001 question answering track. In TREC, 2001.

A. Wayne. Inequalities and inversions of order. Scripta Mathematica, 12(2):164–169, 1946.

M. Weimer, A. Karatzoglou, Quoc V. Le, and A. J. Smola. Cofi rank - maximum margin
matrix factorization for collaborative ranking. In J.C. Platt, D. Koller, Y. Singer, and
S. Roweis, editors, Advances in Neural Information Processing Systems 20. MIT Press,
Cambridge, MA, 2008.

28

Learning Ranking

P. Wolfe. A method of conjugate subgradients for minimizing nondifferentiable functions.
Mathematical Programming Study, 3:143–175, 1975.

Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A support vector method for optimizing
average precision. In SIGIR ’07: Proceedings of the 30th annual international ACM
SIGIR conference on Research and development in information retrieval, pages 271–278.
ACM, 2007.

A.L. Yuille and A. Rangarajan. The concave-convex procedure. Neural Computation, 15:
915–936, 2003.

29

	Introduction
	Ranking
	The Problem
	Multivariate Ranking Losses
	Examples
	A Linear Model

	Learning
	From Ranking to Regularized Risk Minimization
	Structured Estimation
	A Convex Upper Bound
	A Tighter Nonconvex Upper Bound

	Optimization
	Objective Functions
	Linear Assignment Problem
	Nonsmooth optimization
	Online Algorithms
	Constrained Quadratic Programming

	The SmoothGrad method
	Experiments
	Web search dataset 1
	Web search dataset 2
	Ohsumed

	Extensions
	Diversity Constraints
	Ranking Matrix Factorization
	General Position Dependent Loss for Matching

	Summary and Discussion

