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Abstract

We propose and evaluate a number of solutions to the prob-
lem of calculating the cost to serve each location in a single-
vehicle transport setting. Such cost to serve analysis has ap-
plication both strategically and operationally in transporta-
tion. The problem is formally given by the traveling sales-
person game (TSG), a cooperative total utility game in which
agents correspond to locations in a travelling salesperson
problem (TSP). The cost to serve a location is an allocated
portion of the cost of an optimal tour. The Shapley value is
one of the most important normative division schemes in co-
operative games, giving a principled and fair allocation both
for the TSG and more generally. We consider a number of di-
rect and sampling-based procedures for calculating the Shap-
ley value, and present the first proof that approximating the
Shapley value of the TSG within a constant factor is NP-hard.
Treating the Shapley value as an ideal baseline allocation, we
then develop six proxies for that value which are relatively
easy to compute. We perform an experimental evaluation us-
ing Synthetic Euclidean games as well as games derived from
real-world tours calculated for fast-moving consumer goods
scenarios. Our experiments show that several computation-
ally tractable allocation techniques correspond to good prox-
ies for the Shapley value.

Introduction

We study transport scenarios where deliveries of consumer
goods are made from a depot to locations on a road net-
work. At each location there is a customer, e.g. a vending
machine or shop, that has requested some goods, e.g. milk,
bread, or soda. The vendor who plans and implements deliv-
eries is faced with two vexing problems. First, the familiar
combinatorial problem of routing and scheduling vehicles
to deliver goods cost effectively. Many varieties of this first
problem exist (Golden, Raghavan, and Wasil 2008), and for
our proposes we shall refer to it as the vehicle routing prob-
lem (VRP). We begin our investigation supposing that VRP
has been solved heuristically, and therefore after the assign-
ment of locations to routes has been made.

The second vexing problem is determining how to eval-
uate the cost to serve each location. Specifically, the ven-
dor must decide how to apportion the costs of transportation

∗An extended version of this work, including detailed proofs of
theorems can be found at http://arxiv.org/abs/1408.4901.

to each location in an equitable and economically efficient
manner. The results of cost to serve analysis have a variety
of important applications. Using the allocation directly the
vendor can of course charge locations their allocated por-
tion of the transportation costs. More realistically, vendors
use the cost allocations when (re-)negotiating contracts with
customers. Supply chain managers may also reference a cost
allocation when deciding whether or not to continue trade
with a particular location. Finally, provided market condi-
tions are favourable, sales managers can be instructed to ac-
quire new customers in territories where existing cost alloca-
tions are relatively high in order to share the cost of delivery
among more locations.

Addressing the second vexing problem, this paper stems
from our work with a fast-moving consumer goods company
that operates nationally both in Australia and New Zealand.
The company serves nearly 20,000 locations weekly using
a fleet of 600 vehicles. Our industry partner is under in-
creasing economic pressure to realise productivity improve-
ments through optimisation of their logistical operations. A
key aspect of that endeavour is to understand the contribu-
tion of each location to the overall cost of distribution. In
this study we focus at the individual route level for a single
truck, where we apportion the costs of the deliveries on that
route to the constituent locations. We formalise this setting
as a traveling salesperson game (TSG) (Potters, Curiel, and
Tijs 1992), where the cost to serve all locations is given by
the solution to an underlying traveling salesperson problem
(TSP). Formalised as a game, we can use principled solution
concepts from cooperative game theory, notably the Shapley
value (Shapley 1953), in order to allocate costs to locations
in a fair and economically efficient manner.

Calculating the Shapley value of a game is a notoriously
hard problem (Chalkiadakis, Elkind, and Wooldridge 2011).
A direct calculation for a TSG requires the optimal solution
to exponentially many distinct instances of the TSP. Though
sampling can provide a rough approximation, we cannot
hope to achieve better. We prove that there is no polynomial-
time α-approximation of the Shapley value for any constant
α ≥ 1 unless P = NP.

To circumscribe these computationally difficulties, this
work explores six proxies1 for the Shapley value. Our prox-

1We use the word proxy instead of approximation to ease dis-



ies offer tractable alternatives to the Shapley value, and in
some cases appeal to other allocation concepts from cooper-
ative game theory (Peleg and Sudhölter 2007; Curiel 2008).
Two of our proxies appeal to the well-known Held-Karp and
Christofides TSP heuristics, respectively.

We report a detailed experimental comparison of prox-
ies using a large corpus of Synthetic Euclidean games, and
problems derived from real-world tours calculated for fast-
moving consumer goods businesses in the cities of Auckland
(New Zealand), Canberra, and Sydney (Australia). We high-
light three computationally tractable proxies that give good
approximations of the Shapley value in practice. Our evalu-
ation also considers the ranking of locations—least to most
costly—induced by the Shapley and proxy values. Ranking
is relevant when, for example, we are just interested in iden-
tifying the most costly locations to serve. We again find that
three of our proxies provide good ranking accuracy taking
the rank induced by the Shapley value as the target.

Preliminaries

We use the framework of cooperative game theory to gain
a deeper understanding of our delivery and cost allocation
problems (Peleg and Sudhölter 2007; Chalkiadakis, Elkind,
and Wooldridge 2011). In cooperative game theory, a game
is a pair (N,c). N is the set of agents and the second term
c : 2N → R is the characteristic function. Taking S ⊆ N,
c(S) is the cost of subset S. A cost allocation is a vector
x = (x0, . . . ,xn) denoting that cost xi is allocated to agent
i∈N. We restrict our attention to economically efficient cost
allocations, which are allocations satisfying ∑i∈N xi = c(N).

For any cooperative game (N,c), a solution concept φ as-
signs to each agent i ∈ N the cost φi(N,c). There may be
more than one allocation satisfying the properties of a par-
ticular solution concept, thus φ is not necessarily single-
valued, and might give a set of cost allocations (Peleg and
Sudhölter 2007). A minimal requirement of a solution con-
cept is anonymity, meaning that the cost allocation must not
depend on the identities of locations. Prominent solution
concepts include the core, least core, and the Shapley value.
For ε ≥ 0, we say that cost allocation φ is in the (multiplica-
tive) ε-core if ∑i∈S φi ≤ (1+ ε)c(S) for all S ⊆ N (Faigle
and Kern 1993). The 0-core is referred to simply as the core.
Both the core and ε-core can be empty. The ε-core which
is non-empty for the smallest possible ε is called the least
core. This particular ε is referred to as the least core value.2

Our work focuses on the single-valued solution con-
cept called the Shapley value (Shapley 1953). Writing
SVi(N,c) for the Shapley value of agent i, formally we

have: SVi(N,c) = ∑S⊂N\{i}
|S|!(|N|−|S|−1)!

|N|! (c(S∪{i})−c(S)).

In other words, the Shapley value divides costs based on the
marginal cost contributions of agents

In the traveling salesperson problem (TSP) a salesperson
must visit a set of locations N = {1, . . . ,n} ∪ {0} starting

cussion and, technically, many of these measures are stand-ins for
the Shapley value, not approximations of it.

2The 0-core of the transport game we focus on in this work can
be empty. However, if the game is convex, the Shapley value lies in
the core (Tamir 1989).

and ending at a special depot location 0. For i, j ∈ N ∪{0}
i 6= j, di j is the strictly positive distance traversed when trav-
eling from location i to j. Here, di j = ∞ if traveling directly
from i to j is impossible. Taking distinct i, j,k ∈ N ∪ {0},
the problem is symmetric if and only if di j = d ji for all
i, j ∈ N ∪{0}. It satisfies the triangle inequality if and only
if di j +d jk ≥ dik (Garey and Johnson 1979).

A TSP is Euclidean when each location is given by co-
ordinates in a (two dimensional) Euclidean space; therefore
di j is the Euclidean distance between i and j. A Euclidean
TSP is both symmetric and satisfies the triangle inequality.

A tour is given by a finite sequence of locations that starts
and ends at the depot 0. The length of a tour is the sum of
distances between consecutive locations. For example, the
length of [0,1,2,0] is d01 + d12 + d20. An optimal solution
to a TSP is a minimum length tour that visits every loca-
tion. It is NP-hard to find an optimal tour, and generally
there is no α-approximation for any α unless P = NP. An
α-approximation for a given optimisation problem is an al-
gorithm that runs on an instance x and returns a feasible so-
lution F(x) which has cost c(F(x)) related to the optimal
solution OPT (x) by the following relation (Papadimitriou

1994):
|c(F(x))−c(OPT (x))|

max{c(OPT (x)),c(F(x))} ≤α. Informally, α is a bound on

the relative error of an approximation function. When ∀i, j
di j are finite, the triangle inequality and symmetry hold, then
polynomial-time approximations exist (Held and Karp 1962;
Christofides 1976).

Given a TSP, the corresponding traveling salesperson
game (TSG) is a pair (N,c). N is the set of agents which

corresponds to the set of locations.3 The second term
c : 2N → R is the characteristic function. Taking S⊆N, c(S)
is the length of the shortest tour of all the locations in S.
A cost allocation is a vector x = (x1, . . . ,xn) denoting that
cost xi is allocated to location i ∈ N. For the special depot
location, we shall always take x0 = 0 (Potters et al. 1992).

Some Properties of the Shapley Value

The Shapley value has many attractive properties when
used as a cost allocation scheme by a vendor. For example,
whereas the 0-core can be empty, and therefore not yield any
allocation at all (Tamir 1989), the Shapley value always ex-
ists in the TSG setting. The Shapley value is also, for general
games, the unique assignment of costs that satisfies three
important properties: (1) anonymity, the cost allocated to a
particular location is dependent only on the impact it has
to the total cost; (2) efficiency, the entire cost of serving all
N locations is allocated; and (3) strong monotonicity. The
latter states that if the total cost of a coalition is reduced,
then the allocation to all locations participating in that coali-
tion is either reduced or not increased (Young 1985). For-
mally, the marginal contribution from player i to the total
cost of coalition S is ci(S) = c(S)− c(S \ {i})if i ∈ S and
c(S∪{i})− c(S)if i /∈ S. Strong monotonicity can be stated

as: ∀S : ci(S)≥ c′
i(S) =⇒ φi(N,c)≥ φi(N,c′). Due to these

3From here on we focus on a restriction of general games to
delivery games (TSGs) and therefore we use location instead of
agent for ease of exposition.



and other derivative axiomatic properties, the Shapley value
has been termed “the most important normative payoff divi-
sion scheme” in cooperative game theory (Winter 2002).

Another important property of the Shapley value is that it
would allocate any fixed costs incurred when serving a loca-
tion to that location alone. If we treat a variant of the TSG
where some locations have an associated fixed cost in addi-
tion to their transportation costs— e.g. parking and loading
fees —then the Shapley value will allocate those fixed costs
to the associated locations. Formally, given a fixed cost f (i)
of serving location i, f (i) does not need to be removed be-
fore computing the Shapley value, as follows. Suppose c is
the characteristic function of the TSG defined above, and c′

satisfies the identity c′(S) = c(S)+∑i∈S f (i).

Proposition 1 SVi(N,c′) = SVi(N,c)+ f (i).

We also have that by charging locations according to the
Shapley value, we can expect to incentivize them to recruit
new customers in their vicinity. Locations recruiting for a
vendor can reasonably expect to lower the transportation
costs they are allocated. In detail, consider a vendor trad-
ing with locations N = {1..|N|}. From the vendors perspec-
tive, adding a new location, |N|+ 1, to an existing deliv-
ery route is clearly a good idea if the revenue generated by
delivering to that location is greater than the marginal cost
c(N ∪{|N|+1})− c(N) of the new delivery. Because exist-
ing locations in the vicinity of |N|+1 are already paying for
deliveries, charging at the threshold c(N∪{|N|+1})−c(N)
however will typically be unfair. In that case existing cus-
tomers would likely be subsidizing new customers, and
therefore disincentivize to find new business for the vendor.
The Shapley value mitigates this, and can be expected to
provide recruitment incentives. Making this discussion more
concrete, suppose the game is a Euclidean scenario with
N = {x} a single agent at distance 100 from the depot and
the new agent y is at distance 5 from x. The transportation
cost of serving {x,y} can be as high as 210. Clearly, charg-
ing the new agent c({x,y})− c({x}) = 10 while x continues
to pay around 200 is unfair. However, if the vendor allocates
costs according to the Shapley value, the existing customer’s
costs decrease when adding the new agent.

Related to the above discussion, if the characteristic func-
tion is concave then the Shapley value lies in the non-empty
0-core. Formally, concavity is satisfied if for all S⊆N \{i} :
c(S∪{i}∪{|N|+1})−c(S∪{|N|+1})< c(S∪{i})−c(S).
Charging customers according to core values actually guar-
antees that they are incentivized to recruit. Specifically, for
all i ∈ N : SVi(N ∪{|N|+1},c)< SVi(N,c). In other words,
the Shapley allocation of costs to existing locations de-
creases when a new customer |N|+ 1 is added. Unfortu-
nately general TSGs do not necessarily have concave char-
acteristic functions. However, concavity in expectation is all
that is required for existing locations to realise savings. In
practice there are synergies, and incentives for further re-
cruitment on routes where we charge according to the Shap-
ley value. In our empirical data, even when the game is not
concave we frequently observe such incentives given a Shap-
ley allocation. And compared to charging customers accord-
ing to their marginal contribution to costs, we do not ex-

plicitly disincentivize recruitment. Summarizing, if an agent
knows that all locations are charged according to the Shap-
ley value, they can typically expect incentives to recruit new
locations in their vicinity.

Computing the Shapley Value

Our focus now shifts to calculation of the Shapley value. We
require an accurate baseline in order to experimentally eval-
uate the proxies we later develop for the Shapley value of
the TSG. A direct calculation for a TSG requires the optimal
solution to exponentially many distinct instances of the TSP.
We prove that there is no polynomial-time α-approximation
of the Shapley value for any constant α ≥ 1 unless P = NP.

Theorem 2 There is no polynomial-time α-approximation
of the Shapley value of the location in a TSG for constant
α ≥ 1 unless P = NP.

Proof. Let G(N,E) be a graph with nodes N and edges
E. If an α-approximation exists we can use it to solve
the NP-complete Hamiltonian cycle problem on G. First,
from G construct a complete weighted and undirected graph
G′(N,E ′), where (i, j) has weight 1 if (i, j) is in the tran-
sitive closure of E, and otherwise has weight n!α . If there
is a Hamiltonian cycle in G then the Shapley value of any
i ∈ N in the TSG posed by G′ is at most 1. Suppose there
is no Hamiltonian cycle in G. We show there exists a per-
mutation π of N that induces a large Shapley value for any
node j as follows: repeatedly add a node from N\ j to π so
that there remains a Hamiltonian cycle amongst elements
in π; when there is no such node then add j. The marginal
cost of adding j to π is at least n!α . The Shapley value of
j is the average cost of adding it to a coalition S ⊆ N \ j,
therefore its Shapley value is at least α . Even though edge
weights in G′ are large, we can represent G′ compactly in
O(log(n)+n2 log(α)) space. An α-approximation on G′ for
j decides the existence of the Hamiltonian cycle in G. ❑

Using the state-of-the-art TSP solver Concorde (Apple-
gate et al. 2007) in a direct calculation of the Shapley value,
we find it impractical to compute the exact Shapley value
for instances of the TSG larger than about 15 locations. Any
direct calculation method requires an exponential number
of characteristic function computations, each requiring we
solved an NP-hard problem.

To calculate the Shapley value of a TSG we employ the
Type-0 method suggested by Mann and Shapley 1960, called
ApproShapley by Castro, Gómez, and Tejada. The pseu-
docode is given in Algorithm 1. Writing π(N) for the set of
|N|! permutation orders of locations N, taking Π ∈ π(N) we
write Πi for the subset of N which precede location i in Π.
An alternative formulation of the Shapley value can be char-
acterised in terms of π(N), by noting that value equates with
marginal cost of each location when we construct coalitions

in all possible ways:SVi(N,c) = 1
|N|! ∑Π∈π(N)(c(Πi ∪{i})−

c(Πi)). For each sampled permutation, ApproShapley eval-
uates the characteristic function for each i ≤ |N| computing
the length of an optimal tour for the set of locations in the
i-sized prefix. By construction, the cost allocation produced



by ApproShapley is economically efficient. As a small but
important optimization, in our work we cache the result of
each evaluation of the characteristic function to avoid solv-
ing the same TSP twice.

Bachrach et al. have previously examined Type-0 sam-
pling in simple games—i.e. cost of a coalition is either 0
or 1—deriving bounds that are probably approximately cor-
rect. In other words, the actual Shapley value lies within
a given error range with high probability (Bachrach et al.
2010). Continuing in this line of work, Maleki et al. show
that if the range or variance of the marginal contribution
of the players is known ahead of time, then more focused
(termed stratified) sampling techniques may be able to de-
crease the number of samples required to achieve a given
error bound (Maleki et al. 2013). Other methods of approx-
imating the Shapley value, specifically for weighted voting
games, have appeared in the literature including those based
on multi-linear extensions (Leech 2003; Owen 1972) and fo-
cused random sampling (Fatima et al. 2008; 2007).

Algorithm 1 ApproShapley

Input: N = {1, . . . ,n} locations with cost c(S) to serve a subset
S⊆ N and m number of iterations.

Output: SVi for all i ∈ |N|

1 SV ← []
2 for i← 1 to |N| do
3 SVi← 0
4 end for
5 SampleNumber← 1
6 for SampleNumber← 1 to m do
7 Randomly select a permutation of the locations Perm from

π(N)
8 S← /0
9 for i← 1 to |N| do

10 S← S∪{Permi}
11 SVPermi

← SVPermi
+(c(S)− c(S\{Permi}))

12 end for
13 end for
14 TotalValue← ∑i∈N SVi

15 for i← 1 to |N| do
16 SVi← SVi ∗ (c(N)/TotalValue)
17 end for
18 return SV

Proxies for the Shapley Value

The use of ApproShapley requires that we solve an NP-
hard problem each time we evaluate the characteristic func-
tion. This is feasible for small TSG instances with less than
a dozen locations, however it does create an unacceptable
computational burden in larger, realistically sized games.
We now describe a variety of proxies for the Shapley value
that require much less computation in practice.

For the purposes of the discussion below we assume that
an optimal tour for the underlying TSP is given. Not all our
proxies yield economically efficient allocations of the cost of
the optimal tour. For that reason, we define proxies in terms
of the induced fractional allocation of the cost of the opti-
mal tour. Later, we shall compare these fractional allocations
to that induced by computing the fractional Shapley value,

formally φ SV
i = SVi/∑ j∈n SV j. This formulation based on frac-

tional allocations allows us to compare the cost allocations
from all the proxies on equal footing, in a way that would be
used in operational contexts such as transport settings. This
formulation also enables us to efficiently—i.e. in the game
theoretic sense—allocate the cost of the optimal route only
having to solve the NP-hard TSP once.

Depot Distance (φ DEPOT)

The distance from the depot — i.e. di0 for location i — is
our most straightforward proxy. We allocate cost to location
i proportional to di0. The fraction allocation to location i is

φ DEPOT
i = di0

∑
n
i=1 di0

. For this proxy, a location that is twice as

distant from the depot as another has to pay twice the cost.

Shortcut Distance (φ SHORT)

Another proxy that is straightforward to calculate and which
has been used in commercial routing software is the short-
cut distance. This is the marginal cost savings of skipping a
location when traversing a given optimal tour. With no loss
of generality, suppose the optimal tour visits the locations
according to the sequence [0,1,2, . . . ]. Formally, SHORTi =
di−1,i +di,i+1−di−1,i+1, where locations 0 and n+1 are the
depot, and di j is the cost of travel from location i to j. The
fractional allocation given by the shortcut distance is then

φ SHORT
i = SHORTi

∑ j∈N SHORT j
.

Re-routed Margin (φ REROUTE)

For a location i∈N, REROUTEi is defined as c(N)−c(N\i)).
The allocation to a player can be computed with at most two
calls to an optimal TSP solver. The fractional allocation is

φ REROUTE
i = (c(N)−c(N\i))

∑ j=N(c(N)−c(N\ j)) .

Christofides Approximation (φ CHRIS)

A more sophisticated proxy is obtained if we use a heuristic
when performing characteristic function evaluations in Ap-
proShapley, rather than solving the individual induced TSPs
optimally. For this proxy we use sampling to estimate the
Shapley value and we use an approximation algorithm to es-
timate the underlying TSP cost. To approximate the under-
lying TSP characteristic function, the Christofides heuris-
tic (Christofides 1976), an O(N3) time procedure is used. To

obtain a fractional quantity φ CHRIS
i , we divide the allocation

to location i by the sum total of allocated costs. Assuming a
symmetric distance matrix satisfying the triangle inequality,
the Christofides heuristic is guaranteed to yield a tour that is
within 3/2 the length of the optimal tour.

Nested Moat-Packing (φ MOAT)

A cost allocation method based on a nested moat-packing
was first introduced by Faigle et al. 1998. This allocation is
obtained by apportioning a grand-coalition cost equal to the
value of the Held-Karp (Held and Karp 1962) relaxation of
the underlying TSP, multiplied by a constant factor.

The proposed allocation is calculated by surrounding lo-
cations using a set of geometrically nested reagions called



moats. To obtain a cost allocation, moats are arranged so
that for a vehicle to visit the set of locations in the un-
derlying TSP, that vehicle must traverse the width of each
moat at least twice. Choosing moats in order to to maximise
the sum of their widths, the distance traversing all chosen
moats twice corresponds to the value of the Held-Karp lower
bound. One obtains an ε-core value by allocating each moat
width twice to locations outside the moat, and then scaling
those allocations, here by the constant factor 1.5, ensuring
the sum of allocated costs exceeds the optimal tour length.

The above ideas is expressed mathematically below in the
constraints and optimisation criterion in Equation 1. For-
mally, the moat width, wS, for a set of locations S ⊆ N is
calculated by solving the LP in Equation 1. Below, taking
the TSP as given by a weighted fully connected graph, we
use the notation δ (S) for the set of edges joining locations
in S to locations in N \S.

max
(

2∑S⊆N S 6≡ /0 wS

)

s.t.
wS ≥ 0 ∀S⊆ N S 6≡ /0

∑i j∈δ (S) wS ≤ di j ∀i, j ∈ N

(1)

The dual of this LP corresponds to the well-known Held-
Karp relaxation of the TSP, which can be solved in
polynomial-time.

Once a small set of non-zero wS terms are computed as
per Equation 1, a nested packing is obtained by following
the post-processing procedure described by Özener, Ergun,
and Savelsbergh 2013. A packing is nested if and only if
∀S′,S′′ s.t. wS′ > 0 and wS′′ > 0, if S′ ∩ S′′ 6≡ /0 then either
S′ ⊆ S′′ or S′′ ⊆ S′. For any optimal solution to Equation 1
there is a corresponding nested packing with the same objec-
tive value (Cornuéjols, Naddef, and Pulleyblank 1985). The
nested constraint is required and, intuitively, it prevents over-
charging a subset of locations that coalesce in a moat – i.e.
prevents the allocation from violating the universally quan-
tified constraint in the definition of the core. For the nest-
ing critera to be violated there must be three distinct non-
empty sets of locations S, S′ and S′′, so that wS∪S′ > 0 and
wS′∪S′′ > 0. Post-processing iteratively identifies and elimi-
nates such cases. Identification is straightforward. For each
elimination we take the assignment τ←min{wS∪S′ ,wS′∪S′′},
and make the following assignment updates to the moat
widths: wS ← wS + τ , wS′′ ← wS′′ + τ , wS∪S′ ← wS∪S′ − τ ,
and wS′∪S′′←wS′∪S′′−τ . This iterative procedure terminates
yielding a nested packing, however the algorithm can take
exponential time in the worst case. That being said, in all
our experiments we found that nesting takes only a fraction
of a second. Finally, an ε-core allocation is obtained where,
for each S ⊆ N we distribute the cost 3×wS arbitrarily to
the locations in the set (N\0)\S – distributing evenly to all
nodes outside the moat for S, excluding the depot node 0.

Hybrid Proxy

Early on in our experimentation, we made an important ob-
servation that lead us to develop a sixth “blended” proxy,
φ BLEND. This proxy is a linear combination of φ MOAT and
φ DEPOT. We experimentally identify a λ ∈ [0,1] for which

λ ×φ MOAT +(1−λ )×φ DEPOT provides an improved proxy

for φ SV compared to either component proxies in isolation.
Experimentally we found λ = 0.6 to be most effective in
Synthetic games. Our observation is that the φ MOAT does not
properly distribute the depot allocation of moat widths to
other locations. In order to stay within the 1/2-core alloca-
tion, that width is distributed in equal parts to all locations.
Blending the φ MOAT with φ DEPOT mitigates this problem, and
as we observe, increases proxy accuracy relative to φ SV. The
value of the improvement seems to decrease gradually as the
size of games increases.

Analysis of Naı̈ve Proxies

We refer to the three proxies φ DEPOT, φ SHORT and φ REROUTE,
as being naı̈ve. Contrastingly, we call φ CHRIS, φ MOAT and
φ BLEND the sophisticated proxies. The formulation of the
naı̈ve proxies φ DEPOT and φ SHORT make them amenable to
direct analysis of their worst case performance. We observe
that φ DEPOT and φ SHORT can preform arbitrarily badly over
or under estimating φ SV in degenerate cases. The proofs are
omitted for space.

Empirical Study

We implemented each of the six proxies discussed, along
with a version of ApproShapley that uses Concorde (Apple-
gate et al. 2007) to evaluate the characteristic function of the
TSG. The Concorde program is used to find optimal solu-
tions to TSPs. Rather than calculating φ SV by direct enu-
meration as a baseline to compare proxies, we estimate that
value using ApproShapley with Concorde. For the size of
games we have considered, we find that 4000 iterations of
ApproShapley gives accurate baseline values.

We experimented using a corpus of games comprised of
two sets of TSGs. The first set of games are Synthetic. For
each i ∈ [4, . . . ,35], we generate 20 instances of the Eu-
clidean TSG with i locations occurring uniformly at ran-
dom in a square of dimension 1,000. The horizontal and
vertical coordinates of the locations are represented us-
ing 32-bit floating point numbers. Those Euclidean games
are available online at http://users.cecs.anu.edu.
au/~charlesg/tsg_euclidean_games.tar.gz.

The second set of games is taken from large Real-World
VRPs in the cities of Auckland, New Zealand; Canberra,
Australia; and Sydney, Australia. Heuristic solutions to
those VRPs are calculated using the Indigo solver (Kilby
and Verden 2011). To give an indication of the scale and dif-
ficulty of these VRPs, the Auckland model comprises 1,166
locations to be served using a fleet of at most 25 vehicles
over a 7 day period. In the heuristic solution we collect
tours of length 10 and 20 to created TSGs for testing. Be-
cause Real-World distance matrices are asymmetric, in all
cases asymmetry is negligible, we induce symmetric prob-
lems by resolving for the greater of di j and d ji – i.e. setting
di j = d ji = max{di j,d ji}. It total we obtain 69 Real-World
games of size 10 and 44 games of size 20.

All experiments reported here were performed on a com-
puter with an Intel i7-2720QM CPU running at 2.20GHz,



with 8GB of RAM, and running the Ubuntu 12.04.3 LTS op-
erating system. For Synthetic problems with 35 locations,
4000 iterations of ApproShapley with exact TSP evaluations
using Concorde (Applegate et al. 2007) takes 545 seconds.
Computing φ CHRIS, which replaces the exact TSP computa-
tion with an evaluation of the Christofides heuristic, results
in a reduction to 11.39 seconds in total. Computing φ MOAT

takes under 1 second. All the naı̈ve proxies (φ DEPOT, φ SHORT,
and φ REROUTE) take fractions of a second to compute.

To evaluate how well proxies perform in approximating
φ SV we measure the point-wise root-mean-squared error
(RMSE) in each game. We also use Kendall’s τ (1938) (writ-
ten KT) to compare the ranking—i.e. least expensive to most
expensive—of locations induced by the Shapley allocation
and our proxies. The value τ measures the amount of dis-
agreement between two rankings. It is customary to report
τ as a normalized value (correlation coefficient) between 1
and -1, where τ = 1 means that two lists are perfectly corre-
lated (equal) and τ = −1 means that two lists are perfectly
anti-correlated (they are equal if one list is reversed).

Synthetic Data

Figure 2 shows the average root mean squared error and av-
erage KT distance for each proxy from φ SV for all game
sizes of the Synthetic data. We describe highlights of our
results here. Overall, the best performing proxy is φ BLEND,
both in terms of lowest RMSE and highest average τ .
The φ SHORT and φ REROUTE proxies are by far the worst,
particularly in terms of approximating Shapley value, but
also in terms of the ranking induced by the correspond-
ing allocations. The computationally more expensive proxy
φ REROUTE always dominates φ SHORT; a trend which contin-
ues throughout our testing on Real-World data as well. The
proxy φ DEPOT performs poorly at ranking, however does sur-
prisingly well at approximation being almost competitive
with the more sophisticated proxies. In ranking locations,
φ REROUTE regularly identifies the location ranked most costly
according to the Shapley value, outperforming all proxies on
this task for the synthetic data. More generally, in ≥ 60% of
synthetic games the φ CHRIS, φ MOAT, φ REROUTE, and φ BLEND

proxies each identify the most costly location.
In the majority of the synthetic games, our analysis of

rankings using Kendall’s τ strongly implies that φ CHRIS,
φ MOAT and φ BLEND rankings are correlated with φ SV. Put
simply, we are confident that sophisticated proxies are in-
ducing a ranking that is similar to the one induced by the
Shapley value. They also reliably identify the most expen-
sive location. Among the pure proxies, the φ CHRIS proxy
outperforms all the others at ranking by a slim margin. For
example, it is able to identify the most expensive location
according to the Shapley value 66.4% of the time. Addition-
ally, regardless of the number of locations, the mean value
for τ between φ SV and φ CHRIS is ≥ 0.55, and in every in-
stance with 18 or more locations (and for the majority of
instances between 4 and 17 locations) there is a statistically
significant result for τ . Comparatively, φ BLEND returns simi-
lar (and often higher) results for τ while achieving a statisti-
cally significant correlation with the ranking induced by φ SV

for every synthetic game instance with more than 8 players,

save 6. The τ analysis in the case of φ MOAT is less positive,
gives strong correlation in instances with more than 20 loca-
tions, though still better than any of the naive proxies.

Our experimental analysis also considered how the types
of allocation error differ between proxies. For example, we
considered questions, such as: Do the proxies make a lot of
small errors for low cost locations, or do they make large
errors for locations that are apportioned large costs? Knowl-
edge about the type and severity of errors made by our differ-
ent proxies provides some guidance to the situations where
we should have confidence in proxy allocations and/or the
induced rankings.

Figure 3 shows the absolute error between all of the prox-
ies and φ SV graphed as a function of the allocation accord-
ing to φ SV for Synthetic games with 20 locations. For all
the proxies, there appears to be a strong linear component
to the error — many of the proxies allocate proportionally
more (or less) cost compared to the φ SV allocation. In some
cases φ REROUTE allocates more than 20-times the cost allo-
cation by φ SV, though typically this happens in the case of
locations that received less than 10% of the Shapley alloca-
tion. We find that better performing proxies make more con-
stant real-valued errors across all locations, regardless of ac-
tual allocation. The scatterplots for φ BLEND and φ CHRIS both
show the weakest linear bias, with φ BLEND showing a some-
what sub-linear bias. For example, φ CHRIS and φ MOAT can
allocate 6-times φ SV, though this only occurs in the case
of locations whose Shapley allocation is less that 5% of the
tour cost. Measuring the factor by which it overestimates al-
locations, the φ DEPOT proxy appears to perform rather well,
allocating at most 2.5-times the fair cost. The caveat is that
φ DEPOT is indiscriminate, also making proportionately large
over-allocation errors to locations which are costly accord-
ing to φ SV.

Real-World Data

Measuring the performance of proxies in Real-World data
from Auckland, Canberra, and Sydney, overall we find the
quality of allocation is slightly degraded compared to mea-
surements we made in synthetic games. We identified no sig-
nificant performance differences between cities; we report
aggregated statistics in this section. Table 1 summarizes re-
sults for 20 location games head-to-head between the Real-
World and Synthetic datasets.

Examining the change in performance of sophisticated
proxies when moving from the Synthetic to Real-World
scenarios, the average RMSE increases from ≈ 0.075 to
≈ 0.153 while the average τ decreases from ≈ 0.63 to
≈ 0.28. Measuring RMSE, the degradation in performance
of φ MOAT is clearly the most sever. Measuring ranking error
via τ , φ MOAT degrades more gracefully compared to either
φ CHRIS or φ BLEND. Measuring all proxy performances using
RMSE, φ SHORT is always dominated by φ REROUTE, which in
turn is strictly dominated by the sophisticated proxies. It is
worth noting that in Real-World scenarios φ REROUTE strictly
dominates all the other proxies in its ability to identify the
most costly location. In that regard φ MOAT is a close second.
Treating ranking error, Table 1 shows that φ REROUTE actually
performs comparably with best sophisticated proxy, φ MOAT,



Synthetic Real-World Synthetic Real-World
RMSE St. Dev. RMSE St.Dev. τ St. Dev. τ St. Dev. Synth. Real.

Shortcut Distance 0.2965 0.0543 0.3239 0.1064 -0.0363 0.1358 0.0798 0.1891 5.0% 15.9%
Re-routed Margin 0.1826 0.0442 0.2902 0.0934 0.3813 0.1505 0.3476 0.1993 65.0% 65.9%
Depot Distance 0.0864 0.0182 0.0870 0.0303 0.5053 0.1464 0.1622 0.2313 45.0% 38.6%

Moat Packing 0.0758 0.0174 0.1969 0.0883 0.5304 0.1180 0.3064 0.1710 50.0% 61.4%
Christofides 0.0622 0.0136 0.0863 0.0311 0.5965 0.0999 0.3509 0.2258 45.0% 56.8%
60/40 Moat/Depot 0.0529 0.0084 0.0765 0.0301 0.6690 0.1105 0.2531 0.2487 50.0% 54.5%

Table 1: Comparison of performance between Synthetic and Real-World datasets for games with 20 locations. There are 20
games in the Synthetic corpus and 44 in the Real-World corpus. Root Mean Squared Error (RMSE) and Standard Deviation (St.
Dev.) are reported on the left where lower is better. In the center average KT distance (τ) and Standard Deviation (St. Dev.) is
reported where higher is better; +1 means the two lists are perfectly correlated and −1 means the two lists are anti-correlated.
The percentage of most expensive locations according to the Shapley ordering correctly identified by the proxies is on the right.

in terms of τ . Repeating our observations for the synthetic
corpus, in the Real-World games the sophisticated proxies
have a greater percentage of statistically significant results
for τ . For a majority of the instances, φ CHRIS and φ MOAT

achieve a statistically significant correlation with the rank-
ing induced by φ SV. Table 1 shows a side by side com-
parison of the games with 20 locations for the Real-World
and Synthetic data. Moving from synthetic to Real-World
we see the performance of φ CHRIS and φ BLEND noticably
degrade, though they do continue to achieving fairly low
RMSE scores. Again, note that all sophisticated proxies are
also good at identifying the most costly location.

Examining Real-World games with 20 locations, Figure 3
gives the error scatter plots for all proxies as a function of
allocation according to φ SV. There is an observable linear
component to the error for several of the proxies for the Syn-
thetic dataset. There is a more uniform distribution of errors
among locations in the Real-World data. This is evidenced
by the pillar like shapes for most of the plots; demonstrat-
ing that in the Real-World data, many of the φ SV allocations
cluster around a uniform allocation of around 5–8%. Indeed,
the observed tight clustering of actual Shapley values ex-
plains the respectable performance of φ DEPOT in the Real-
World datasets. The much taller shapes we see in Figure 3
for the Real-World data indicate that proxy errors are more
randomly distributed among Real-World locations, and that
in Real-World scenarios proxies make proportionately larger
allocation errors irrespective of the actual φ SV allocation.

Conclusions and Future Work

We studied the problem of fairly apportioning costs in trans-
portation scenarios, specifically TSGs. The Shapley value
is a highly appealing division concept for this task. Since
it cannot be evaluated in reasonable time, we considered
a number of proxies for the Shapley value. We examined
proxy performance both in terms of approximating the Shap-
ley value and the ranking of locations induced by the Shap-
ley value. The stand-out proxies with respect to both mea-
sures are φ CHRIS and φ BLEND, a mixture of φ DEPOT and
φ MOAT. These proxies can be computed in reasonable time,
and exhibit good properties in both synthetic Euclidean

games and real-world transportation scenarios.
Extensions of our work should develop proxies for the

more general setting of vehicle routing games, to quantify
the importance of agent synergies that are unique to the
multi-vehicle model. The transport companies we interact
with further seek to understand the impact of time windows
(both the duration and position of allowable service times),
and the effect of delivery frequency on allocated costs. Thus,
a highly motivated and rich variety of problems is available
to be considered for future work.
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Figure 1: Comparison of the performance of ApproShapley (left) and SubsetShapley(right) over 5000 iterations for TSGs with
10 locations. The graphs show minimum and maximum (outside the graph range for SubsetShapley) error in the Shapley value
for a single location averaged over 50 instances. The error is computed as a percentage difference between the actual Shapley
value and the one computed by sampling. Additionally, the average percent error for all locations per iteration is shown.
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Figure 2: Performance of the five pure proxies and one hybrid proxy according to: (left) RMSE averaged over the 20 games
generated for each number of locations, and (right) Kendall’s tau rank correlation averaged over the 20 games generated for
each number of locations. The error bands correspond to plus or minus one standard deviation. The vertical axis of our Kendall’s
tau plot has been inverted for ease of comparison – more correlated lists are towards the bottom of the graph.
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Figure 3: Absolute value of the difference between the φ SV and φ PROXY plotted as a function of φ SV for all games in the
Synthetic and Real-World datasets with 20 locations.
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Cornuéjols, G.; Naddef, D.; and Pulleyblank, W. 1985. The
traveling salesman problem in graphs with 3-edge cutsets.
Journal of the ACM (JACM) 32(2):383–410.

Curiel, I. 2008. Cooperative combinatorial games. In
Chinchuluun, A.; Pardalos, P.; Migdalas, A.; and Pitsoulis,
L., eds., Pareto Optimality, Game Theory And Equilibria,
volume 17 of Springer Optimization and Its Applications.
Springer New York. 131–157.

Faigle, U., and Kern, W. 1993. On some approximately
balanced combinatorial cooperative games. ZOR Methods
and Models of Operations Research 38(2):141–152.

Faigle, U.; Fekete, S.; Hochstättler, W.; and Kern, W.
1998. On approximately fair cost allocation in euclidean
tsp games. Operations-Research-Spektrum 20(1):29–37.

Fatima, S. S.; Wooldridge, M.; and Jennings, N. R. 2007.
A randomized method for the Shapley value for the voting
game. In Proceedings of the 6th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 07),
157–165.

Fatima, S. S.; Wooldridge, M.; and Jennings, N. R. 2008. A
linear approximation method for the Shapley value. Artifi-
cial Intelligence 172(14):1673–1699.

Garey, M. R., and Johnson, D. S. 1979. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
New York: W.H. Freeman.

Golden, B. L.; Raghavan, S.; and Wasil, E. A. 2008. The
Vehicle Routing Problem: Latest Advances and New Chal-
lenges: latest advances and new challenges, volume 43.
Springer.

Held, M., and Karp, R. M. 1962. A dynamic programming
approach to sequencing problems. Journal of the Society for
Industrial & Applied Mathematics 10(1):196–210.

Kendall, M. G. 1938. A new measure of rank correlation.
Biometrika 30(1/2):81–93.

Kilby, P., and Verden, A. 2011. Flexible routing combing
constraint programming, large neighbourhood search, and

feature-based insertion. In 2nd Workshop on Artificial In-
telligence and Logistics. Barcelona, Spain.

Leech, D. 2003. Computing power indices for large voting
games. Management Science 49(6):831–837.

Maleki, S.; Tran-Thanh, L.; Hines, G.; Rahwan, T.; and
Rogers, A. 2013. Bounding the estimation error of
sampling-based Shapley value approximation with/without
stratifying. CoRR abs/1306.4265.

Mann, I., and Shapley, L. S. 1960. Values for large games
IV: Evaluating the electoral college by monte carlo. Tech-
nical report, The RAND Corporation, Santa Monica, CA,
USA.

Owen, G. 1972. Multilinear extensions of games. Manage-
ment Science 18(5/2):64–79.
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