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_Abstract—_We present_a_robust strategy_for docking a mo- o R NN N1 1177712722222
bile robot in close proximity with an upright surface using NN N N A R A ARttt
optical flow field divergence and proportional feedback contol. NN NN NN A Sttt
Unlike previous approaches, we achieve this without the nee NN R R
for explicit segmentation of features in the image, and usig NN Rt ettt
complete gradient-based optical flow estimationi(e. no affine T ToTotio sl etetatudatuind
models) in the optical flow computation. A key contribution T T T IIIIIIl Dl e——————  eoR
is the development of an algorithm to compute the flow field e e —
divergence, or time-to-contact, in a manner that is robust ¢ bbb A A G NNy
small rotations of the robot during ego-motion. This is doneby et A A NNy
tracking the focus of expansion of the flow-field and using this to 222222222 f ; 5 ; j i 5 : : : : : S S EESSEES
compensate for ego rotation of the image. The .control law gsb A AR R T B NN NN
is a simple proportional feedback, using the unfiltered flow fld A Y R R R R R RN
divergence as an input, for a dynamic vehicle model. Closed- b A NN M N S e

loop stability analysis of docking under the proposed feedéck

is provided. Performance of the flow field divergence algortm g 1. Diverging optical flow vectors and the focus of expangFOE)
is demonstrated using off-board natural image sequences,nd

the performance of the closed-loop system is experimentsll
demonstrated by control of a mobile robot approaching a wall

Index Terms—Image motion analysis, optical flow, time-to- field diver.gence. This image e).(pangion,looming. ef‘feqtig .
contact, focus of expansion, robot vision systems. characterised by flow vectors diverging from a single paint i
the image known as the focus of expansion (FOE), as shown
in Figure 1. The use of visual motion to gaugeis well
l. INTRODUCTION supported by observations in biological vision. Srinivas

OCKING is an essential capability for any mobile robo#l- [19] observe how honeybees use visual motion to decelerate

D seeking to interact with objects in its environment. Task&d perform smooth graze landings. Lee [6] theorised that a
such as plugging into a re-charging station, pallet liftiog human driver may visually control vehicle braking based on
transporting goods on a factory floor are common tasks re-estimation obtained from image expansion.
quiring some form of docking manoeuvre to be performed. Of Optical flow and flow divergence are commonly used to
particular importance is the control of the robot's decatien ~€stimater for obstacle avoidance [12], [1], [2]. Few, however,
to an eventual halt, close enough to the object that thediaterhave applied optical flow to tasks requiring finer motion
tion may take place while also avoiding collision. To ackievcontrol such as docking. Cipolla and Blake [2], for example,
this, the robot must acquire a robust estimationtiofe-to- Measurer using divergence computed from the temporal
contact(r), and control the robot's velocity accordingly. Thederivative of the moments of area for a closed-contour regio
accuracy and robustness of theestimate is therefore crucialof the image. Ther estimator is shown to be sufficiently
to the stability, and safety of the robot in performing thesk. robust for closed-loop control of collision avoidance arald

For a single, forward-facing camera approaching an uprig?,tcamera—mounted robot arm. The authors note, however, that
surface, a common method of estimatings to measure the Performance degrades significantly when in close proximity
image expansion induced by the apparent motion of the surfA¥th the target surface due to a break down of the assumed

towards the camera. This can be obtained from the optical fi@fine motion. Examples where visual motion has been applied
explicitly to docking include Santos-Victor and Sandinb[l
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reliably finding closed shapes when at close proximity witbamera stabilisation during ego-motion, no one has applied
the surface [2]. such an approach to tasks requiring fine motion control (such
An alternative approach is to compute from general as docking), nor provided a theoretical analysis suppgitie
optical flow. Methods for estimating general optical flowdl advantages of such a strategy, and its potential use foratont
from local image regions, such as proposed by Lucas andn this paper, we present a robust strategy for docking
Kanade [8], require na priori knowledge of scene structure,a mobile robot in close proximity with an upright planar
and therefore, no segmentation. In general, for systems sg@rface using optical flow field divergence. Unlike previous
as road vehicles, optical flow is often used for other fumio approaches, we achieve this without the need for explicit
such as a general sensor for salience to detect moving Isazaghmentation of the surface in the image, and using complete
over the whole scene, as well as for particular functiongradient-based optical estimatione( no affine models are
such as obstacle detection. Affine approximations of imageed to estimate the optical flow field) in the control loop. In
motion are not adequate for this type of general use, agddition, we require only a simple proportional control law
having multiple methods for calculating flow is implausibleo regulate the vehicle’s velocity, using only the unfilgre
on restricted embedded hardware. A key requirement forflaw field divergence as an input. Central to the robustness of
robust docking control is & estimation algorithm based onour approach is the derivation of aestimator that accounts
general optical flow computation. for small rotations of the robot during ego-motion through
In much of the previous work with divergence-based tracking of the FOE. We provide a theoretical justification f
estimation, divergence is measured at the same imagedacathe constant tracking of the FOE as a means of accounting
in each frame [1], [12], [3]. This, however, ignores the effe for not just the physical misalignment of the optical and
of FOE shifts on the divergence measure across the imaganslational axes, but also frame-to-frame shifts of thtcal
Mobile robot ego-motion is rarely precise, and even whegkxis due to instantaneous rotations during ego-motion. The
only translational motion is intended, rotations will begent. proposed control is designed for the full dynamics of a viehic
Small directional control adjustments, fluctuations iredtion making the results applicable to a wide range of autonomous
due to steering control or differing motor outputs, bumpsbotic vehicles. A simple proportional feedback, using th
and undulations along the ground surface, and noisy optieg@mputed flow divergence error as the driving term is chosen.
flow estimation will all cause instantaneous, frame-toxfea The control is simple to apply but leads to singular, noedin
rotations of the robot. As such, the optical axis will be ®abj closed-loop dynamics of the vehicle. A full theoretical lysis
to small rotations about the predominant direction of mtiojs undertaken that proves stability of the closed-loopesyst
As a result, the FOE is unlikely to be fixed with respect tander ideal conditions. We present off-board and on-board
the image centre. Given such rotations are likely to be smalkperiments demonstrating the application of this stsateg
with respect to the robot’s forward motion, the predominafite task of docking a mobile robot. Note that this paper
direction of motion should remain constant. Therefore, txtends preliminary results first presented in [10]. Here we

ensure consistency in estimates over time, we argue thaprovide additional experimental results, and a full anialys
divergence should be measured with respect to the FOE, and system’s closed-loop stability.

not the image centre. _ ~ The paper is structured as follows. Section Il provides
Robustly estimatingr when the optical and translationiheoretical background, and the derivation of the proposed
axes are not physically aligned has been examined preyiougloE-pasedr estimator outlined above. Section 1l provides
Subbarao [20] considers with surfaces of arbitrary orien- analysis of the technique’s stability for the closed-lo@m-c
tation, for a camera of arbitrary alignment with respect tQo| of a mobile robot during docking. Section IV describes

the direction of motion. Subbarao, however, does not censidy| experiments conducted, and results achieved. Section V
the effects of instantaneous rotations during ego-mo#mel, concjudes the paper.

therefore assumes the point of interest lies along the amer

optical axis. While a fixation-based strategy such as thatl us

by Questaet al. [13] can keep the target point centred, a

mobile robot is unable to achieve this without additional

hardware support. In many cases, such hardware is undeaile}&) Background
to facilitate high speed fixation. ’

An alternative approach is to account for instantaneousFlow divergence is measured by examining the partial
rotations in the image domain, by tracking the location & thspatial derivatives of image velocity components in orthog

FOE. Van Leeuwen and Groen [22], [21] consider the use ghal directions at a given image location. This measure is
FOE tracking to correct for the physical misalignment of theommonly defined as:

optical and translational axes as a result of the cameratrob

e : : u(z,y) | Ov(z,y)
configuration. However, while accounting for the constant D(x,y) = + ) (1)
physical misalignment of these axes, they do not extendgbe u Oz dy
of FOE tracking explicitly to the removal of small frame-towhere (z,y) is a point in the image, and. and v are
frame rotational effects during ego-motion, nor do theylappthe image velocity components in the and y directions
7 directly to control the vehicle’s velocity. In general, Whi respectively. Time-to-contact) to a point along the optical
previous work has considered the use of FOE tracking fakis of the camera can be measured from flow divergence, and

Il. THEORY
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Fig. 2. Geometric configuration
is commonly defined as [3]: coordinates(z, y) [14]:
-z —2 Zo
==, 2 Z(x,y) = ——a—, 4
"7, D(wo, o) @) (@.9) I—a% —bL )

where Z is the distance to the object in the direction O\fzvherefx and f, are focal lengths expressed in pixels.
heading, andl’. is the velocity in this direction. Note that

for the typical scenario of a robot approaching a surface, weGiven a fixed camera with respect to the robot’s direction of
measureZ > 0, and7;. < 0, thereby decreasing the value oimotion, we represent the translational velocity of the came
Z as the robot approaches. In particular, the divergénee0 T,, as proportions of the forward translational velocify, of

is negative for a diverging flow field and is defined to be the robot:
positive. The above relationship betweBrandr, assumes the

heading direction is aligned with the camera’s optical aats T. = [ o AT T ] : (%)
the image centre(zo, yo). The camera’s angular velocity() is given by:

Flow divergence is constant across the image plane if the
surface plane is perpendicular to the camera’s optical axis we = [ wa Wy w: |, (6)

(i.e. fronto-parallel with the image plane), and can therefoighere each component represents rotation about the axis

be calculated anywhere in the imaged area of the surfaggiicated by its subscript. Figure 2 shows the geometric
If precise fronto-parallel alignment with the docking pdais  configuration.

not maintained then further image deformation is introdijce

causing the measured divergence to vary across the prbjecteThe optical flow induced by the apparent motion of the

surface [20]. docking plane is defined by the well known equations [15]:
Given instantaneous rotations during ego-motion, precise

surface alignment is unlikely to exist. In the image domain, (z,y) = f VTT(f% —q)
such effects are characterised by frame-to-frame shifthef ’ X Z(z,y)
FOE, causing the divergence at any given image location 5
to vary. As a result, (2) is unlikely to provide an accurate Fweal (14 :v_2) +w2£]7 @)
estimate ofr in the presence of such rotations. To imprave Ixly i Iy
estimates during ego-motion, accounting for rotationtdaté
is essential. VI (4 = B)
v(z,y) = fy ﬂ
B. Derivation of proposed time-to-contact estimator e Ty T
_ _ twi(l+25) —wy —w,— |, (8)
The analysis presented here extends on the geometric mod- Iy Txly Jx

elling used by Santos-Victor and Sandini [15]. As in [15], WE here w(z,y) and v(z,y) are the horizontal and vertical
represent the docking surface as a plane in a camera Cenggfiponen’ts of motion’

coordinate system:

Z(X,Y) = Zo +aX +bY, 3) Let us now consider the effect_s of rotgtion, causing the FOE
to shift with respect to the optical axis. Lét’,y’) be an
where Z, is the distance to the surface along the opticalrbitrary point in the image representing the FOE. We define
axis, X andY represent points on the surface, amcand the depth of the surface(x,y), with respect to the FOE:
b give the slant and tilt with respect to the optical axis. By

/ /
introducing the perspective projection equations intq {B¢ Z(x,y) = (%(%)’y ) TR 9
surface plane can be expressed as a function of the image 1—a52 — b3t
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Substituting (9) into Equations 7 and 8, we obtain: the scene point projecting to the FOE:
VT (z — frav) { a(z —a') by — y’)] Z@y) v [ (x’ ) (y’ ) ]
u(T,y) = 1- - — = al—+al+bl=+3)-2
( y) Z(xlayl) Ix fy T, Droe fx fy p
2 / ! ! /
Y x y 3Z(x',y) (wmy Wy )
Fw— —w + —)4w.,=, (10 — — = . (19
fy y(fx fx) Ix ( ) DfoeTT(e) fy Jx ( )
Using Equations 14 and 15, we substitute égr andw, in
oz, y) = YT (y — fyB) {1 Calz—a) by - y’)] (19) and thus remove both rotations from (19) such that:
’ Z(,y') Jx fy
y? ry w Z@y) o 1+“(x_/+o‘>+b(y_/+ﬁ>
+wr(fy+f_y) _wyﬁ _wzﬁ' (11) T, Dfoe(e) Ix fy
Given the optical flow at the FOE is zero, substituting for 3 (' fy + ffya +2'y' B + %)
z =2’ andy = y' provides the following constraints on the ~ ~ 57| ~ /x* fy(1+ 25 + &)
optical flow at the FOE: X y
VT (2 — fxa) 'y’ x'? y + _wy'Te (f + f _ I_IQ — 1) (20)
0= W sz—y—wy(fx—FK)—szﬁ, fyZ(x/7yl) y fy fx .
(12) Notably, the removal of, andw, introduces a term involving
0— Ty — fy8) o+ ﬁ) W 'y " @ camera roll ¢.,). If required, techniques for roll removal such
- Z(2y) YR Yty i as that of Hanada and Enjima [4] can also be applied without

(13) prior knowledge of the rotation.
If T, is aligned with the FOE, then (20) gives a precise

Solving forw, andw,, we obtain: measure ofr. In the presence of rotations, this assumption

f T, 22 Y is unlikely to hold. However, considering a docking scenari
e =x,y, Z(TT/)(SC/ — fxa) +wy(fx + f—) + wzf— ,  for a finite sized robot, the presence of small instantaneous
y Y X y rotations will also mean that the precise point of impact is

(14) unlikely to be known. Given that the FOE provides the only

location in the flow field where rotation is accounted for,

(:c’y’ﬂ + fya'+ we can consider (20) to be a reasonable approximation of
) (referred to astee) under these conditions.

- 1
- /2 2
fxfy(l + f_xz + '7;7)

T

Z(xl7l yl

Wy

2 13 2, Time-to-contact for a ground-based mobile rob&@onsider
fxay Py Ty . . .

Ixlya+ 7 —wy Y + Zm) (15) Equation 20 for the case of a mobile robot, moving on a
y o ground plane towards a visible planar surface. Given a fixed,

approximately forward facing camera,, will be negligible,
and can therefore be set to zero. In addition, the camera

orientation parameters with respect to the heading doeut,

8 and~, can also be set to known values£ 3 =0,vy = 1).

Taking the partial derivatives of Equations 10 and 11 iRrom these substitutions, (20) is reduced to:
their respective directions, and again substitutingafee 2/, ,

!
y = 1y, we obtain the partial derivatives at the FOE, defined Tfoe = — |1+ ar + bi — 2;,2 . (21)
as: Droe Ix Iy (% + ?7 +1)
9u __ [1 —a (x_/ + a)} + wwy_l _ wy2_$/’ _Note Fhat the only potential unknowns in (_21) are the surface
Oz loe  Z(2',y') I Iy Jx orientation parameters:andb. Given some directional control
(16) maintaining an angle of approach with the surfageshould
v _ Ty { b (y_’ N ﬁ)] oy 2y 7 be known, and an upper and lower bound is likely to exist for
Oylioe  Z(z',y) Iy “fy Y the surface orientation parameters, and hence fgr.

(17) Constraints on rotation:The requirement for the FOE to

. h btain the flow field di rI]ie within the image plane provides a natural constrainthan t
Summing these, we obtain the flow field divergence at thge of Equation 21. Perhaps most important is the limitation

FOE (Droe): this imposes on the magnitude of rotation allowable. If too
AT, 2 Y/ large, the FOE will no longer exist within the image plane.
Droe = 70y [(I (ﬁ + a) +0 (f_y +5) - 2] Let us consider the maximum rotation to be that which

way  wy causes the FOE to shift to the edge of the image planek Let
+3 (z— - y—) , (18) be the 1-dimensional shift of the FOE from the image centre to
Fy Fx the image edge. For a ground-based robot with forward facing
and from this we obtain an equation for the relative depth cmera, and rotation only about the Y axis ), we consider
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only horizontal shifts of the FOE, and thus re-write (12) asand hence Dot
Tk k2 Z(t) = exp < ;f ) Zo. (25)

Choosing the reference divergen£g < 0, corresponding
From this, an upper and lower-bound on rotation is obtainegy gn expanding image as the robot approaches the wall, it
Tk Tk is clear thatZ(t) — 0 exponentially. The velocityl.(t) is
7 (f. + ) Swy < T o+ B2 (23)  pounded and also converges to zero exponentially. Thidtresu
()(fX+fx) ()(fX+jX) ) N .. .
was discussed in Srinivasa al. [19] for honey bee landings
It can be seen in (23) that &5 increases, oZ (k) decreases, and has been a key motivation for most of the TTC based
the bound on rotation widens. Therefor%, must be kept docking and obstacle avoidance algorithms [13], [3], [1].
sufficiently high to ensure the FOE lies within the image plan | practice, exact tracking of reference divergence is isapo

may not exist.

Constraints on angle of approach (surface orientatioAs F'=K (Dt — D(1)) - (26)

mentioned earlier, the surface alignment parameteedd The feedbackF will adjust the velocityT, to force D(t)

in (21), may not be known. It is important to note, howevety track the referencdr. For large gaink > 0 then the
that the existence of the FOE within the projected surfa@sdqe|ative tracking error will be small and the closed-loopteyn
enforce some constraints on the range of possible angles,gfectory should be close to (25). However, the actualedes
approach. At extreme approach angles, the FOE is unIiker|gbp system dynamics are complicated by the non-linear

exist at all as the distance from the surface becomes i”ﬁ”H@pendence ab(t) on the distance (t) (2). Substituting (26)
along the axis of motion. Therefore, ensuring the FOE always, (24), one obtains

exists within the projected surface target area should taiain
an approach angle that is within stability limits. This masoa Z =T, Z(0)=2y>0, (27a)
be used as a means of assessing the achievability of the task. .

g Y 7K (Dref - 2;) , 7,00  (27b)

Ill. CLOSED-LOOP ANALYSIS Here we demand thaZ, > 0 is positive in order that the

. L ; underlying physical assumptions in the image model arg vali
The goal of this section is to consider the closed IOQPhe authors have been unable to find an analytic solution to

behaviour.of a vehicle where the CO’.‘”O' input is generat .97) however, the following theorem proves that its sologi
by proportional feedback of the flow divergence. The analyshavé the des’ired qualitative behaviour. Note that the
is undertaken for a full dynamic vehicle model to provide. '

the most general results. Velocity controlled mobile mbogsmgularlty in (27b) complicates the analysis consideratil

o ) . . ; he limit point Z — 0.
can be dealt with in this framework by introducing a virtua ' )
dynamic state into the control law implementation, as is 1heorem 3.1iLet (Z(1),T.(t)) denote the solution of the

done for the experimental results that we detail in SectigioSed-loop dynamics (27). Assume thags < 0. Then there
IV. The control is implemented as proportional feedback &XISts @ imel’ > 0, possibly infinite, such thatZ (), T (t))
the measured divergence and notto avoid possible ill- €Xist and are bounded, and(t) > 0, for all ¢ & [0,T).
conditioning associated with inversion of a measured tigia MOreover, one has

T

that may be close to zero. Consider the system lim Z(t) =0, lim 7.(t) = 0.
. t—T t—T
Z="T,, Z(0) = Zy, (24a) Proof: The ODE (27) is smooth and non-singular on the
mT, = F, T,(0) = T, (24b) domainZ > 0 and hence there exists a tirfie> 0, possibly

infinite, such that the solutioZ(t), T'.(¢)) is well defined on
wherem > 0 is the vehicle masst is the force inputZ is ¢ c [0,7).
velocity of the robot orthogonal to the wall. For the purpsgenicle is initially moving away from the wall. The control

of the theoretical development, we assume a fronto-paraligyyt (26) is negative for alll,(t) > 0. Consequently, the
approach angle. We discuss the more general case in rem@@ﬁ‘écity will decrease untilT, = 0 while Z(t) > 0 will

at the end of the section. increase during this period and (27) will not pass through a
Let Drr be a constant reference set-point for the flowingularity. The negative driving referend®es will continue
divergence. Recalling (2), if the measured divergence to drive the velocity negative and there must be a subsequent
2T, (t) time 0 < ¢ty < T such thatT,(¢,) < 0, Z(¢t,) > 0. From
(t) = Z) Dref this point on we will ignore this initial transient and assam

, , without loss of generality tha¥, > 0 and7, < 0 in the
is exactly equal to the constant reference divergence at r@lnainder of the proof

times along the closed-loop trajectory, then substitutirtg

(24a) one obtains We continue by proving that iT’.(0) < 0 thenT,.(¢t) < 0

_ Dres for all ¢t € [0,T). The proof is by contradiction. Assume the

zZ=—2 converse; that is, there exists a first timesuch thafl}. (1) =
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0andZ(t1) > 0 (the caseZ(t1) = 0 while T'.(t;) < 0 is dealt is strictly monotonic increasing as function of time, and we
with later). Since the solution of (27) is at least att¢; ((27) can think ofs as a pseudo-time variable. Changing variables
is non-singular forZ(t;) > 0), then for alle > 0 there exists in (28) one obtains

d > 0 such that—e < T,.(¢t) < 0 for all t € [t; — 4,¢1). Since dT,  2KT,— Ke Dy

. . . ; _ 29
Z(t) is monotonic decreasing fdF,. < 0, (27b) yields 15 o (29)
T, < K Dyes + 2 Consider the storage functioh = m|T,.|?/2, then
" Zh) dc dT,
Choosinge < —Z(t1)Dyet/2 shows thatl], < 0 on [t; — a5 Trd—; =2KT, — Ke *Dres < —2K|T| + |u(s)]

0,t1) and hencel,(t1) < T:(ty — 6). This contradicts the wherewu(s) = Ke *Dyt is viewed as an exogenous signal.

as;umptlon. It f_oIIows tharT(t) < 0on o, T> and z(t) is From Theorem 1, Sontag and Wang [18] it follows that (29) is
strictly monotonic decreasing on the whole interval [0, T'). input-to-state-stable (ISS). Moreover, singe) is a bounded

A similar argument can be used to show that an asymptofjgy mntotically stable input signal to an ISS system, then
solution such thalim; .z Z(t) = Z(T') > 0 andlimy 1 Ty =y 7 (5) — 0 [17]. This proves thatim, 7 T, (t) = 0
0 is impossible. The proof is by contradiction. Assuming thaf,, completes the proof. -
such a solution exists, then for all > 0 there exists a1,

0 < t, < T, such that—e < T}(t) < 0 for all ¢t € [t;,T). The complexity of this proof is associated with the diffi-
Once again (27b) yields cult nature of analyzing singular differential equatioite
K 9¢ singularity in (27b) that occurs & = 0 makes it impossible
T, < — <Dref+ _> to apply standard stability arguments. The approach taken i
m Z(T) the proof of Theorem 3.1 cannot preclude the possibility tha

Choosinge < —Z(T)Dret/2 shows thatl.(T') < T,.(t;) and convergence occurs in finite time, an outcome that appears
contradicts the assumption thiatn, . 7, = 0. unlikely given the exponential nature of (25), a limiting

Next we prove thaff,(¢) cannot escape to infinity beforeSolution for the case when the gaii >> 0. The authors
Z(t) — 0. The proofis by contradiction. Assume the convers@élieve that for any gair’ > 0 the solution is defined on
that is, there exists a first timg such thalim, ., 7, = —co [0, +00), however, we do not have a proof for this result.

and Z(t1) > 0. Thus, for all B > 0 there exists > 0 such  Thegrem 3.1 is proved for the case where the robot
thatT,(t) < —B for all t € [t; — 6,1). Then (27b) yields  approaches the wall fronto-parallel. Létbe the angle of
. K 2B approach with respect to the surface normal. In practice,
T, > poo <Dref+ m) Theorem 3.1 is valid also for arbitrary constant an§le<
w/2. Define T, = cos(8)T, to be the component of the

ChoosingB > —Z(t; — §)Dret/2 ensures thafl, > 0 on  rohot velocity orthogonal to the wall. Equation (27b) can be
[t1 — d,t1) and hencel.(t1) > T,.(t1 — §). This contradicts rewritten

the assumption and it follows tha} (¢) is well defined for all ) K
Z(t) > 0. T, = " (Dret — D(1))

We have shown thdf,.(¢) can only become unbounded at 1 cos(f)K 2 cos(0) T,
the point whereZ — 0, and if its limit at this point is well = cos(0) m Dret —

defined, then it follows thdf; is bounded o010, T'). Moreover, ] ]

sinceT;(t) < 0 on the whole interval, T') then the solution Thus sincef is constant one has
of the ODE is defined for allZ > 0. Since Z is strictly 7o K' Do 27,
monotonically decreasing df, 7') and cannot have a positive Fom Tz

lirit, it fgllows thaF limg—r Z(t) = 0. ] with a new gaink” = cos(#) K. The dynamics of this system
The final requirement of the proof is to show thakq equivalent to those studied in Theorem 3.1.

lim;_,7 T,.(t) = 0. To prove this we compute the first integral

of (27). ForZ > 0 and 7, < 0 one has The authors believe that f@r smoothly time-varying, with

bounded derivative, and bounded away fraif2 the system
d ar,. dzZ  dI, . e . .
== will have the same qualitative behaviour shown in Theorem
t } Z dt Z . _ . 3.1. The bulk of the above proof will hold in a straightfonaar
thus (27b) may be rewritten as a differential equation in thganner, however, a full analysis is considered beyond the

variable Z scope of the present paper.
dT, K 2T, o o . ,
77 = o | Dret = —- T.(Zp) < 0. (28) The analysis in this section is undertaken in continuous-

time although the real-world control signals will always be
Furthermore, sincé (¢) is monotonic decreasing on the timeapplied in discrete-time. For a sufficiently fast time-séingp
interval [0, T) we know thatT,(Z) < 0 for all 0 < Z < Z,. then the discrete system should inherit the same stabdlitiie

We introduce a change of variables= —log(Z) on0 < Z < continuous-time system. Characterising how fast the sampl

Zy to get rid of the singularity in (28). Sincg(t) is strictly must be to guarantee convergence is beyond the scope of the
monotonic decreasing on the intery@T'), s := s(t) — +oo  present work.
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IV. EXPERIMENTAL RESULTS The initial distance in both sequences whm. The average

In this section, we present four sets of experiments demaffcity of the camera depicted in thgoming bush sequence
strating the performance of the proposed FOE-basestima- Is approximatelyl3cm per frame (6km/hr), and20.5cm per
tor to the task of docking. We provide results from simulatio frame (8._5km/hr) for theloommg bricks sequence
off-board image sequences, and from the technique’s applic .Fllow dlyergence was_esnmated from optical flow _vectors
tion to the closed-loop control of a mobile robot performing/ithin @ single51 x 51 pixel patch centred on the estimated
a docking manoeuvre. We first describe each experiment gagation of the FOE. Divergence was also measured at the
discuss implementation issues relating to the applicatibn Image centre using the same patch size.
the FOE-based strategy. We then present the results of these

experiments. C. On-board docking experiment
To test the robustness of the FOE-basedneasure, the
A. Simulation experiment technique was integrated into a simple closed-loop docking

ehaviour for velocity control of a mobile robot. In the

To test the theory,_ a S|mulat|9n modelling the motion 0leperiment, a robot with a single, fixed, forward facing ceame
a ground-based mobile robot, with camera, towards a plana :
proached a heavily textured, roughly fronto-parallell,wa

fronto-parallel surface, was conducted. A 2D motion mod%f :
was used. allowina onlv forward velocity and a single rati tempting to decelerate and safely stop as close to the wall
’ g only y 9 as possible without collision. Figure 4 shows the experialen

in the ground plane. As such, only the component of workspace.

flow across a single row of pixels was required to obtain The robot used is velocity controlled, that is, the control

estimates. From th|s,_a set of sample f_Iow fields were obtaln%I nal is passed to a servo motor that controls the rolliagep
For each consecutive sample, the distance to the surface w
decremented by a constant amount. The robot was assume

to be initially aligned fronto-parallel with the surfacefbee a
constant translational velocity, and randomly selectsthinta-

ghe drive wheels. Initial experimental tests showed that
ct proportional feedback of the drive wheels lead tdhyig
aggressive control action due to the noise in the divergence
. . . . measure. By incorporating a virtual model of robot dynamics
neous rotational velocity were applied to the scene withees in the control design, the closed-loop behaviour of the dehi

tor;heectrsg(:;nst(l)ot%?(r)gb(;I;,Zeir;e;uét'ng I:ne()tt'ﬁgr\e/leftoresnvevgz: was smooth and well conditioned. The discrete time reabisat
pro) gep ! Y9 9 of the proposed control law is

expected flow resulting from the robot's motion with respect
to the scene. From this, the FOE (which shifts as a result of v = Avy_q + %(Dref —Dy), (30)
the rotation) was located, andcomputed using (21). m

where v(t) is the velocity control input at time, A is
the discretisation timejn is a virtual vehicle massk, is

a proportional gain,D; is the most recent flow divergence

1) Indoor image sequenceA looming wall sequenceas  estimate, ander is the reference set-point for flow divergence
constr_ucted to simulate the_ image expansion I|kely to k(e&;fp — 0.0325 and Drer = 0.022 for these trials). Along with
experienced when approaching a textured surface. Figaje 3¢ giscrete-time kinematics

shows sample frames from the sequence. In the construction
of the image sequence, the camera was moved 3cm per frame 2t = Avg_y. (31)
towards a heavily textured, approximately fronto-paiaiigll.

Optical flow Ee]!ds V\tlﬁ.re e?.t'm?md I)(:r_eaé:h frame of thﬁ“nage patches, each placed at 45 degrees on either side of
sequence, and from his, esimates obtained. . the vertical axis passing through the FOE, and each centred
: Flow divergence was esnmgted using four patches n tBﬁ a distance of 25 pixels from the FOE. The patches were
image, each centred on a distance of 1.2 pixels from Naced only above the FOE to avoid measuring divergence on
FOE, and each at 45 degrees from the horizontal and verti imaged ground plane. Reasons for the variation of patch

axes that _mtersect at the. FOE. Figure 3@) shows this _pa§ge and configuration used in the off-board experiment were
configuration. For comparisonwas also estimated by pIaCIngbased on empirical observations of performance on-board. D

thezfocl;r %atchgs about the image centrer.] hnigue: to the noisier conditions on-board, larger patch sizes weeel
) Outdoor image sequencedp test the technique’s 1o-y, ohiain 3 more robust estimate of flow divergence during ego

bustness under more natural co_nd_|t|ons, two qutdoor IM&Y€ Fotion. In general, a range of patch sizes and configurations
guences were constructed, depicting the motion of the @MEl e found to obtain strong results

towards different, more natural surfaces. Figures 3(b) @hd
show sample frames from both sequences:lttoening bush ) o
sequenceand thelooming bricks sequenceoth sequences D Optical flow and FOE estimation

depict the motion of a camera (attached to the front of a léicyc Throughout the experiments, Lucas and Kanade's [8]
and walked) at an approximately constant velocity towardsadient-based method was applied. This technique was cho-
each respective surface. The camera’s motion was subjecsém based on strong performances in a recent comparison of
rotations induced by the uneven terrain (grass), and smafitical flow techniques for robot navigation tasks [9]. Hoe t
adjustments of the bicycle’s heading (including camerd.rolindoor looming wall sequence, a standard implementation of

B. Off-board time-to-contact experiments

Flow divergence was estimated using two x4 pixel
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(a) Looming wall sequence (b) Looming bush sequence
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Fig. 3. Sample frames and flow fields from each image sequese in off-board experiments: (Bjoming wall (b) looming bushand (c)looming bricks
Line intersections show estimated FOE for frame, and baxéigate the divergence patch configurations used for FQEeba estimation.

Lucas and Kanade’s algorithm was applied, and flow vectors - "
were obtained for all image points. Due to significantly &rg =
flow experienced in both outdoor sequences, a pyramidal
implementation of Lucas and Kanade’s technique was applied
To offset the increased computation load of this approacot, fl
vectors were only estimated for every fifth pixel.

In all experiments, the FOE was calculated using a simple
algorithm that requires the imaged surface to occupy thieeent
viewing field (or at least, the section of the viewing fieldFig. 4. Setup for on-board docking tests.
for which the FOE is expected to lie within). To obtain,
each row in the image was used to count the number of

positive and negative horizontal flow components, whichewer istance from the surface and its known constant forward

then differenced, and averaged over all rows to locate tvglocity towards the surface. It can be seen that the FOE-

overall zero point forz. The algorithm was applied similarly basedr measure closely reflects ground truth. Small discrep-

SR ) .
:/c\)/hci)lt:ar::cg)/ré ussc;n%i;?iia?:egdnfalot);/i?r:ﬂfsl fg?Topc(;rt]iintStt?; fII:ogv ncies between the FOE-based measure and ground truth are
P 9 9 e result of unavoidable quantisation errors in the image,

do exist, it is important to note that in many cases, puroelsallowing the precise location of the FOE
rcl t re) translational motion i m : . . . -

fil]c FSS])e I?] E(L)ln?r) asta tz: tg cﬁni qS e Oappsli e?jsiireecgr[gsglde In contrast,r estimates taken along the optical axis exhibit

relatively high tolerance to rotation, such that the FOE Wirlgnlflcant fluctuation compared with that obtained at th&FO

always be located so long as it lies within the imaged are}:\é'? alsto evf|dent that Ittheflrtl:]age c:t(?ntlre a!w%ys p rtc_)wd;es mn_tov
and other local minima in the flow field do not exist. Giverf> e Ofr, a resuit ot in€ oplical axis geviating from s

only the sign of flow vectors are used to estimate the FO onto-parallel alignment with the surface. While erronsr

the computation associated with its estimation is nedﬁgib?"e reduced as the distance to the surface approachestzero, i

in comparison with the flow estimation itself. It should he> important to note that this is due to the robot's constant

noted that other suitable techniques do exist, such asHa, tvelocity towards the surface. As the surface draws near, the

do not require the segmentation of the object surface ar rg.nslational flow increases, thereby diminishing the@ffef
e robot’s rotation in the flow field.

The algorithm employed here was chosen primarily for i

efficiency in achieving reasonably accurate FOE estimates. 2) Indoor image sequence result§igure 6(a) showsr
estimates for each frame of the indoor looming-wall seqaenc

for the FOE-based, and image-centre-based strategiesntro
E. Results truth 7 is also shown, obtained from the camera’s known
1) Simulation resultsFigure 5 gives the simulation resultsvelocity, and a best linear fit over measures obtained from
showing a direct comparison of obtained using the FOE- ground truth flow fields constructed from camera calibration
based estimator defined by (21), and estimates obtained fronfrrom these results, a significant improvement in the consis-
the measured divergence at the image centre (using (2gncy ofr estimates is achieved when divergence is calculated
Ground truthr is also provided, computed from the robot'svith respect to the FOE. Of particular note, the FOE-based
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Simulation Results for Time-to—Contact with Random Rotations (@) Time-to-contact - Indoor Wall Sequence
11 T T T T T T T T T 100 — T
Estimated time—to-contact at image centre
Estimated time—to—-contact at FOE (using Eq 21)
- Ground truth time-to—contact (i.e Z/Tr)

Time-to-contact (frames)

TTC with FOE tracking —
TTC atimage centre —
Ground trth TTC -

Time-to—contact (estimated ratio of Z/Tr)

Frames

(b) Time-to-contact - Looming Bush Sequence
50 T T

90 85 80 75 70 65 60 55 50 45 40 | I
Distance to surface (cm)

TN T T T T ‘u T

Fig. 5. Simulation results compare our FOE-basezstimator (Equation 21),
with 7 estimates obtained at the image centre using (2) for thelaieti2D
motion of a ground-based mobile robot translating at constpeed towards a w0l "
fronto-parallel, planer surface. For each sample, thetiobwrward speed, and

randomly chosen instantaneous rotational velocity.l < w, < 0.1) were ‘ Y.\ ;’ X
used to compute the corresponding horizontal flow. From thigstimates
were obtained. Ground truth shows the exactor each sample, given the TG wilh FOE tracking
robot’s forward velocity and distance from the surface. Blbrsamples, the TTC at image centre

. Ground truth TTC
) 0 . 1 h
camera’s focal Iength is set &88pX. 50 25 S0 35 40 pe 50 5 0 5

Frames

Time-to-contact (frames)
-
*

cXm

(c) Time-to-contact - Looming Bricks Sequence

strategy achieves a close match with ground truth from the ol | | 1

fifteenth frame onward. In contrast, the image centre-based | | | ‘

method consistently over-estimatesand exhibits larger fluc- wl A\ ra " 5 ]

tuations across the sequence. - A
3) Outdoor image sequence resultBigures 6(b) and (c)

show 7 estimates for both outdoor image sequences, again

comparing the FOE-based, and image-centre-based sesiteqi
As with the indoorlooming wall sequengémprovements

in 7 estimation are achieved by the FOE-based strategy as the

30 - s

20 -

Time-to-contact (frames)

10

TTC with FOE tracking

-
surface approaches. This is evident from frame 40 onward for . s ‘ ‘ ‘
thelooming bushsequence, and from frame 20 in to®ming 5 10 15 o B 30 3 40
A rames
bricks sequence.

Across all sequences, larger fluctuations are evident Iy eafig. 6. r estimates for: (a) indoor looming wall sequence, (b) loayiash
frames for both strategies. This is unsurprising given the fl seduence, and (c), looming bricks sequence.
due to camera translation is unlikely to be large enough to
be reliably measured at this distance from the wall. It i® als
likely that the FOE is poorly defined at this distance. Inarlcause this region to inhabit image-centre-based divemgenc
frames of both outdoor sequences, the FOE'’s location waatches. This is the likely cause of larger fluctuations iager
observed to shift significantly, and in some cases (pagibul centre-based estimates in the later frames of each sequence
for the looming bushsequence), fall outside the imaged aregparticularly for thelooming brickssequence, where forward
of the surface. As divergence increases, however, the FQElocity was significantly faster). In contrastestimates taken
based strategy quickly stabilises, and begins to outpartbe  with respect to the FOE remain stable under these condjtions
image-centre-based estimator. and in accordance with simulation results, appear to imgrov
In addition to rotational effects, the FOE-based strategg win consistency ag decreases. This improvement appears also
observed to provide increased robustness to flow exceedingesult from the FOE itself being more clearly defined, and
measurable levels in each sequence. This effect is eviddmrefore more accurately located wh%n is large.
in flow fields shown in the bottom row of Figure 3, where 4) On-board docking resultsSix trials of the FOE-based
peripheral flow vectors become noisy and unreliable. Whiliocking strategy were conducted, and data recorded. Figgure
generally only in the periphery, this region of flow becomeshows the velocity-distance profiles and the plotted approa
larger as% increasesife. Z — 0). As a result, any shifting of the robot towards the surface for each trial. Also shown
of the FOE when in close proximity to the surface mais the theoretically expected velocity-distance profiledzhon
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(a) On-board Docking Trials (b) Path of Approach
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Fig. 7. On-board docking results showing (a) velocity-aliste profiles, and (b), the plotted paths of the robot for edah

the integrating of (27) in discrete time for the initial veity, and faster computers than in previous work, thus allowing
distance and tuning parameter values used in the trialshé®f faster estimation of the optical flow.

six trials conducted, the FOE-based strategy docked ireclos

proximity to the surface five times without collision. Oniy® V. CONCLUSION

collision, Trial 2, was observed. Results shown in Figure 7 This paper has presented a mobile robot docking strategy
suggest this was most likely due to noise effected divergengat utilises a time-to-contact) estimation that is robust to
estimates obtained around 30cm from the surface. noisy, instantaneous rotations induced by robot ego-motio
Among the successful trials, close proximity stoppingve have shown that through tracking the focus of expansion
distances were achieved with surprisingly high consistengn the optical flow field, small rotations of the camera and
Recorded velocity-distance profiles, and stopping digi&ndmisalignments of the optical and translational axes can be
also appear consistent with theoretical expectation. INgta accounted for by calculating flow divergence with respect to
results show an early lack of response compared with thee FOE. In this way, the effects of the rotation are effeiv
predicted deceleration. This is a likely result of divergen cancelled out, and improved accuracy and stability is aehie
being too small to measure at such distances. As the robot gased on this, we have proposed a divergence-based control
proaches, the measured divergence increases, and théyelogw for docking a robot with near fronto-parallel surfaceghw
distance profiles begin to resemble theoretical expectatioclosed-loop analysis proving its stability under ideal dien
The average stopping distance achieved over the succesgBils, verified also through experimental trials. Theselltes
trials was 6cm, with the furthest distance recorded beisg jushow a significant improvement inestimates when compared
7cm. This consistency in stopping distance is encouragijigth common strategies that take no account of the shifting
when considering the simple control law used, and significapOE during robot ego-motion. The accuracy and stability
differences in the plotted approach path of the robot durirghieved using the FOE-basedestimator was demonstrated

each trial. Figure 7(b) shows considerable variation ihlibe to be sufficient for fine motion control of a mobile robot when
robot’s initial starting position, and the extent (and dtien) in close proximity with the docking surface.

of the lateral drift experienced during each approach.
An attempt was made to compare the FOE-based on- ACKNOWLEDGEMENT
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