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ABSTRACT

We present a novel visual representation for prosthetic vi-

sion that augments intensity in order to emphasise regions

of structural change. This is achieved via the adaptation of

a recently proposed method for measuring the extent of lo-

cal variation of surface orientation in corresponding dispar-

ity images. The proposed visual representation demonstrates

how intensity and depth data may be combined to provide a

scene representation that shows visual appearance as bright-

ness in the familiar way (i.e., intensity-based), but ensures

structurally important features such as steps, doorways and

drop-offs, as well as general items of interest remain per-

ceivable, regardless of contrast. Qualitative comparisons of

the proposed visual representation in simulated prosthetic vi-

sion (98 phosphenes) suggest potential advantages over non-

augmented intensity for distinguishing between free and ob-

structed space in the scene, and for perceiving features of in-

terest on smooth surfaces.

Index Terms— prosthetic vision, image processing, low

vision, mobility and orientation

1. INTRODUCTION

Interest in prosthetic vision has grown significantly in the

last ten years [1, 2, 3, 4, 5]. In particular, retinal prosthe-

ses have developed significantly, with some now undergoing

human trials (e.g., [3, 4]). These devices aim to restore the

sense of vision in those who have lost sight through retinal

degenerative diseases such as Retinitis Pigmentosa and Age-

related Macular Degeneration [6]. Retinal prostheses arti-

ficially stimulate the remaining cells, and in particular reti-
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nal ganglion cells that interface with the optic nerve. This is

achieved via electrical pulses delivered by an implanted array

of electrodes near the retina. The elicited response experi-

enced by implantees is an image made up of phosphenes [7].

Phosphenes are typically described by patients as bright spots

of light, each loosely corresponding to one stimulating elec-

trode. Studies have shown that the brightness and/or size of

phosphenes can often increase with changes in stimulation pa-

rameters [8, 9]. These studies show up to around 10 levels of

intensity can be differentiated by implantees. This allows in-

duced images to be rendered by modulating stimulus param-

eters delivered by each electrode [7, 4, 3].

The dominant approach for capturing scene data is via an

externally worn camera. While other approaches exist (e.g.,

[4]), a particular advantage of capturing image data externally

is that vision processing may then be performed to extract in-

formation most relevant to the needs of perception, and the

task. This is important because current and near-term reti-

nal prostheses are severely limited in the visual information

they can convey; in particular, resolution and dynamic range.

This motivates consideration of how vision processing may

be used to construct visual representations that better facili-

tate functional outcomes for implantees.

Enabling safe and efficient mobility is a primary aim of

retinal prostheses. Mobility studies with prosthetic vision to

date have primarily focussed on basic way-finding tasks us-

ing simulated prosthetic vision (SPV), typically in high con-

trast, black-and-white environments [10, 11, 12, 13, 14, 15].

Dagnelie et al. [11] examine the effects of reduced resolu-

tion, low dynamic range and phosphene image degradation

on mobility in a sparsely obstructed and controlled indoor en-

vironment. Parikh et al. [14] show the effective use of pe-

ripheral cueing from a visual saliency algorithm [16] to as-

sist mobility using simulated phosphene vision. Pradeep et

al. [17] describe the use of stereo vision to detect obstacles

and estimate safe and efficient paths in the scene. Recent

SPV studies have also examined the use of depth as an alter-

native mode of representation [18]. In [19] depth is extended

to an augmented-depth representation whereby obstacles on

the ground are made brighter relative to the floor.

Given the constraints of current and near-term visual pros-

theses, there is sound motivation to explore alternative modes



of scene representation, particularly in low-contrast condi-

tions. However, such visual representations are designed

specifically for the needs of safe mobility, and do not readily

generalise to other tasks. This motivates consideration of how

an intensity-based visual representation may be enhanced in

order to emphasise potentially hazardous low-contrast surface

boundaries and/or small trip hazards, while still retaining as

many of the natural features of the scene as possible.

In this paper we propose a new visual representation for

prosthetic vision that augments the intensity image in order

to emphasise scene structure in the resulting visual represen-

tation. Assuming an RGB-D sensor, we adapt a recently pro-

posed method for estimating the extent of surface orientation

change (referred to as a perturbance map). By combining

the resulting map with the intensity image, features of struc-

tural interest are emphasised relative to less interesting dom-

inant surfaces such as the ground, walls, and table-tops. Our

approach is real-time, removes assumptions of high-contrast

environments, and is achieved without parameterised surface

modelling. We qualitatively compare our approach with non-

augmented intensity over a range of simulated prosthetic vi-

sion images portraying typical activities of daily living, as

well as potentially hazardous mobility scenarios.

The paper is structured as follows. Section 2 introduces

our proposed visual representation for prosthetic vision, and

provides details of how the perturbance map is computed.

Section 3 presents qualitative data showing the output of our

proposed augmentation, as well as a comparison against non-

augmented intensity using simulated prosthetic vision. Sec-

tion 4 provides a brief discussion of our results, and Section 5,

our conclusions.

2. AUGMENTING INTENSITY TO ENHANCE

SCENE STRUCTURE

The proposed visual representation seeks to balance the needs

of emphasising scene structure unambiguously, while simul-

taneously conveying as much of the naturally occurring inten-

sity function as possible. We thus propose scaling the original

intensity image, I(p) ∈ R, by the estimated extent of local

structural change (relative to the surroundings) at each image

location such that:

I∗(p) = λP(p)I(p), (1)

where λ is a scale factor determining the final brightness of

the scene, and P ∈ [0, 1] is the estimated structural pertur-

bance. The effect is to reduce the intensity of regions of

low structural change (e.g., large smooth surfaces such as the

ground plane, walls and table-tops) in order to increase the

contrast of more structurally interesting regions in the scene.

2.1. Implementation

The proposed augmentation requires a normalised map of

structural change across the image. For this we modify our

recently proposed algorithm for estimating regions of surface

orientation change in a disparity image [20]. The original al-

gorithm operates on extracted iso-disparity contours. Here

we propose an equivalent implementation of the concept us-

ing disparity gradients. We detail our implementation of the

method below.

2.1.1. Surface orientation perturbance

The algorithm computes the perturbance map P for an input

dense disparity frame D ∈ R. The three main steps of the

algorithm are listed in 2.1.2, 2.1.3, and 2.1.4, and a method of

handling non-dense input is presented in 2.1.5.

2.1.2. Multi-Scale Histogramming of Disparity Gradient

Orientation

Firstly, a sliding window approach is utilised to quantify the

characteristics of the local neighbourhood of each pixel. For

each window, the disparity image gradient orientations of

contained pixels are counted into a number of discrete his-

togram bins. The orientation histogram of the window of

scale s at position p ∈ D is denoted as Hs,p : [1..B] → R>0,

where B (set to 9 in the implementation) is the total number

of orientation bins.

2.1.3. Fixed-Scale Perturbance Computation

The fixed-scale cost between two windows, at positions p and

p
′ is defined by the following function:

Cs(p,p
′) = log

(

1 +

∑B
b=1

∣

∣Hs,p(b)−Hs,p′(b)
∣

∣

∑B
b=1 max

(

Hs,p(b), Hs,p′(b)
)

)

,

(2)

where max returns the histogram with the largest bin, and the

subscript s again refers to the scale.

The fixed-scale perturbance of a pixel p is defined as a

weighted average of the costs between its window and the

windows of the pixels in a neighbourhood of radius r (set to

2 in the implementation). It is given by the formula

Ps(p, r) =

∑

p′∈N(p,r)
1

|p−p′| × Cs(p,p
′)

∑

p′∈N(p,r)
1

|p−p′|

(3)

where N(p, r) ⊂ R
2 represents the neighbourhood of p of

radius r.

2.1.4. Multi-Scale Perturbance Combination

The computed fixed-scale perturbance images are combined

into a single perturbance map by taking the average across



each window position, weighted by window occupancy. The

window occupancy coefficient for a window at position p of

scale s is defined as

W (p, s) = log

(

1 +
O(p, s)

s2

)

(4)

where O(p, s) denotes the number of pixels with valid gradi-

ent orientations in the window specified by p and s.

Thus the combined perturbance score for each pixel is

given by the formula

P(p, r, S) =

∑

s∈S W (p, s) · Ps(p, r)
∑

s∈S W (p, s)
(5)

where S ⊂ R (set to {40, 50, 60} in the implementation) is

the set of window scales. In order to ‘sharpen’ areas of higher

perturbance, each pixel in the final image is squared and then

smoothed with a log function.

2.1.5. Modifications for Non-Dense Disparity

Real world disparity data often contains regions of missing

values, which may lead to erroneous high perturbance scores

around these regions. Step 2.1.3 can be modified to address

this issue, by directly weighting each window’s contribution

with a disparity occupancy coefficient for the window, defined

as:

Q(p, s) =

(

∣

∣{p′ ∈ U(p, s) : D(p′) not missing}
∣

∣

s · s

)t

(6)

where U(p, s) ⊂ D is the window at p of scale s, and the

constant t (set to 1 in the implementation) controls the level of

suppression of missing disparity values. The modified fixed-

scale perturbance algorithm for non-dense inputs is thus given

by:

Ps(p, r) = Q(p, s)·

∑

p′∈N(p,r)
1

|p−p′| ·Q(p′, s) · Cs(p,p
′)

∑

p′∈N(p,r)
1

|p−p′| ·Q(p′, s)

(7)

2.2. Special case

Considering Equation 1, a special case exists when the in-

put intensity is 0. In this case, the perturbance scaling has

no impact, leaving open the possibility of a black object with

high P(p) on a black background remaining unaltered, de-

spite it being of clear structural interest. In general, the pro-

posed augmentation will have less effect on objects of lower

intensity; a consequence of the objective to convey as much

of the naturally occurring intensity while also emphasising

structural features in the scene. However, to avoid the special

case of near black objects not being emphasised, we introduce

the pre-processing function, f(x), into Equation 1, such that:

I∗(p) = λP(p)f(I(p)), (8)

where

f(x) = |x− Imin|+ Imin,

and Imin defines a minimum allowable intensity (set close to

0). The effect of f(x) is to reflect intensities below Imin to be

above the threshold by the same difference. Other alternatives

include adding an offset to the input intensity, or setting f(x)
to max(x, Imin).

3. RESULTS

To assess the proposed visual representation, a series of im-

ages were captured with an ASUS Xtion Pro RGB-D sensor.

Figure 1 shows sample frames taken from a sequence around

a typical office environment. The figure shows the original

captured greyscale image, the output of the orientation pertur-

bance map, and the resulting augmentation using Equation 8

(λ = 2, Imin = 0.05). It can be seen that the perturbance map

successfully highlights regions of structural change such as

wall-floor boundaries and clutter along the walk-way. Large

smooth surfaces are clearly scaled down in intensity, thereby

ensuring low-contrast connected surfaces such as between the

grey cabinet and floor in Figures 1(a) and (b) are clearly high-

lighted in the resulting augmentation. The white boxes on the

bench top in Figure 1(e) are clearly distinguishable from the

white wall behind them.

Figure 2 provides examples of the proposed augmentation

in the context of typical everyday scenarios. It can be seen

that the perturbance detector successfully highlights poten-

tial hazards such as steps (Fig 2(b)), and drop-offs (Fig 2(c)).

Close inspection of the original image in Fig 2(c) shows that

the most noticeable change in intensity only occurs three steps

down, highlighting the unreliability of contrast change alone

to mark such events. In the resulting augmentation, however,

the initial drop-off step is made evident relative to the ground

surface leading up to it. The table-top example in Figure 2(e)

also demonstrates the effectiveness of the augmentation for

highlighting objects of interest on a planar surface.

A preliminary assessment of the comparative advantages

of the proposed augmentation for prosthetic vision was per-

formed. We qualitatively compared our approach with non-

augmented intensity by viewing the output of a prosthetic vi-

sion simulator. A given phosphene is computed from a sam-

pled pixel value i in [0, 255] in the image. It is then quantised

to the required output dynamic range d (in this case 3 bits)

over the range [0, 255] giving the value ([·] denotes the round-

ing function) I =
[[

i 2
d−1
255

]

255
2d−1

]

. A discrete unnormalised

Gaussian kernel G of standard deviation σ = Iβ and size

w × w, w = ⌊6σ⌋. The phosphene is then given by the func-

tion

p[x, y] =
255

C

eα

α2

(

Iγ

255

)β

G[x, y],

where x, y ∈
[

− w−1
2 , w−1

2

]

, Iγ = 255
(

I
255

)γ
α = (Iγ)

β ,

and C is a normalising constant. The values of β and γ were
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Fig. 1. Example frames from the office data set showing from

left to right: the original image, the estimated perturbance

map and the resulting augmented intensity image.

obtained experimentally and fixed for the given output reso-

lution.

Figure 3 shows the resulting phosphene visualisation of

the original image using non-augmented intensity (middle

column), and our proposed augmentation (right column). The

phosphene visualisations are displayed using 98 phosphenes

arranged in a hexagonal grid. The dynamic range of each

phosphene is 8 levels. These settings were chosen to approxi-

mate the visual conditions of current retinal prostheses under

development [8, 9].

The difference between the two representations is most

apparent in conditions of low contrast. The non-augmented

phosphene visualisation of the office corridor scene depicted

in Fig 3(a) demonstrates a clear issue using intensity alone,

with little contrast between the floor and the grey cabinet on

the left. The augmented intensity, however, provides a clear

distinction between the floor, and surfaces on either side. The

cafe scene in Fig 3(b) also demonstrates how augmentation

provides a clearer distinction between the free space in the

scene, and the obstructed space. Figures 3(c) and (d) show

examples of the augmented intensity providing clear cues to

hazardous scenarios such as the edge of the open door in (c),

and the drop-off in (d). While the non-augmented intensity

✝✞✟

✝✠✟

✝✡✟

✝☛✟

✝☞✟

Fig. 2. Example frames depicting scenarios of daily living

showing from left to right: the original image, the estimated

perturbance map and the resulting augmented intensity image.

provides some evidence of the hazards, the relative impor-

tance of the door edge in (c), and the exact point of drop-off in

(d) is not conveyed in the visualisation using intensity alone.

Figure 3(e) demonstrates how the visual representation may

be used to highlight objects of interest on a tabletop.

4. DISCUSSION

The proposed visual representation aims to enhance struc-

turally significant features in the scene to improve functional

outcomes for visual prosthesis recipients. These preliminary

results demonstrate how these enhancements may support ba-

sic way-finding and obstacle avoidance, as well as object lo-

cation tasks, in a range of common indoor scenarios where

high contrast does not always mark surface boundaries. The

approach is different to previously proposed augmentations

in that it combines two orthogonal descriptions of the scene

(i.e., image intensity and the perturbance map) without ex-

plicit cueing such as [14], or the global replacement of in-

tensity with depth such as [19]. The proposed augmentation

may also be adaptively applied by weighting the perturbance

contribution by the level of local constrast in the scene. For

example, the perturbance weighting may be reduced when it
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Fig. 3. Example frames with corresponding visualisations

in simulated prosthetic vision, showing from left to right:

(a) the original image, (b) non-augmented intensity and (c)

augmented intensity on a 98 hexagonal phosphene grid. All

phosphene images are rendered with a dynamic range of 8
brightness levels.

is clear that intensity edges already mark the structure. Ulti-

mately this balance is dependent on the display constraints of

the stimulating implant, and requires further empirical inves-

tigation.

We acknowledge that human trials are required to accu-

rately evaluate the effectiveness of the proposed visual rep-

resentation. However, previous SPV mobility studies us-

ing augmentations to emphasise obstacles (e.g., [21, 22])

do provide some guidance. These studies show that sub-

jects were able to make use of augmented visual representa-

tions to achieve improved collision rates compared with non-

augmented intensity. Measurable improvements over time

were also observed. Given the proposed scheme provides

similar emphasis of obstacles in the scene (particularly to that

of [21]), we expect the proposed augmented-intensity to pro-

vide comparable results, with the potential to extend to other

tasks of daily living.

The prosthetic vision simulator used in this paper can only

approximate what patients perceive with a retinal implant, and

does not attempt to capture specific features and characteris-

tics such as shape, size and duration of induced phosphenes

(e.g., [23, 9, 8]). Rather, the SPV system provides an abstrac-

tion from the significant variability of these reported percep-

tions. While human trials with real implantees must be con-

ducted to confirm such results, the use of idealised phosphene

models provides a generalisable and repeatable means of eval-

uating the fitness for purpose of vision algorithms and visual

representations for prosthetic vision.

5. CONCLUSION

We have proposed a novel visual representation for prosthetic

vision that emphasises scene structure in an intensity-based

visual representation. By combining the output of a depth-

based surface orientation perturbance map with the corre-

sponding intensity image, we have demonstrated how the out-

put intensity image can be modified to ensure structural fea-

tures such as wall-floor boundaries, steps, drop-offs and table

top items are distinguishable from surrounding surfaces. Our

results suggest particular advantages may be gained using the

proposed visual representation over non-augmented intensity

with current and near-term visual prostheses. Further work is

required to assess the effectiveness of the proposed augmen-

tation through human trialling with real and simulated pros-

thetic vision.
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