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Abstract— We present a robust strategy for docking a mobile
robot in close proximity with an upright surface using optical
flow field divergence. Unlike previous approaches, we achieve
this without the need for explicit segmentation of the surface in
the image, and using complete optical estimation (i.e. no affine
models) in the control loop. A simple proportional control law
is used to regulate the vehicle’s velocity, using only the raw,
unfiltered flow divergence as input. Central to the robustness of
our approach is the derivation of a time-to-contact estimator that
accounts for small rotations of the robot during ego-motion. We
present both analytical and experimental results showing that
through tracking of the focus of expansion to a looming surface,
we may compensate for such rotations, thereby significantly
improving the robustness of the time-to-contact estimate. This
is demonstrated using an off-board natural image sequence, and
in closed-loop control of a mobile robot.

I. INTRODUCTION

For a mobile robot to interact with an object in its environ-
ment, it must be capable of docking in close proximity with
the object’s surface. Tasks such as plugging into a re-charging
station, pallet lifting or transporting goods on a factory floor
are common tasks that require some form of docking manoeu-
vre to be performed. Of particular importance is the control
of the robot’s deceleration to an eventual halt, close enough to
the object for the interaction to take place. To achieve this, the
robot must acquire a robust estimation of time-to-contact, and
from this, control the velocity accordingly. The accuracy and
robustness of the time-to-contact estimate is therefore crucial
to the stability, and safety of the robot in performing this task.

For a single camera approaching an upright surface, a com-
mon method of estimating time-to-contact is to measure the
image expansion induced by the apparent motion of the surface
towards the camera. This can be obtained from the optical
flow field divergence. This looming effect is characterised by
flow vectors diverging from a single point in the image known
as the focus of expansion (FOE). The use of visual motion
to gauge time-to-contact is well supported by observations in
biological vision. Srinivasan et al. [12] observe how honeybees
use visual motion to decelerate and perform smooth graze
landings. Lee [5] theorised that a human driver may visually
control vehicle braking based on time-to-contact estimation
obtained from image expansion.

While optical flow, and flow divergence, are commonly used
to obtain time-to-contact estimates for obstacle avoidance [1],

[8], few have applied optical flow to tasks requiring finer
motion control such as docking. Some notable exceptions
include Santos-Victor and Sandini [11], who apply an affine
model of optical flow to obtain an approximation from normal
flow vectors. In this work, time-to-contact is measured from
the inverse of an affine flow parameter and used to control
forward velocity while approaching a planar docking surface.
Questa et al. [9] also use an affine approximation of flow, from
which they measure divergence and calculate time-to-contact
with a planar surface.

An important drawback of the application of affine flow
models is that they require the explicit segmentation of the
planar docking surface before flow is estimated. In contrast,
methods for estimating general optical flow fields from local
image regions, such as [6], require no a priori knowledge of
scene structure, and therefore, no segmentation. In general, for
systems such as road vehicles, optical flow is often used for
other functions, such as a general sensor for salience to detect
moving hazards over the whole scene, as well as for particular
functions such as obstacle detection. Planar approximations are
not adequate for this type of general use, and having multiple
methods for calculating flow is implausible on restricted
embedded hardware. In this paper we therefore develop time-
to-contact estimation from general optical flow.

In much of the previous work with divergence-based time-
to-contact estimation, divergence is measured at the same
image location each frame. Ancona and Poggio [1], for
example, use linear motion detectors to estimate time-to-
contact at locations symmetrically placed about the image
centre. Such strategies ignore the effect of FOE shifts on
the divergence measure across the image. Robot egomotion
is rarely precise, and even where only translation is intended,
rotations will be present due to steering control adjustments,
differing motor outputs, bumps, and noisy flow estimates. Such
influences introduce instantaneous, frame-to-frame rotations of
the robot, causing the optical axis to move with respect to
the predominant direction of motion. As a result, the FOE
is unlikely to be fixed with respect to the image centre.
Therefore, to ensure consistency in time-to-contact estimates
over time, we argue that divergence should be measured with
respect to the FOE, and not the image centre.

Robustly estimating time-to-contact when the optical and
translation axes are not physically aligned has been exam-



ined previously. Subbarao [13] considers time-to-contact with
surfaces of arbitrary orientation, for a camera of arbitrary
alignment with respect to the direction of motion. Subbarao
shows that for non fronto-parallel surfaces, time-to-contact
cannot be precisely computed, however, from the image defor-
mation parameters, an upper and lower bound on the time-to-
contact can be obtained. Subbarao, however, does not consider
the effects of instantaneous rotations during egomotion, and
therefore assumes the point of interest lies along the camera’s
optical axis. While a fixation-based strategy such as that used
by Questa et al. [9] can keep the target point centred, a mobile
robot is unable to achieve this without additional hardware
support, which is not always available.

An alternative approach is to account for instantaneous
rotations of the optical axis by tracking the location of the
FOE for each frame. Van Leeuwen and Groen [14], [15]
consider the use of FOE tracking to correct for the physical
misalignment of the optical and translational axes as a result
of the camera-robot configuration. However, while accounting
for the constant, physical miss-alignment of these axes, they do
not extend the use of FOE tracking explicitly to the removal of
small frame-to-frame rotational effects during ego-motion, nor
do they apply the time-to-contact measure to directly control
the vehicle’s velocity. In general, while previous work such
as this has considered the use of FOE tracking for camera
stabilisation during egomotion, no one has applied such an
approach to tasks requiring fine motion control, nor provided
a theoretical analysis supporting the advantages of such a
strategy, and its potential use for control.

In this paper, we present a robust strategy for docking
a mobile robot in close proximity with an upright surface
using optical flow field divergence. We provide a theoretical
justification for the constant tracking of the FOE as a means of
accounting for shifts of the optical axis due to instantaneous
rotations during ego-motion. We present off-board and on-
board experiments demonstrating the application of this strat-
egy to the task of docking. This strategy requires no explicit
segmentation of the surface, uses complete gradient-based
optical estimation, and employs only a simple proportional
control law to regulate the robot’s velocity.

II. THEORETICAL BACKGROUND

Flow divergence is measured by examining the partial
spatial derivatives of image velocity components in orthogonal
directions. It is commonly defined as:

D = ux + vy, (1)

where, for a given point in the image, ux and vy are the partial
derivatives of their respective components of flow, in the x and
y directions. Time-to-contact (τ ) to a point along the optical
axis of the camera can be measured from flow divergence, and
is commonly defined as [2]:

τ =
Z

Tr
=

2
D

, (2)

where Z is the distance to the object along the axis of
translation, and Tr is the velocity.

Flow divergence is invariant across the image plane if the
surface plane is perpendicular to the camera’s optical axis,
and under this assumption, can be measured anywhere in the
image. If precise fronto-parallel alignment with the surface is
not maintained, further image deformation (curl [13]) occurs,
causing the measured divergence to vary across the image.

Given instantaneous rotations during ego-motion, precise
surface alignment is unlikely to exist. In the image domain,
such effects are characterised by frame-to-frame shifts of the
FOE, causing the divergence at any given image location to
vary. As a result, (2) is unlikely to provide an accurate time-to-
contact estimate in the presence of such rotations. To improve
time-to-contact estimates during robot egomotion, a means of
accounting for rotational effects is essential.

A. Compensating for rotation in time-to-contact estimation

The analysis presented in this section extends on the ge-
ometric modelling used by Santos-Victor and Sandini [11].
As in [11], we represent the docking surface as a plane in a
camera centred coordinate system:

Z(X, Y ) = Z0 + aX + bY, (3)

where Z0 is the distance to the surface along the optical axis,
(X, Y ) is a point on the surface, and a and b give the slant
and tilt with respect to the optical axis. By introducing the
perspective projection equations, the surface plane can also be
expressed as a function of the image coordinates, (x, y) [10]:

Z(x, y) =
Z0

1 − a x
fx

− b y
fy

. (4)

Given a fixed camera with respect to the robot’s direction of
motion, we represent the translational velocity of the camera,
Tc, as proportions of the predominant forward translational
velocity, Tr, of the robot:

Tc =
[

αTr βTr γTr

]
. (5)

The camera’s angular velocity (ωc) is given by:

ωc =
[

ωx ωy ωz

]
, (6)

where each component represents rotation about the axis
indicated by its subscript. Figure 1 shows the geometric setup.

The optical flow induced by the apparent motion of the
docking plane is defined by the well known equations [11]:

u(x, y) = fx

[
γTr( x

fx
− α)

Z(x, y)

+ ωx
xy

fxfy
− ωy(1 +

x2

f2
x

) + ωz
y

fy

]
, (7)

v(x, y) = fy

[
γTr( y

fy
− β)

Z(x, y)

+ ωx(1 +
y2

f2
y

) − ωy
xy

fxfy
− ωz

x

fx

]
, (8)
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Fig. 1. Geometric setup

where u(x, y) and v(x, y) are the horizontal and vertical
components of motion, and fx and fy are focal lengths
expressed in pixels.

Let us now consider the effects of rotation, causing the
FOE to shift. Let (x′, y′) be an arbitrary point in the image
representing the FOE. We define the depth of the surface,
Z(x, y), with respect to the FOE:

Z(x, y) =
Z(x′, y′)

1 − a (x−x′)
fx

− b (y−y′)
fy

. (9)

Substituting (9) into Equations (7) and (8), we obtain:

u(x, y) =
γTr(x − fxα)

Z(x′, y′)

[
1 − a(x − x′)

fx
− b(y − y′)

fy

]

+ ωx
xy

fy
− ωy(fx +

x2

fx
) + ωz

y

fx
, (10)

v(x, y) =
γTr(y − fyβ)

Z(x′, y′)

[
1 − a(x − x′)

fx
− b(y − y′)

fy

]

+ ωx(fy +
y2

fy
) − ωy

xy

fx
− ωz

x

fx
. (11)

Given the optical flow at the FOE is zero, we can substitute
for x = x′ and y = y′ in (10) and (11), and set their left sides
both to zero. Solving then for ωx and ωy, we obtain:

ωx =
fy

x′y′

(
γTr

Z(x′, y′)
(x′ − fxα) + ωy(fx +

x′2

fx
) + q

)
,

(12)

ωy =
Tr

Z(x′,y′) (x
′y′β + fyx′ + fxfyα + fxαy′2

fy
) − r

fxfy(1 + x′2
f2

x
+ y′2

f2
y

)
,

(13)

where

q = ωz
y′

fy

r = ωz(y′ +
y′3

f2
y

− x2y′

fxfy
).

Taking the partial derivatives of u(x, y) and v(x, y) in their
respective directions, and again substituting for x = x′, y = y′,
we obtain the partial derivatives at the FOE, defined as:

ux

∣∣∣
foe

=
γTr

Z(x′, y′)

[
1 − a

(
x′

fx
+ α

)]
+ ωx

y′

fy
− ωy

2x′

fx
,

(14)

vy

∣∣∣
foe

=
γTr

Z(x′, y′)

[
1 − b

(
y′

fy
+ β

)]
+ ωx

2y′

fy
− ωy

x′

fx
.

(15)

Summing these, we obtain the flow field divergence at the
FOE (Df ):

Df =
−γTr

Z(x′, y′)

[
a

(
x′

fx
+ α

)
+ b

(
y′

fy
+ β

)
− 2
]

+ 3
(

ωxy′

fy
− ωyx′

fx

)
, (16)

and from this, we derive an equation for the time-to-contact
of the surface point projecting to the FOE (τf = Z(x′,y′)

Tr
):

τf = − γ

Df

[
a

(
x′

fx
+ α

)
+ b

(
y′

fy
+ β

)
− 2
]

+
3Z(x′, y′)

DfTr

(
ωxy′

fy
− ωyx′

fx

)
. (17)

Using Equations (12) and (13), we substitute for ωx and ωy

in (17) and thus remove both rotations from the equation:

τf = − γ

Df

[
1 + a

(
x′

fx
+ α

)
+ b

(
y′

fy
+ β

)

− 3
γx′

(
− fxα +

(x′fy + fxfyα + x′y′β + y′2fxα
fy

)

fy(1 + x′2
f2

x
+ y′2

f2
y

)

+
ωzy

′Tr

fyZ(x′, y′)

(
fy +

y′2

fy
− x′2

fx
− 1
))]

. (18)

Notably, this substitution introduces a term involving camera
roll (ωz). If required, techniques for roll removal such as [4]
can also be applied without prior knowledge of the rotation.
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Fig. 2. Simulation results compare our FOE-based time-to-contact estimator
(Equation (19)), with time-to-contact estimates obtained at the image centre
using (2). For each sample, the robot’s forward speed, and randomly chosen
instantaneous rotational velocity (−0.1 ≤ ωy ≤ 0.1) were used to compute
the corresponding horizontal flow. Ground truth gives exact time-to-contact,
given the robot’s velocity towards, and distance from the surface.

B. Time-to-contact for a ground-based mobile robot

Consider Equation (18) for the case of a mobile robot,
moving on a ground plane towards a visible planar surface.
Given a fixed, approximately forward facing camera, ωz , will
be negligible, and can therefore be set to zero. In addition, the
camera orientation parameters: α, β and γ, can also be set to
known values (α = β = 0, γ = 1), thus reducing (18) to:

τf = − 1
Df


1 +

ax′

fx
+

by′

fy
− 3

(x′2
f2

x
+ y′2

f2
y

+ 1)


 . (19)

The only potential remaining unknowns are the surface
orientation parameters: a and b. If directional control maintains
an approximate angle of approach, then bounds on these
parameters, and hence τf , should exist. Even without precise
knowledge of alignment, the FOE should still provide the best
location from which to obtain the time-to-contact estimate
given rotation is accounted for at this point. Notably, the
existence of the FOE itself provides a natural constraint on the
angle of approach. At extreme angles of approach, the FOE
is unlikely to exist at all as the surface distance along the
axis of motion becomes infinite. Keeping the FOE within the
projected surface target area significantly narrows the range of
allowable approach angles.

C. Simulation Results

To test the theory, a simulation was conducted, modelling
the motion of a ground-based mobile robot, with camera,
towards a planar, fronto-parallel surface. A 2D motion model
was used, allowing only forward velocity and a single rotation
in the ground plane. From this, a set of sample flow fields
were obtained, and time-to-contact estimated using (19). For
each consecutive sample, the distance to the surface was decre-
mented by a constant amount, before a translational velocity,
and randomly selected instantaneous rotational velocity were
applied to the scene. The resulting motion vectors were then

projected to the image plane, generating the expected flow
resulting from the motion. The location of the FOE was then
estimated, and time-to-contact computed.

Figure 2 gives the simulation results, showing a direct com-
parison of time-to-contact estimates obtained using the FOE-
based time-to-contact estimator defined by (19), and time-to-
contact estimates obtained from the measured divergence at
the image centre (using (2)). A ground truth time-to-contact
is also provided. This was computed from the robot’s distance
from the surface, and its known constant forward velocity
towards the surface. It can be seen that the FOE-based time-to-
contact measure almost perfectly reflects ground truth. Small
discrepancies between the FOE-based measure and ground
truth are the result of unavoidable quantisation errors in the
image, disallowing the precise location of the FOE. Given
infinite resolution, this discrepancy would disappear.

In contrast, time-to-contact measured along the optical axis
exhibits significant fluctuation compared with that obtained at
the FOE. Furthermore, the image centre always provides an
over estimate of the time-to-contact. Notably, errors in time-to-
contact are reduced as the distance to the surface approaches
zero. This, however, is due to the robot’s constant velocity
towards the surface. As the translational flow increases, the
effects of the robot’s rotation are diminished. When the robot’s
velocity is decreasing in response to a looming surface, the
translational flow will remain approximately constant, and so
these fluctuations in time-to-contact at the image centre, can
be expected throughout the approach.

In general, the derivation and simulation results presented in
this section show that for a mobile robot with a single camera
of known orientation with respect to the robot’s axis of motion,
rotations can be accounted for by estimating time-to-contact
at the FOE. Conversely, estimating time-to-contact with no
consideration for shifts of the FOE due to such rotations will
result in inaccurate and unreliable time-to-contact estimates.

III. IMPLEMENTATION AND RESULTS

We now present two experiments showing the performance
of the proposed FOE-based strategy for estimating time-to-
contact from flow field divergence. We present results from
an off-board experiment using a purpose-built image sequence,
and results of the technique’s integration into the control loop
of a mobile robot for docking with an object surface.

In both experiments, the FOE was calculated using a simple
algorithm that assumes the imaged surface occupies the entire
viewing field. To obtain x′, each row in the image was used
to count the number of positive and negative horizontal flow
components, which were then differenced, and averaged over
all rows to locate the overall zero point for X. The algorithm
was applied similarly to obtain y′, using the signs of vertical
components of flow. While more sophisticated algorithms
exist, this was deemed suitable for these experiments.

A. Off-board time-to-contact estimation

A looming wall sequence, shown in Figure 3, was con-
structed to simulate the image expansion experienced when



 Frame 0 − 180cm from wall Frame 40 − 60cm from wall

Fig. 3. Sample frames and ground truth optical flow fields from the looming
wall image sequence.

approaching a surface. The camera was moved 3cm per frame
towards a heavily textured, approximately fronto-parallel wall.
The camera was tilted slightly upwards while moving along
the ground plane (to avoid viewing the ground plane).

Time-to-contact was estimated using four patches in the
image, each centred on a distance of 12 pixels from the FOE,
and each at 45 degrees from the horizontal and vertical axes
that intersect at the FOE. For comparison, time-to-contact was
also estimated by placing the four patches about the image
centre.

Figure 4 shows time-to-contact estimates for each frame
of the sequence (where time is measured in frames) for both
strategies. A ground truth for the time-to-contact is also shown.
Due to the unavailability of precise distance measures between
the camera and surface, ground truth was obtained from the
camera’s known velocity, and a linear fit over time-to-contact
measures obtained from ground truth flow fields.

From these results, a significant improvement in the consis-
tency of time-to-contact estimates is achieved when divergence
is calculated with respect to the FOE. Of particular note, the
FOE-based time-to-contact strategy achieves a close match
with ground truth from the fifteenth frame onward. In contrast,
the image centre-based method consistently over-estimates
time-to-contact, as well as exhibiting larger fluctuations than
the FOE-based strategy across the sequence.

B. Robot docking experiment

The FOE-based time-to-contact measure was integrated into
a simple closed-loop docking behaviour for velocity control of
a mobile robot. In experiments conducted, a robot with a single
forward facing camera approached a heavily textured, roughly
fronto-parallel wall, attempting to safely stop as close to the
wall as possible without collision (see Figure 5).

Velocity was governed by the proportional control law:

vt = vt−1 + Kp(Dref − Dt), (20)

where vt is the current velocity, Kp is a proportional gain
(tuned to 0.0275), Dt is the current flow divergence and Dref

is a reference divergence to servo to. In order to maintain a
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Fig. 5. Setup for on-board docking tests.

constant divergence during approach, the forward velocity of
the robot must necessarily decrease.

Flow divergence was estimated using two 40×40 pixel
image patches, each placed at 45 degrees on either side of the
vertical axis passing through the FOE, centred on a distance
of 25 pixels from the FOE. The patches were placed only
above the FOE to avoid measuring divergence on the imaged
ground plane. Optical flow was obtained using Lucas and
Kanade’s [6] gradient-based method, in combination with Fleet
and Langley’s recursive causal temporal filter [3], chosen on
the basis of strong performances in a recent comparison of
optical flow techniques for robot navigation tasks [7].

In each trial, the robot began approximately 1.5 metres from
the wall at a speed of 0.4m/s. At 1 metre from the wall,
the docking behaviour was invoked manually. No directional
control was used, however the robot was subject to small
lateral drift and rotations. Using a calibrated overhead camera,
the robot’s course was tracked, and velocity updates(vt) were
logged.

Figures 6 and 7 show velocity-distance profiles, and the
robot’s plotted approach for four trials. Note that the plotted
position of the robot is given with respect to the front of the
robot. In all four trials, the FOE-based strategy docked in close
proximity to the surface without collision.

The results show that close proximity stopping distances
were achieved with surprisingly high consistency. The average
stopping distance from the wall was 6cm, with the furtherest
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recorded being just 7cm. This consistency in stopping distance
is encouraging when considering the simple control law used.
This is also despite considerable variation in both the robot’s
initial starting position, and the extent (and direction) of its
lateral drift in each trial, as is apparent in Figure 6.

An attempt was made to compare the FOE-based on-
board control scheme with the same control scheme using an
image-centre based divergence measure. The raw divergence
estimates obtained at the image-centre, however, were found
to be unworkable for the simple proportional control scheme
used. A large range of tuning parameter values were explored.

The FOE-based docking strategy compares well with previ-
ous work in flow-based docking. The final stopping distances
achieved are a significant improvement on Questa et al. [9]
(approximately 15cm), and comparable with Santos-Victor and
Sandini [11]. It is important to note that unlike previous work,
we report highly consistent results over a set of trials. In addi-
tion, we obtain these results without the use of planar surface
models, or filtering of the divergence estimates. Furthermore,
only a a simple proportional control scheme is employed, with
minimal tuning requirements. Additional post-filtering and/or
a more sophisticated control scheme would be expected to
improve performance further.

IV. CONCLUSION

This paper has presented a mobile robot docking strategy
that utilises a time-to-contact estimation that is robust to
noisy, instantaneous rotations induced by robot ego-motion.
We have shown that through tracking the focus of expansion
in the optical flow field, small rotations of the camera and
miss-alignments of the optical and translational axes can be
accounted for by calculating flow divergence with respect to
the FOE. In this way, the effects of the rotation are effectively
cancelled out, and improved accuracy and stability is achieved.
Our results show a significant improvement in time-to-contact
estimates when compared with common strategies that take
no account of the shifting FOE during robot ego-motion. The
accuracy and stability achieved using the FOE-based time-to-
contact estimation strategy was demonstrated to be sufficient
for fine motion control of a mobile robot for the task of
docking. This was without any filtering of the control input
signal, or complex control scheme.
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