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Abstract— We present a strategy for generating real-time
relative depth maps of an environment from optical flow, under
general motion. We achieve this using an insect-inspired hemi-
spherical fish-eye sensor with 190 degree FOV, and a de-rotated
optical flow field. The de-rotation algorithm applied is based on
the theoretical work of Nelson and Aloimonos [12], who outline
an algorithm for obtaining all rotational components of motion
on a sphere about any great circle. From this we may obtain the
translational component of motion, and construct full relative
depth maps on the sphere. We demonstrate the robustness
of this strategy in both simulation and real-world results. To
our knowledge, this is the first demonstrated implementation
of the Nelson and Aloimonos algorithm working in real-time,
over real image sequences. These preliminary results provide
a compelling argument for the global interpretation of optical
flow under spherical projection when inferring scene structure.
They also demonstrate the uses of real time optical flow for
depth mapping and obstacle avoidance.

I. INTRODUCTION

Essential to autonomous navigation is the ability to per-
ceive depth. While absolute measures of distance are useful,
they are not necessary for achieving most navigation tasks.
Relative measures of distance to surfaces have been shown
to be sufficient for autonomously navigating corridors [14],
avoiding obstacles [15], [3], and docking with objects in the
environment [11], [14]. In addition, obtaining depth maps
across a wide field of view provides a means of perceiving
environmental structure, which in turn may be used for
higher level navigation tasks such as invoking appropriate
navigational subsystems and mapping.

It is well known that biological vision systems perceive
depth from a variety of cues, depending on the configuration
and the geometry of the eye. Among the potential cues
are (a) stereo information (b) depth from focus (c) depth
from convergence and (d) depth from optical flow [18].
Insects, with their immobile, fixed-focus eyes and low in-
terocular separation, rely heavily on optical flow cues to
obtain depth information [19]. Information from the optical
flow that is generated in the eyes by the insects’ motion
in the environment is used to (i) navigate safely through
narrow gaps (ii) detect and avoid collisions with objects
(iii) distinguish objects from their immediate backgrounds
and (iv) orchestrate smooth landings [19]. Estimating depth
from optical flow is simpler, computationally, than estimating
depth from stereo, and is thus an attractive strategy for the
relatively simple nervous systems of insects. Given many
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robotic vision systems are equipped with only a single
camera, much attention has been given to those cues that
do not rely on two or more simultaneous views of the scene,
such as optical flow.

In computer vision, the use of optical flow for scene
reconstruction has been problematic. While a significant
body of theoretical work exists [9], [1], [13], [7], in practice,
these approaches generally lack the speed and robustness
required for a real-time navigation system. One issue is the
intolerance of such strategies to noisy flow estimates in local
regions [20]. Optical flow estimation is notoriously noisy, and
difficult to compute accurately under real-world conditions.
For this reason, the examination of local flow vectors to infer
scene structure has been largely abandoned.

An additional issue for depth map recovery is the reliable
extraction of the translational component of flow (referred to
as de-rotation), from which relative depth can be inferred.
This is particularly difficult when the field of view is narrow,
due to increased coupling between translation and rota-
tion [5]. For this reason, many flow-based depth perception
strategies either assume pure translational motion of the
sensor (e.g. [4]), or apply planar models to extract surfaces
from the scene (e.g. [15], [16]). While de-rotation algorithms
exist, these are largely constrained to a single rotation, or are
not fast or robust enough for real-time depth mapping. To
generate full 3D depth maps from optical flow, under general
motion, a de-rotation strategy is required for each rotational
component. To obtain workable depth maps for navigation
from flow, the derotation algorithm must be sufficiently
accurate, and must run in real-time. There presently exists
no such real-world system capable of achieving this.

Traditionally, a perspective camera model has been used
when inferring scene structure from optical flow. This is in
contrast to insect vision, where the compound eye structure
of most insects provides an almost global view of the
scene [4]. There is a growing body of theoretical work
suggesting a spherical projection model, as an approximation
to this view, may offer distinct advantages when inferring
scene structure and self-motion from optical flow [6], [12].
Geometric properties of the sphere have been shown to facil-
itate more efficient and robust interpretations of optical flow.
Brodsky et al. [2] show that on a full view sphere, optical
flow can be un-ambiguously interpreted on the basis of the
direction of flow vectors alone. Nelson and Aloimonos [12]
highlight specific advantages gained through the existence of
both a focus of expansion (FOE) and focus of contraction
(FOC) in a single spherical image. From such observations,
a potentially real-time de-rotation algorithm is derived for
the complete recovery of rotational velocity components



from the optical flow on a full view sphere. While some
theoretical analysis of the algorithm’s likely robustness in
real-world conditions is provided, there exists no published
results to date reporting the algorithm’s performance in real-
time, and over real image sequences. Given the potential of
this algorithm to support a wide variety of navigation tasks,
it is of interest to examine its plausibility for facilitating the
real-time recovery of 3D depth maps.

To this end, we have implemented the Nelson and Aloi-
monos de-rotation algorithm, and applied it to the task of
generating 3D relative depth maps from a spherical sensor.
In this paper we report preliminary results showing the
algorithm does provide adequate support for real-time depth
map recovery. In simulation, we show its application over
a full view sphere undergoing general motion. Using a
hemispherical view fish-eye camera with a 190 degree field
of view, we also present preliminary results over two real
image sequences captured during the ground-based motion of
the hemispherical sensor. We show that the recovery of robust
3D relative depth maps can be achieved in real-time, and
without the need for camera calibration. These experimental
results appear to support existing theoretical arguments in
favour of a spherical projection model when inferring scene
structure, and self-motion, from optical flow.

II. GENERATING DEPTH MAPS FROM SPHERICAL FLOW

We briefly outline the theory for recovering 3D depth maps
from the spherical projection of optical flow. First, we define
optical flow on the sphere. We can define the position of any
point on a view sphere, θ, in terms of its angular location
on three great circles lying in orthogonal planes, such that:

θ =
[

θx θy θz

]

, (1)

where θx, θy and θz are angles in the direction of each
orthogonal great circle, Ex, Ey and Ez, in the range [0, 2π],
as shown in Figure 1.

Using this representation, we may express any optical flow
vector on the sphere in terms of the components of motion
in the direction of each orthogonal great circle, such that:

f(θ) =
[

ex(θ) ey(θ) ez(θ)
]

, (2)

where ex, ey and ez are components of flow in the direction
of each great circle indicated by its subscript. We define each
of these as:

ex(θ) =
v

R(θ)
sin(φx − θx) + ωx, (3)

ey(θ) =
v

R(θ)
sin(φy − θy) + ωy, (4)

ez(θ) =
v

R(θ)
sin(φz − θz) + ωz, (5)

where ωx, ωy and ωz are rotational velocity components
about each axis perpendicular to the plane of each great
circle, R(θ) is the radial depth to the scene point projecting
to θ and v is the translational velocity of the sphere in the
direction [φx, φy, φz].

It is important to note that the above equations are defined
for any three great circles lying on orthogonal planes, and are
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Fig. 1. Optical flow on the view sphere.

not limited to equators about the X , Y and Z axis. As such,
the above equations show that in addition to the translation,
flow in the direction of any great circle is effected by only
a single rotation about the axis perpendicular to the great
circle’s plane. This observation has lead to the development
of a full de-rotation algorithm for optical flow on the sphere.

A. De-rotating flow on the sphere

In the late eighties, Nelson and Aloimonos [12] proposed
an algorithm for recovering the full 3D rotational velocities
of a view sphere, in real-time, by exploiting three key
geometric properties of optical flow on the sphere:

1) the component of flow parallel to any great circle is
effected only by the rotational component about its
perpendicular axis, thus decoupling it from rotations
about orthogonal axes.

2) under pure translation, both the FOE and FOC will co-
exist at antipodal points on the sphere, and will evenly
partition flow along any great circle connecting these
two point, into two distinct directions of motion (i.e.
clockwise and counter-clockwise).

3) the existence of any rotational motion along a great
circle causes the FOE and FOC to converge, thus
ensuring the two points will only lie at antipodal
locations under pure translation.

The first observation indicates that each component of ro-
tation about can be resolved independently, and thus each
may be considered in turn. From the second and third
observations, Nelson and Aloimonos propose an algorithm
for recovering the rotational component of flow, ω, about
any great circle of flow e(θ). For reference, we reproduce
the algorithm in pseudo code here (see Algorithm (1)).

In words, the algorithm describes a simple search-based
strategy for resolving rotation. For each discrete point, θc,
on a circle of flow, e(θ), a range of rotations are searched



Algorithm 1 Nelson and Aloimonos De-rotation Algo-
rithm [12]

1: for ωc = ωmin to ωmax do
2: D[ωc] = 0
3: for θc = 0 to 2π do
4: a = e(θc) − ωc

5: β = φ − θc

6: if a < 0 and 0 ≤ β < π then
7: result = −a

8: else if a > 0 and π ≤ β < 2π then
9: result = a

10: else
11: result = 0
12: end if
13: D[ωc] = D[ωc] + result

14: end for
15: end for
16: ω = min index(D[ωmin : ωmax])
17: return ω

through, where each candidate, ωc, is used to de-rotate flow
along the circle. After derotation, the sum of the residual
flow on the circle is taken. Note that the sign of the flow
indicates its direction on the circle, therefore, a perfect split
of clockwise and counter-clockwise flow will yield a sum of
0. Accounting for noise and quantisation errors, the chosen
rotation is therefore the one which yields the smallest sum
of flow on the circle after derotation.

By applying this algorithm to great circles about each
rotational axis, the complete recovery of the sphere’s rotation
is achieved. After de-rotation, the direction of translation is
also given by the line passing through the FOE and FOC.

Notably, the algorithm’s run time performance is dictated
primarily by the quantisation of discrete locations on the
great circle, and the range of possible rotations for each
great circle. Given reasonable choices, the algorithm should
provide fast execution [12].

It is interesting to note that despite the potential use of
this algorithm for recovering self-motion and scene structure
in real-time, no published results currently exist reporting
its application to real-time navigation tasks, in real-world
scenarios. The authors themselves provide results from sim-
ulation, and some theoretical analysis of the algorithm’s ro-
bustness to noisy and/or absent flow. Given the encouraging
results they report, it is of interest to apply this algorithm to
real-time navigation tasks, such as generating relative depth
maps.

B. Generating relative depth maps

After the removal of all rotation components, all optical
flow vectors follow great circles passing through the FOE and
FOC. Thus, we may express the magnitude of the residual
translational optical flow t a discrete location θ on such a
great circle as:

f(θ) =
v

R(θ)
sin(φ − θ). (6)

TABLE I

SIMULATION ERROR MEASURES

Gauss noise Rotational error Trans dir Depth
(std dev) ωx ωy ωz error error
0o 0.003 0.003 0.003 5.9o 8.9%
2

o 0.003 0.003 0.004 9.0
o 13.0%

4o 0.006 0.005 0.007 10.0o 25.3%
10o 0.009 0.008 0.012 16.6o 39.2%

Assuming a static environment, we may define an equation
for obtaining the radial distance to any scene point projecting
onto a great circle passing through the FOE and FOC as:

R(θ) = v
sin(φ − θ)

f(θ)
. (7)

Given the Nelson and Aloimonos algorithm also recovers
the direction of translation φ, the only remaining unknown
is the sensor’s translational velocity. Knowing this allows
the complete recover of absolute scene depth. Under general
motion however, this is typically unavailable, and so only a
relative measure of depth can be obtained, whereby the depth
of points in the scene are scaled by v such that:

R(θ)

v
=

sin(φ − θ)

f(θ)
. (8)

While not an absolute measure, the above definition is
sufficient for recovering scene structure, and for most navi-
gational tasks.

It is important to note that (8) is only defined where
optical flow exists (i.e. f(θ) 6= 0). Thus, range cannot be
reliably measured where a lack of texture exists, or where
flow magnitude tends to zero such as at the FOE and FOC.
Given a spherical view of a sufficiently textured environment,
enough features should exist to obtain workable depth maps
for scene structure recovery.

C. Simulation results

Simulation tests were conducted to examine the robustness
of depth map estimates obtained using the strategy outlined
above. For this, a model of a unit view sphere was defined,
and immersed in a virtual 3D boxed space. A ground truth
depth map was then obtained over the whole sphere, from
which accuracy could be measured. Optical flow fields were
computed on the view sphere for multiple sets of twenty ran-
domly chosen translation directions, with randomly chosen
components of rotation about each principle axis. Rotational
velocity values were within the range [−0.5, 0.5]. To examine
robustness, increasing levels of Gaussian noise were added to
the angular component of each flow vector estimate for each
set of twenty trials. On each equator, 112 discrete points,
and 100 possible rotations were used for derotation. Table I
provides mean errors obtained during each simulation runs.
Rotational errors are given as the mean of the absolute dif-
ference between the estimated and true rotation velocities for
each simulation run. The translational direction error is given
as the mean angular error between the estimated translational
direction and ground truth. Depth map estimation errors are
given as the mean of relative errors against ground truth.



It is interesting to note from Table I, that mean rotational
errors exhibit high stability, suggesting high robustness to
angular errors in flow estimation. Translational direction
errors also appear to remain stable. It is important to note
that quantisation effects dictate that estimates of translational
direction can only estimate the the true direction of motion
to within 3.2o of the actual direction, hence the presence of
non-zero errors when no noise is introduced.

It is clear that depth estimation errors increase with noise.
This is influenced further by errors in translational direction.
It was found during simulation runs, however, that depth
estimation errors were particularly large around the FOE and
FOC, where flow magnitudes approach zero. These were not
filtered out during simulation runs, and thus have significant
influence on the overall accuracy levels reported. Under
less precise, real-world conditions, this issue is less likely
to influence accuracy due to noise levels preventing flow
magnitudes from diminishing to such small values. Under
real-world conditions, it can also be expected that motion
will not be as random and discontinuous as is depicted here.
Rather, it is likely to exhibit significantly greater amounts of
translational motion, thereby providing larger contributions
of translational flow about the great circles from which
the direction of motion is estimated. This should improve
both the translation estimates obtained, and relative depth
estimates.

III. REAL-WORLD EXPERIMENTS

The 3D depth map algorithm was implemented for use
with a single fish-eye camera (Unibrain Fire-i BCL 1.21)
undergoing ground-based motion. Given motion was approx-
imately planar, only a single hemispherical view was required
to account for rotation on the ground plane. The fish-eye
camera has a 190 degree FOV, and thus provides a suitable
approximation to a hemispherical projection of the scene,
thereby alleviating the need for mirrors.

In all experiments, full estimates of optical flow were ac-
quired using Lucas and Kanade’s gradient-based method [8],
in combination with Simoncelli’s multi-dimensional paired
filter [17] for pre-filtering and gradient estimation. This
combination was chosen on the basis of strong performances
in a recent comparison of optical flow methods for real-time
robot navigation [10].

Two image sequences were constructed for the depth map
experiments. In both experiments, the camera’s forward ve-
locity was kept approximately constant, while rotation about
the axis perpendicular to the ground plane was introduced.
No camera calibration was performed or post-filtering of flow
estimates, translational direction or relative depth estimates.
On a 2.1 GHz machine, depth maps were generated at rate of
1.2 updates per second over circular image regions of radius
110 pixels, with an input frame rate of 15Hz.

A. De-rotation

Given ground-based motion, the Nelson and Aloimonos
derotation algorithm was implemented for a single rotation,
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Fig. 2. Sample frames showing the circle used to de-rotate the flow.
Blue pixels indicate flow that is travelling clockwise and yellow counter-
clockwise (before de-rotation). The yellow line indicates the estimated
direction of translation after de-rotation.

using a circle of evenly distributed image points (radius 110
pixels) around the estimated projective centre of the camera.
Due to limitations imposed by the size of the camera’s image
plane, the true great circle could not be used. For planar
motion, however, the component of flow in the direction of
any concentric circle about the rotational axis is sufficient
for derotation.

Figure 2 provides sample frames showing the output of the
derotation algorithm over a real image sequence (described
later). The blue and yellow points indicate the locations on
the circle used for derotation. Blue points indicate clockwise
flow, and yellow, counter-clockwise. The yellow line signifies
the estimated direction of translation after de-rotation is
applied. In Figure 2(a), it can be seen that the direction
of flow is evenly partitioned by the estimated direction of
translation, thus indicating almost pure translational motion
is present. In contrast, the imbalance of partitioned flow in
Figures 2(b) and (c) suggests significantly greater amounts of
rotation exist. This is also reflected in the estimated rotation
for both samples.

While a quantitative assessment of the algorithm’s accu-
racy over real images is yet to be conducted, preliminary
observations are encouraging. Highly robust performances
have been observed over a wide range of real-world im-



age sequences, where the estimated direction of translation
provides a good visual indication of de-rotation accuracy.
Video 1 shows the application of the derotation algorithm
over the entire sequence from which the above samples were
drawn. Note that in Video 1, a simple derivative filter is
applied to the estimated translation direction for clarity of
viewing. This filtering was not applied during the depth map
experiments described below as rotation spirals very quickly,
and is therefore difficult to filter accurately, particularly for
the hand-held camera sequence.

B. Corridor navigation experiment

The first image sequence was obtained by mounting
the camera on-board a mobile robot platform, with omni-
directional motion. The camera was fixed as close as possible
to the robot’s rotation axis, facing upwards. Frames were
captured as the robot was manually driven around corridors
in our lab.

Figure 3 shows sample depth maps obtained during the
corridor experiment. The first column shows the central
image (320 × 240 pixels) from the buffered frames used
to compute the optical flow for the corresponding depth
map. The second column shows a grayscale map of the
relative depths of objects in the scene (brighter is closer)
estimated from the de-rotated flow field. The third column
provides a top-down view of the relative depths of scene
points, projected onto the ground plane (we refer to these as
structure maps). The centre of the structure map gives the
location of the camera. For this, thresholding was applied to
extract only the closest surfaces in the scene (and thus omit
depth estimates from the ceiling).

The relative depth maps obtained over the corridor nav-
igation sequences provide a good qualitative representation
of the environment. An abundance of clear structural cues
resulting from the motion of surface boundaries such as
corners, doorways and windows can be seen. In addition,
there appears to be good visual evidence of objects in close
proximity being detected. This is particularly evident in
Figures 3(c) and (d) where the wall edge in (c), and column
(and fire hydrant) in (d) show up as the brightest areas in
the grayscale depth maps.

The structure maps in the third column of Figure 3 further
support the accuracy of the relative depth measures for
inferring basic scene structure. Most evident is the extraction
of free space from obstructed space in the local area about the
robot. This is evident in all samples. It is important to note,
however, that space marked as unobstructed may also be the
result of a lack of measurable flow in the area. Thus, some
surface areas have only a few depth measures associated with
them.

Notably, the sequence involves significant variation in
lighting conditions as the robot travels beneath fluorescent
lights, and past sun lit rooms. While optical flow estimates
in these regions are generally unreliable (and often discarded
by Lucas and Kanade’s eigenvalue thresholding), the wide
field of view ensures enough features exist so as to extract

the overall scene structure, despite the noise inevitably in-
troduced by these effects.

C. Cluttered environment experiment

A second sequence was constructed depicting the camera’s
motion through a cluttered kitchen environment. For this, the
camera was hand-held, facing toward the ground plane as it
was walked through the kitchen. Thus, the motion of the
camera is less constrained than in the previous experiment.
Relative grayscale depth maps, and ground-plane structure
maps were again produced. Four samples from these results
are given in Figure 4.

From Figure 4 it can be seen that depth maps obtained
exhibit less structural definition than the corridor sequence.
This, however, is unsurprising given the relatively unstruc-
tured nature of the environment, and the greater abundance
of objects in close proximity to the camera.

The camera’s orientation towards the ground plane ap-
pears to significantly improve the extraction of free space
from obstructed space. While evident in the grayscale depth
maps, this is made particularly clear in the structure maps,
particularly Figure 4(a), where the structure map provides a
highly detailed map of free space over a considerable portion
of the viewing area. In addition, the structure map shows
an abundance of structural cues. Other samples from the
sequence also exhibit clear and accurate extractions of free
space.

These results are particularly encouraging when consid-
ering the camera was hand held and walked through the
scene. While motion was predominantly in the horizontal
plane, the camera was subject to both rotational motions off
the plane, and changes in height throughout the sequence.
Despite this, the Nelson and Aloimonos algorithm appears to
have provided workable derotation for robust depth mapping
in real world conditions.

D. Discussion

The quality of depth maps obtained in both these prelim-
inary experiments are encouraging. While more quantitative
testing is needed, it is clear from these results that basic
3D scene structure can be reliably inferred from optical flow
estimated over relatively low resolution images, and in real-
time. At the very least, these results suggest clear distinctions
between free and obstructed space can be obtained. For most
low-level navigation tasks where features are available, this
is sufficient. While we do not test the use of the generated
depth maps in closed-loop control of a vehicle, these results
suggest this is entirely plausible.

It should be noted that for a ground-based mobile robot,
the entire viewing angle need not be used to generate
depth maps sufficient for navigation. In the case of the
corridor sequence for example, only the peripheral area of
the projected view shows objects that obstruct free space.
Thus, considerations of both the robot’s physical height, and
constraints on its motion may be exploited to limit the depth
map generation to the visual range that matters. The resulting
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Fig. 3. Sample depth maps obtained on-board the mobile platform (camera facing up). The left column shows the original image, and estimated direction
of translation obtained from derotation. The middle column shows grayscale relative depthmaps computed from the translational flow. The right column
shows structure maps, obtained by projecting relative depth estimates into 3D space, and then orthographically onto the ground plane.

speed-up in execution time may also allow the possible use
of higher resolution in these regions.

These results suggest the Nelson and Aloimonos de-
rotation algorithm is performing well over real-world images.
Both sequences depict significant rotations, yet little ill-
effects appear in the depth maps obtained. While a thorough
examination of the algorithm’s accuracy over real-image
sequences is still needed, it is evident from both Video
1, and the depth maps generated in both experiments, that

the algorithm provides sufficient accuracy to facilitate the
real-time recovery of both the direction of ego-motion, and
complete 3D relative depth maps.

IV. CONCLUSION

In this paper, we have presented a strategy for generating
3D relative depth maps from optical flow, in real-time. In
so doing, we have demonstrated for the first time, the use
of the Nelson and Aloimonos de-rotation algorithm over
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Fig. 4. Sample frames and depth maps from ”Belco” kitchen sequence (hand held camera facing towards ground plane). The left column shows the
original image, and estimated direction of translation obtained from derotation. The middle column shows grayscale relative depthmaps computed from the
translational flow. The right column shows structure maps, obtained by projecting relative depth estimates into 3D space, and then orthographically onto
the ground plane.

real images, depicting real-world environments. Results from
simulated full general motion of a sphere, and from real-
world experiments suggest this strategy may be a useful base
for many navigational sub-systems. In addition, these results
further support theoretical arguments in favour of a spherical
projection when attempting to infer scene structure and self-
motion from optical flow. By exploiting basic geometric
properties of optical flow on the sphere, less dependency

exists on the accuracy of individual flow vectors, thus im-
proving the overall robustness of the system.
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