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Abstract. The simulation of realistic medical ultrasound imaging is a compu-
tationally intensive task. Although this task may be divided and parallelized,
temporal and spatial dependencies make memory bandwidth a bottleneck on
performance. In this paper, we report on our implementation of an ultrasound
simulator on the Cell Broadband Engine using the Westervelt equation. Our ap-
proach divides the simulation region into blocks, and then moves a block along
with its surrounding blocks through a number of time steps without storing in-
termediate pressures to memory. Although this increases the amount of floating
point computation, it reduces the bandwidth to memory over the entire simulation
which improves overall performance. We also analyse how performance may be
improved by restricting the simulation to regions that are affected by the trans-
ducer output pulse and that influence the final scattered signal received by the
transducer.

Keywords: ultrasound simulation, Westervelt equation, Cell Broadband Engine,
parallelization.

1 Introduction

The simulation of realistic ultrasound signals is important in a number of fields, in-
cluding ultrasound system design and development [1], the delivery of therapeutic ul-
trasound [2], and the registration of diagnostic ultrasound images with other imaging
modalities [3]. However, ultrasound simulation is a computationally intensive task due
to the large number of grid points and time steps required to accurately replicate typi-
cal biomedical scenarios. For example, the central frequency of a diagnostic ultrasound
transducer can range from 2 − 15 MHz, with depth penetrations from cms to tens of
cms. To discretize domains of this size, a 2 dimensional finite-difference time-domain
(FDTD) simulation can require grid sizes in excess of 1000 × 1000 grid points [4,5].
Similarly, the simulation of a single scan line in which waves propagate from the trans-
ducer into the medium and back can require more than 6000 time steps [6]. This is
increased further if the simulation of nonlinear harmonics is required, or if the simu-
lations are performed in 3 dimensions. This is to the point where merely storing the
pressure values at each grid point becomes difficult on modern desktop computing sys-
tems. The computational task is challenging both from the perspective of the number of
floating point operations, and also the transfer of data to and from the CPU.
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Recently, nonlinear ultrasound simulation on general-purpose graphics processing
units (GPGPUs) have been attracting attention [5,6,7]. This has helped with the floating
point operations, however, memory bandwidth is still a bottleneck. Our research ex-
tends the GPGPU implementation discussed by Karamalis et al. [6], and explores how
the Westervelt Equation could be used to simulate ultrasound on the Cell processor. In
this case, the Westervelt equation is solved with a FDTD scheme which can take ad-
vantage of important aspects of the Cell’s hardware, including multiple cores, SIMD
calculations, and asynchronous memory retrieval/storage. We have designed and im-
plemented a simulator on the Cell hardware, and explored how the memory transfers
may be reduced by dividing the region up into blocks of pressure samples and stepping
these multiple steps in time. This approach is shown to improve the performance and
we believe is novel within the ultrasound simulation field. We have also explored how
the number of grid points used in the simulation can be limited to those that are affected
by the ultrasound signal transmitted by the transducer, or that influence the scattered
ultrasound signal that is subsequently received.

We have evaluated our approaches on the Cell microprocessor as it has been shown
that the Cell can be used effectively for computation-intensive applications [8,9,10]. In
particular the Cell has been used effectively for FDTD calculations [11,12]. However,
the approaches presented in this paper are not limited to the Cell and may be applied to
other architectures such as GPGPUs or more standard multi-core/cluster architectures.
We envisage that similar improvements in performance would also be gained on these
systems.

This paper is organised as follows. In Section 2 we give the Westervelt equation
along with the finite difference discretization used in our implementation. In Section 3
we overview the salient features of the Cell processor. Section 4 gives the approach
taken in implementing our simulation. In Section 5 our results are reported. These focus
on understanding the improvements gained by applying the multiple time steps and only
simulating required regions. Finally in Section 6 we provide a conclusion along with a
discussion of possible future research.

2 Westervelt Equation

The lossy Westervelt Equation for a thermoviscous fluid is given by [13]
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where p is the acoustic pressure (Pa), c is the propagation speed (m s−1), ρ0 is the
ambient density (kg m−3), δ is the diffusivity of sound (m2 s−1), and β is the coefficient
of nonlinearity. The first two terms are equivalent to the conventional linearized wave
equation, the third term accounts for thermoviscous absorption, and the fourth term
accounts for cumulative nonlinear effects.

Here, this equation is solved numerically using the FDTD method on a rectangular
grid. The grid has spacing Δx and Δy in the x and y dimensions (m), where Δx =
Δy. The time steps are equally spaced and given by Δt (s). pni,j denotes the variation
from the background acoustic pressure at time step n at grid point (i, j). The gradients
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are approximated using finite differences that are fourth-order accurate in space and
second-order accurate in time [14]. This is the same as the schemes used in [6,15]. The
finite differences generated by this algorithm and used in the code are:
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The ∂2p2

∂t2 term is calculated by making use of the chain rule and product rule:
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where the temporal gradients are respectively computed using explicit third-order and
second-order accurate backward finite differences
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(the use of a backward difference avoids pn+1
i,j (etc) terms and makes solving the final

equation easier). Combining these equations with (1) using a second-order accurate
finite difference scheme for the remaining temporal derivative then gives
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where in 2 dimensions ∇2p = ∂2p
∂x2 + ∂2p

∂y2 . Note that c is actually dependent on (i, j) as
it varies depending on the properties of the medium at each position. For simplicity we
assume reflecting boundary conditions (i.e. pni,j = 0 for all (i, j) which lie outside the
grid.)

3 The Cell and the PS3

The Cell processor and the PS3 have been extensively described in articles such as [16].
A brief overview of the salient aspects is now given. The PS3 has a 3.2GHz Cell
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processor along with 256MB of main memory which is Rambus XDR DRAM. The
Cell Broadband Engine (CBE) is a microprocessor developed by Sony, Toshiba and
IBM [16] which contains 9 cores. These cores are composed of a single Power proces-
sor element (PPE) intended to be used for coordinating the actions of the other cores,
and eight Syngergistic processor elements (SPEs) which are RISC SIMD processor
elements and are optimised for numerical computation [17, p. 34].

The PPE is a two-way multi-threaded core with 512kB of L2 cache. Linux may be
installed and run on the PS3, although a hypervisor restricts access to the RSX ‘Real-
ity Synthesizer’ graphics processing unit and also disables 2 of the 8 SPEs [18, p. 7].
Ubuntu gutsy (7.10) running Linux 2.6.20 64 bit SMP version has been installed on our
test machine. Figure 1 depicts a block diagram of the effective architecture when the
system is run with the hypervisor.

Each SPE has 128 128-bit registers which can be used to perform SIMD calculations.
The SIMD instruction set [19, Section 2] contains a large number of useful instructions.
These include operations that may be performed on vectors of 4 floats (contained in a
single 128-bit register). An example of such an operation is to construct a new vector
using 2 floats from one vector and 2 floats from another vector. These operations are
pipelined and may be issued on every clock cycle. The arithmetic/logic operations are
done in the even side of the pipeline. The odd side of the pipeline includes operations
such as load/store between registers and the local store (LS). A multiply-add operation
enables a maximum of 8 floating point operations per cycle thus giving a maximum of
25.6GFlops per SPE, although for most operations this maximum is 12.8GFlops.

The Cell has an internal bus, called the Element Interconnect Bus (EIB), which en-
ables the SPEs to communicate with each other, the PPE, and the memory interface.
The effective bandwidth of the EIB is 96 bytes per cycle [16, Figure 1].

Each SPE contains 256kB of LS to be used for data, instructions and stack and
this is the only memory that can be accessed directly by each SPE; of this storage,
240kB is available for data. Data is transferred between main memory and local store
via Direct Memory Access (DMA) requests [16, p. 595]. These accesses can be initiated
by either the SPE or PPE and are asynchronous and can be barriered/fenced against each
other [19, p. 57]. Each request can transfer at most 16kB.

Each SPE channel to the EIB is limited to 25.6GB/s, moreover, the transfers be-
tween the EIB and main memory is also limited to 25.6GB/s, this becomes a bottleneck
when only a few operations are needed to be performed on each float that is transferred
to/from main memory. A particular type of request that we make heavy use of is a ‘scat-
ter and gather’ request where multiple discontiguous area of main memory are loaded
into a contiguous area of local storage. Correct alignment of data is important for the
performance of the system.

4 Approach

Solving the FDTD scheme is performed solely by the (available) SPEs, with the PPE
responsible for delegating tasks to the SPEs and coordinating their actions. Initially the
PPE allocates 1/6th of the total spatial region (consisting of a large number of smaller
square regions we call ‘blocks’) to each SPE during the process of thread creation.
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Fig. 1. Block diagram of the PS3 architecture

Mailboxes are used for synchronisation; each SPE places a message in its outbound
mailbox when it has completed an entire timestep in its allocated region and then waits
for a message in its inbound mailbox before restarting the calculations for the same
region (moved on by a number of timesteps). Although this minimizes the amount of
synchronisation and simplifies the implementation, a downside of this approach is that
the load on SPEs may become unbalanced due to contention of main memory accesses,
resulting in some SPEs waiting while other still have calculations to perform.

The SPE performs the calculation for a single block at a time. The pressures at all
grid points for the previous 4 timesteps in that block and all 8 neighbouring blocks are
loaded. The pressures are then stepped forwards by as many timesteps as possible. The
final pressures and the pressure at the transducers for all intermediate timesteps (i.e. the
received signal) are stored in main memory.

Our implementation uses a number of standard techniques [9,12,10] to help improve
performance, these include SIMD, double buffering, and loop unrolling. In addition
to these standard approaches, we also explore how multiple timesteps (Section 4.4)
and ignoring regions (Section 4.5) may be used to improve performance. The various
techniques used in the implementation are now given.

4.1 SIMD

It is relatively straightforward to use the Cell’s SIMD capabilities to improve the per-
formance of the calculations. Since our calculations are performed in single precision,
four floats can fit in a single register and so the FDTD scheme can be solved at four
grid points simultaneously. The SIMD instruction set contains fused multiply and add
instructions which are used in the main computation loop.

There is some extra overhead (compared to the scalar version) due to permute-style
operations which are required to approximate the ∂2p

∂y2 term. The permute operations
are required because misaligned (not on 128 bit boundary) loads can not be performed
directly.
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4.2 Double Buffering

Double buffering was used to simultaneously calculate the solution of the FDTD
scheme and perform the DMA accesses to retrieve the next block (and its neighbours)
where calculation should be performed. The cost of the DMA latency is reduced in this
way.

However, the downside is that the amount of data that has to be stored simultane-
ously in the local storage is doubled, which reduces the size of blocks that can be used,
and consequently, the number of timesteps that can be performed in between memory
accesses.

4.3 Manual Loop Unrolling

A technique that was found to be effective in improving performance was to manually
unroll the main computation loop (that performs the solving of the FDTD scheme) by a
factor of 3. This allows extra instructions to be interleaved during compiler optimization
and reduces stalls due to dependencies.

4.4 Multiple Timesteps in between Memory Access

In order to minimize the amount of DMA required, the scheme is solved for multiple
time steps in a single block before writing the result back to main memory. An area
of 3 × 3 blocks (3d × 3d grid points) is loaded into main memory, with the intention
of calculating the pressures for the central block (d × d grid points) over a number of
timesteps. Under a fourth-order spatially accurate scheme, no more than �d

2� timesteps
can be calculated at a time, since the region that can be stepped forward in time shrinks
2 grid points with each time step (since pressures cannot be calculated on the boundary
of the region).

Other CBE programmers (including [9]) have found it necessary to ensure that large
amounts of work is performed on data that is loaded from main memory to avoid being
limited by the memory bandwidth. Work on performing linear algebra computations on
the CBE [8] uses similar techniques.

Using this timestep approach, it is advantageous to do calculations on blocks that
are as big as possible. This maximizes the number of timesteps that can be performed
in between memory accesses. Here, blocks of size 24 x 24 were used, allowing 12
time steps to be performed in between memory accesses. Taking into account double
buffering, the amount of memory used in our implementation to store the pressures and
an index to wavespeeds at an SPE is the equivalent of 51840 floats, or about 210 kB
(out of the total 240 kB local storage that is available).

Performing multiple timesteps comes at the cost of extra computation (since some
pressures are calculated more than once). Let t denote the number of time steps per-
formed in between memory accesses. Then d ≥ 2t, and ideally t = d

2 . The total number
of times we apply the FDTD formula in between memory accesses is:

W =

t−1∑

i=0

(d+ 2× 2i)2 = d2t+ 4dt(t− 1) +
8t

3
(t− 1)(2t− 1) (10)
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compared to td2 for the same amount of useful work if only one timestep is performed at
a time. It can be shown that the relative amount of extra work that is done is bounded by

extra work
total work

=
W − d2t

d2t
≤ 10

3
(11)

i.e., for large t, the extra work done is about three times the amount of work performed
if a single timestep is performed in between memory accesses.

Let T be the number of timesteps backward required to solve the FDTD scheme
(this depends on the FDTD scheme used; T = 4 in our case). In this implementation
the calculation requires that 9d2(T+1) floats are loaded to calculate t timesteps forward
in some block. If one timestep is performed at a time, (T+1)(d+4)2 floats are loaded to
calculate one timestep forward in some block. Therefore, the amount of loads performed
is reduced for t ≥ 9 by a factor of approximately 9

t . In our case, for t = 12, the total
amount of loads is reduced by about 1/4.

After each block of t timesteps is completed, the previous T ≤ t timesteps worth
of pressures at each point must be stored in main memory. When a single timestep is
performed at a time, 1 timestep worth of pressures at each point must be stored (since
the previous ones have not changed). This means that the total amount of stores that are
performed is reduced by a factor of t

T under the new scheme (a factor of 3 in our case).
In our implementation stores are more costly than loads because the individual stores
operate on quite small pieces of data.

4.5 Ignore Empty Regions

Regions in which the acoustic pressure is approximately zero, or where the local wave-
forms cannot affect the final signal received by the transducer do not have to be con-
sidered in the calculations. At the start and end of the computation, only regions very
near the transducer need to be simulated. Since the number of time steps is chosen to
be roughly enough for a pulse to reflect off the furthest wall and return, only a small
fraction of the timesteps require the entire region to be simulated. Here, this is imple-
mented conservatively by increasing the height of the simulated region by one grid point
per timestep, until the entire grid is being simulated, and reversing this process toward
the end of the simulation. The effective width of the grid remains constant because in
our implementation the array of transducers is aligned in this direction.

5 Results

The proposed method was implemented in C. The code that runs on the PPE (and organ-
ises the calculation) is about 400 lines of code in total. The SPE code which performs
the actual calculation (including memory accesses and double buffering) is about 350
lines.

For the simulation we used Δx = Δy = 5.0×10−5m andΔt = 3.0×10−9s giving a
CFL number1 of∼0.1, this provides a good balance between accuracy and performance.

1 The Courant-Friedrichs-Lewy (CFL) number is calculated by (Δt cmax)/Δx, it measures the
number of spatial grid points the fastest wave travels in one time step. Normally this will be a
small fractional number and is dictated by stability constraints.
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A 3 cycle tone burst with a centre frequency of 3 MHz was used. This provides 10
grid points per wavelength at the centre frequency. The medium parameters were set to
β = 6, ρ0 = 1100 kg m−3, δ = 4.5×10−6 m2 s−1. For comparison with [6], the results
reported below are for the simulation of 6000 time steps (the equivalent of one scan
line computation) using a grid of size of 2064 × 2064.2 The sound speeds within the
medium were defined using a numerical phantom of a fetus [20]. This contained a small
number of large homogeneous regions and other regions consisting of sub-wavelength
scatterers. A snapshot showing the wave field as it propagates through the phantom is
shown in Figure 2.

Fig. 2. Snapshot of an ultrasound wave propagating through a numerical phantom of a fetus

Parallelisation (via use of multiple SPEs) of the code improves the performance of
the code by approximately a factor of 5. The time required to perform this calculation
when only one SPE is used is 284 seconds, compared to 57 seconds when all six of the
available SPEs are used.

Figure 3 shows how the time taken to compute one scan line changes as the number
of steps between memory synchronisation increases. These results are calculated by
repeating the execution 10 times for each measurement and reporting the average (the
standard error on all these estimations is less than 0.9s). When the maximum amount of
time steps (12) are calculated in between memory accesses, the time taken to calculate

2 [6] used a grid size of 2048 × 2048, however, as our grid dimensions needed to be a multiple
of 24 we simulated on a slightly larger grid.
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Fig. 3. Time required to compute a scan line (in seconds) vs number steps taken by a block

one scan line is 57 seconds. In [6], 192 scan lines (with the same grid size and number
of timesteps) are computed in 55 minutes, approximately 17 seconds per scan line.
Figure 3 also shows the improvement gained by restricting the simulation region, this
shows an improvement of 32% over simulating the entire region over all time steps (for
the maximum amount of time steps between memory synchronisation).

The performance of our code corresponds to an average main memory bandwidth
usage of 7.2 GB/s, which is below the theoretically possible of 25.6 GB/s main memory
bandwidth. Although, clearly there is room for improvement, such a figure is typical for
applications like this.

6 Conclusion and Future Research

In this paper we described an implementation of nonlinear ultrasound simulation based
on the Westervelt equation using the Cell Broadband Engine. The simulation time re-
quired is of the same order of magnitude as recent results achieved using GPGPUs [6]
and avoids the need to use PC clusters, an approach used in other work [4]. The simula-
tion of one scanline, which requires 57 seconds on the Cell, requires about 17 minutes
when performed on a desktop PC with an Intel Core i7-2600K 3.40 GHz processor with
3 GB RAM. We have also shown the performance gained by doing multiple timesteps
between memory sychronisation. It would be interesting to explore how this approach
may be applied to other architectures such as a GPGPU.

A number of aspects of our implementation affect performance detrimentally. As
mentioned above, it may be advantageous to allocate work to the SPEs using a work
queue instead of allocating a fixed amount of work. This approach is used to do FDTD
simulation in [11]. Performance may be also improved by communicating data and
synronisation events between SPEs. This has the potential of saving DMA bandwidth to
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main memory and also it is known that synchronising with the PPE is highly latent [10].
Another source of performance improvement is to increase the size (and reduce the
number of) DMA requests, because peak memory bandwidth usage cannot be achieved
unless large requests are used. The present implementation uses many small requests,
some of which are smaller than the minimum recommended size (128 bytes) [17, p.
455]. Thus, it may be possible to achieve substantial performance gains by rectifying
these issues.

Performance gains may also be possible by generalising our novel idea that the sim-
ulation is limited to areas that can have an effect of the final ultrasound image. In order
to keep our implementation simple, we perform this pruning (of the grid) rather crudely.
For example, if a region is sufficiently far away from the transducer and the power of
the ultrasound wave is sufficiently small, such a region may not require simulation cal-
culations for the overall simulation to still be sufficiently accurate. It may be possible
to, for example, adopt a less accurate FDTD scheme for those regions.

The use of spectral and k-space methods, which do part of their calculations in the
frequency domain, such as those in [5,21,22,23] has been shown to be effective. These
methods provide high spatial accuracy [22, p. 917] and the Cell has already shown that
it can efficiently perform the FFT [9,10] which is required to implement these spectral
and k-space methods. Thus it would be interesting to explore the effectiveness of these
method on the Cell.

More realistic modelling may be achieved by substituting the thermoviscous absorp-
tion term in the Westervelt equation with a more general integro-differential operator
that can account for power law absorption [24,5]. It would be worth understanding and
evaluating the exact performance costs of such modelling improvements.

Our promising results indicate that implementing a 3D ultrasound simulation on this
hardware may be worthwhile. The implementation of absorbing boundary conditions
(such as Berenger’s PML adapted for ultrasound in [4]) would be necessary in order to
accurately compare results with those gained from experimental data.

While the Cell processor is perhaps a non-standard computing platform (particu-
larly in the ultrasound area), the push towards large-scale simulations requires both
novel hardware and numerical approaches to make the calculations tractable. Moreover,
emerging parallel architectures such as APUs or the Cell are likely to form an integral
part of high performance computing clusters in the future. For example, a number of
Cell clusters already exist, including the well known Roadrunner super computer.3 Our
research provides a good starting point for tackling much bigger ultrasound problems
using a Cell cluster.

In summary, ultrasound simulation on the Cell can be performed much faster than
using a standard single threaded desktop CPU and comparable to that of a GPGPU.
Moreover, lessons learnt in our research are almost certainly transferable to any new
architecture that emerges in the next decade.
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