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Abstract

It was conjectured by Paul Erdős that if G is a graph with chromatic number at
least k, then the diagonal Ramsey number r(G) ≥ r(Kk). That is, the complete graph
Kk has the smallest diagonal Ramsey number among the graphs of chromatic number
k. This conjecture is shown to be false for k = 4 by verifying that r(W6) = 17, where
W6 is the wheel with 6 vertices, since it is well known that r(K4) = 18. Computational
techniques are used to determine r(W6) as well as the Ramsey numbers for other pairs
of small order wheels.

1 Introduction

The following well known conjecture is due to Paul Erdős.

CONJECTURE 1 If G is a graph with chromatic number χ(G) ≥ k, then the Ramsey

number

r(G) ≥ r(Kk).

The strong form of the Erdős conjecture is that if χ(G) ≥ k, and G does not contain a

copy of Kk, then r(G) > r(Kk).

For k = 3 it is trivial to verify this stronger conjecture. If G 6⊇ K3 and χ(G) ≥ 3, then

G has at least 4 vertices. Thus r(G) > 6 = r(K3), since neither the graph K3 ∪ K3 or its

complement will contain a copy of G.

For k = 4 some similar observations can be made. If χ(G) ≥ 4 and G has at component

with at least 7 vertices, then K6∪K6∪K6 does not contain G and the complement contains
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no 4-chromatic graph. Thus, r(G) > 18 = r(K4). The only 4-chromatic graph with 4, 5, or

6 vertices that does not contain a K4 is the wheel W6 = K1 + C5 with 6 vertices. Thus, the

Erdős conjecture in the case k = 4 is equivalent to r(W6) ≥ 18 (strict inequality in the strong

form of the conjecture). However, the following result can be verified with computational

techniques described in section 3, so the Erdős conjecture is false for k = 4.

THEOREM 1 r(W6) = 17.

There is an off-diagonal version of the Erdős conjecture: If χ(G), χ(H) ≥ k, then

r(G, H) ≥ r(Kk, Kk). For k = 3 this off-diagonal version of the conjecture is easily verified.

Of course, it is not true for k = 4, since it is not even true in the diagonal case. However, the

next result, which can also be verified by a computer search, verifies that the only exception

to the off-diagonal form of the conjecture for k = 4 comes from the pair (W6, W6).

THEOREM 2 r(K4, W6) = 19.

It is rather surprising that r(K4, K4) = 18, r(W6, W6) = 17, but r(K4, W6) = 19, since

one would normally expect that the off-diagonal Ramsey number would not exceed the

maximum of the corresponding diagonal Ramsey numbers.

The wheel W5 = K1 + C4 with 4 spokes has chromatic number 3, thus it would not be

surprising for r(W5) < r(K4). In fact, the next result verifies that this is true.

THEOREM 3 r(W5) = 15.

2 Ramsey Numbers for Wheels

For any integer k ≥ 4, Wk will denote the wheel K1 +Ck−1 with k vertices and k− 1 spokes.

Thus, W4 is isomorphic to K4. Also, W3 will denote the complete graph K3. For graphs

G and H the Ramsey number r(G, H) is the smallest positive integer n such that for every

graph F with at least n vertices, either F ⊇ G or F ⊇ H. If H = G, then r(G, H) will

simply be denoted by r(G). Specific notation and terminology will be introduced as needed,

but we will generally follow the notation of [2].

Using computational techniques described in section 3 the Ramsey numbers r(Wi, Wj)

for 3 ≤ i, j ≤ 6 can be determined. They are listed in Table 1.

Those entries in Table 1 not marked with an asterisk are already in the literature. The

classical Ramsey numbers r(W3) = 6 and r(W3, W4) = 9 are well known. In [9] Greenwood

2



TABLE 1
r(Wi, Wj)

i
j 3 4 5 6

3 6 9 11 11
4 9 18 17 19∗

5 11 17 15 17∗

6 11 19∗ 17∗ 17∗

and Gleason proved r(W4) = 18. More generally, Chvátal and Harary in [3] and [4] deter-

mined all Ramsey numbers of pairs of graphs with at most 4 vertices. Clancy in [6] calculated

most of the Ramsey numbers for pairs of graphs with at most 4 and 5 vertices respectively. In

particular, r(W3, W5) = 11 can be found there. The Ramsey table of Clancy was expanded

by Hendry in [10] to include most pairs of graphs with at most 5 vertices, and this table

includes r(W4, W5) = 17 and r(W5) = 15. All Ramsey numbers for a triangle versus any

graph with at most 6 vertices were determined in [8]; in particular, r(W3, W6) = 11.

Chvátal and Schwenk in [5] proved that 17 ≤ r(W6) ≤ 20, and the upper bound was

lowered to 19 in [7]. The following graph H1 on 16 vertices described in [5] gives the lower

bound for r(W6). (We will, when possible, denote (i, j) by just ij.)

V (H1) = {0, 1} × {0, 1, · · · , 6, 7}

E(H1) = {(ij, k`) : |j − `| = 0, 1, 4, 7}.

The graph H1 is transitive, so the neighborhoods of all of the vertices of H1 are isomorphic.

It is straightforward to verify that the neighborhoods of 00 in H1 and H1 are the graphs in

Figure 1. Neither of these neighborhoods of 00 contain a C5, so clearly r(W6) > 16. Also,

the neighborhood in H1 contains no C4, so r(W5, W6) > 16.
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Figure 1: Neighborhood of the vertex 00
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For a lower bound for r(W4, W6), first consider the graph H ′
2 of order 16 defined as

follows:

V (H ′
2) = {0, 1} × {0, 1, · · · , 6, 7}

E(H ′
2) = {(ij, k`) : |j − `| = 1, 2, 6, 7}.

(This graph is sometimes expressed as K2
⊗

C2
8 .) Let H2 be the graph of order 18 obtained

from H ′
2 by adding adjacent vertices α and β with α adjacent to those pairs in H ′

2 that end

in an even integer and β adjacent to those pairs that end in an odd integer. The graph H2,

which is pictured in Figure 2, is a 9-regular graph of order 18.
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Figure 2: H2

There are clearly two orbits of the automorphism group of H2, with one class containing

α and β, and with the other class containing the remaining 16 vertices. It is straightforward
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to check that the neighborhood of α (and likewise β) in H2 is isomorphic to K4,4∪K1. Also,

the neighborhood of α in H2 is isomorphic to K4 ∪K4. The neighborhoods of 00 in H2 and

H2 are pictured in Figure 3. There is no C3 in the neighborhood of any vertex in H2, and

no C5 in the neighborhood of any vertex in H2. It follows that r(W4, W6) > 18.
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Figure 3: Neighborhood of the vertex 00

Given graphs G and H, a graph F is said to be (G, H)- free if F 6⊇ G and F 6⊇ H. Of

course, the Ramsey number r(G, H) is the smallest number such that there is no (G, H)-free

graph with that number of vertices. The verification that r(W6, W6) = 17, r(W4, W6) = 18

and r(W5, W6) = 17 involves an exhaustive computer search to determine all nonisomorphic

graphs that are (G, H)-free for the appropriate graphs G and H. The procedure is described

in detail in the next section. These calculations yielded the numbers in the Tables 2, 3 and

4 for the pairs (W6, W6), (W5, W6), and (W4, W6) respectively.

Table 2 indicates that there are precisely two (W6, W6)-free graphs of order 16. These

two graphs are the graphs H1 and H1 described by Chvátal and Schwenk in [5]. Likewise,

the graph H1 is the unique (W5, W6)-free graph of order 16 indicated in Table 3. The two

(W4, W6)-free graphs of order 18 indicated in Table 4 are the graph H2 pictured in Figure 2,

and the graph obtained from H2 by deleting the edge between the vertices α and β of H2.

It is surprising that the two maximum (W6, W6)-free graphs are so different in the diag-

onal Ramsey case r(W6). Usually, the extremal graphs in such cases are self-complementary

or nearly so. Also, Table 2 shows the extremely large decrease in the number of (W6, W6)-free

graphs as the order changes from 15 to 16, which is unusual. The more typical pattern is

given in Table 3 and Table 4.

The known values in Table 1 were also verified using the same search techniques. As a

consequence of these calculations, the number of (Wi, Wj)-free graphs were determined for
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TABLE 2
Nonisomorphic

(W6,W6)-free graphs

TABLE 3
Nonisomorphic

(W5,W6)-free graphs

TABLE 4
Nonisomorphic

(W4,W6)-free graphs

# of vertices # of graphs
1 1
2 2
3 4
4 11
5 34
6 140
7 762
8 5541
9 46148
10 371620
11 2155354
12 8472354
13 18466346
14 38024924
15 62287938
16 2

total 129831181

# of vertices # of graphs
1 1
2 2
3 4
4 11
5 31
6 122
7 581
8 3427
9 21014
10 105463
11 306169
12 448371
13 34242
14 3299
15 5
16 1

total 922743

# of vertices # of graphs
1 1
2 2
3 4
4 10
5 29
6 112
7 543
8 3546
9 28233
10 232337
11 1651381
12 8437954
13 27039916
14 43625194
15 34035296
16 43072
17 148
18 2

total 115097780

i, j = 3 or 4, and these values are given in Tables 5, 6 and 7. (Table 7 can be found in [12].)

The same computational techniques used to verify the entries in Table 1 can also be

used to determine r(W3, Wk) for larger values of k. In particular, it can be shown that

r(W3, W7) = 13, r(W3, W8) = 15, r(W3, W9) = 17, r(W3, W10) = 19, and r(W3, W11) = 21.

¿From this information it is reasonable to conjecture that r(W3, Wk) = 2k − 1 for k ≥ 6.

This is consistent with the result in [1] that r(K3, Gk) = 2k − 1 for any sparse graph Gk of

order k (sparse, in this case, means at most 17k/15 edges). Information on the number of

(W3, Wj)-free graphs for 3 ≤ j ≤ 11 is given in Table 8.

3 Computational Procedures

This section describes the computational process by which we generated the set of all

(Wi, Wj)-free graphs for various (i, j). Similar methods have been used before in the con-

struction of cubic graphs [13] and several Ramsey number computations [12], [14].
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TABLE 5
Nonisomorphic

(W5,W5)-free graphs

TABLE 6
Nonisomorphic

(W4,W5)-free graphs

TABLE 7
Nonisomorphic

(W4,W4)-free graphs

# of vertices # of graphs
1 1
2 2
3 4
4 11
5 28
6 104
7 402
8 1876
9 7246
10 18162
11 18792
12 6028
13 533
14 62

total 53247

# of vertices # of graphs
1 1
2 2
3 4
4 10
5 26
6 94
7 401
8 2307
9 15452
10 104314
11 531892
12 1437877
13 865055
14 111153
15 2891
16 82

total 3071561

# of vertices # of graphs
1 1
2 2
3 4
4 9
5 24
6 84
7 362
8 2079
9 14701
10 103706
11 546356
12 1449166
13 1184231
14 130816
15 640
16 2
17 1

total 3432184

Let us denote by WF (i, j; n) the set of all (Wi, Wj)-free graphs with n vertices. The

result of applying the permutation α to the labels of any labelled object X will be denoted

by Xα, and also Aut(G) is the automorphism group of the graph G, represented as a group

of permutations of V (G).

Suppose that θ is a function defined for any G ∈ ⋃
n≥2 WF (i, j; n) which satisfies these

properties:

(i) θ(G) is an orbit of Aut(G),

(ii) the vertices in θ(G) have maximum degree in G, and

(iii) for any G, and any permutation α of V (G), θ(Gα) = θ(G)α.

It is easy to implement a function satisfying the requirements for θ by using the program

nauty [11]. Given θ, and G ∈ WF (i, j; n) for some n ≥ 2, the parent of G is the graph par(G)

formed from G by removing the first vertex in θ(G) and its incident edges. The properties

of θ imply that isomorphic graphs have isomorphic parents. It is also easily seen that

par(G) ∈ WF (n−1). Since WF (i, j; 1) = {K1}, we find that the relationship “par” defines a
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TABLE 8
Nonisomorphic (W3, Wj)-free graphs

Total # # r(W3,Wj)-free
j r(W3,Wj) r(W3,Wj)-free graphs of order

graphs r(W3,Wj) - 1
3 6 9 1
4 9 48 3
5 11 106 1
6 11 269 37
7 13 808 61
8 15 2862 92
9 17 13268 141
10 19 107355 201
11 21 1742876 288

rooted directed tree T whose vertices are the isomorphism classes of
⋃

n≥1 WF (i, j; n), with

the isomorphism class {K1} as the root. If ν is a node of T , then the children of ν are those

nodes ν ′ of T such that for any G ∈ ν ′ we have par(G) ∈ ν. The set of children of ν can be

found by the following algorithm, whose correctness follows easily from the definitions:

(a) Let G be any representative of the isomorphism class ν. Suppose that G has n vertices

and maximum degree ∆.

(b) Let L = L(G) be a list of all subsets X of V (G) such that

(b.1) either |X| > D, or |X| = D and X does not include any vertex of degree D,

(b.2) if G(X) is the graph of order n + 1 formed from G by appending a new vertex

x adjacent to X, then G(X) is (Wi, Wj)-free and x ∈ θ(G(X)).

(c) Remove isomorphs from amongst the set {G(X) | X ∈ L}. The remaining graphs form

a set of distinct representatives for the children of ν.

It is not hard to show that any isomorphs at step (c) are due to the equivalence of two

sets X under Aut(G). In the computational process, we have the choice of using generators

for Aut(G) to remove such equivalent sets, or using canonical labelling to detect isomorphs

amongst the graphs G(X). Both methods are available using the facilities of nauty ; we chose

the second for computational convenience even though the first should be slightly faster.
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This approach has a number of important advantages over other methods. In particular,

isomorph rejection need be performed only within very small families of graphs. For example,

even though |WF (4, 4, 14)| = 43625194, no isomorphism class of WF (4, 4, 13) has more than

49 children. Secondly, the guaranteed non-isomorphism of the outputs permits them to be

processed as they are generated, without the need to store them. Thirdly, it is very easy to

split the generation task into completely independent pieces which can be run separately.

The execution time for these computations was typically about 50 milliseconds per output

graph on a Sun workstation rated at 12 mips. The longest computation was for (W4, W6)-free

graphs, which took about 2.5 mip-years in total.
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[1] S. A. Burr, P. Erdős, R. J. Faudree, C. C. Rousseau and R. H. Schelp, An Extremal

Problem in Generalized Ramsey Theory, ARS Combinatoria 10, (1980), 193-203.

[2] G. Chartrand and L. Lesniak, Graphs and Digraphs, Wadsworth & Brooks/Cole,

Monterey, California (1986).
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