# A Conjecture of Erdős the Ramsey Number $r\left(W_{6}\right)$ 

Ralph J. Faudree<br>Department of Mathematical Sciences<br>Memphis State University<br>Memphis, Tennessee, USA

Brendan D. McKay<br>Computer Science Department<br>Australian National University<br>Canberra, ACT, Australia

JCCMCC 13 (1993) 23-31


#### Abstract

It was conjectured by Paul Erdős that if $G$ is a graph with chromatic number at least $k$, then the diagonal Ramsey number $r(G) \geq r\left(K_{k}\right)$. That is, the complete graph $K_{k}$ has the smallest diagonal Ramsey number among the graphs of chromatic number $k$. This conjecture is shown to be false for $k=4$ by verifying that $r\left(W_{6}\right)=17$, where $W_{6}$ is the wheel with 6 vertices, since it is well known that $r\left(K_{4}\right)=18$. Computational techniques are used to determine $r\left(W_{6}\right)$ as well as the Ramsey numbers for other pairs of small order wheels.


## 1 Introduction

The following well known conjecture is due to Paul Erdős.
CONJECTURE 1 If $G$ is a graph with chromatic number $\chi(G) \geq k$, then the Ramsey number

$$
r(G) \geq r\left(K_{k}\right)
$$

The strong form of the Erdős conjecture is that if $\chi(G) \geq k$, and $G$ does not contain a copy of $K_{k}$, then $r(G)>r\left(K_{k}\right)$.

For $k=3$ it is trivial to verify this stronger conjecture. If $G \nsupseteq K_{3}$ and $\chi(G) \geq 3$, then $G$ has at least 4 vertices. Thus $r(G)>6=r\left(K_{3}\right)$, since neither the graph $K_{3} \cup K_{3}$ or its complement will contain a copy of $G$.

For $k=4$ some similar observations can be made. If $\chi(G) \geq 4$ and $G$ has at component with at least 7 vertices, then $K_{6} \cup K_{6} \cup K_{6}$ does not contain $G$ and the complement contains
no 4-chromatic graph. Thus, $r(G)>18=r\left(K_{4}\right)$. The only 4-chromatic graph with 4,5 , or 6 vertices that does not contain a $K_{4}$ is the wheel $W_{6}=K_{1}+C_{5}$ with 6 vertices. Thus, the Erdős conjecture in the case $k=4$ is equivalent to $r\left(W_{6}\right) \geq 18$ (strict inequality in the strong form of the conjecture). However, the following result can be verified with computational techniques described in section 3, so the Erdős conjecture is false for $k=4$.

THEOREM $1 r\left(W_{6}\right)=17$.

There is an off-diagonal version of the Erdős conjecture: If $\chi(G), \chi(H) \geq k$, then $r(G, H) \geq r\left(K_{k}, K_{k}\right)$. For $k=3$ this off-diagonal version of the conjecture is easily verified. Of course, it is not true for $k=4$, since it is not even true in the diagonal case. However, the next result, which can also be verified by a computer search, verifies that the only exception to the off-diagonal form of the conjecture for $k=4$ comes from the pair $\left(W_{6}, W_{6}\right)$.

THEOREM $2 r\left(K_{4}, W_{6}\right)=19$.

It is rather surprising that $r\left(K_{4}, K_{4}\right)=18, r\left(W_{6}, W_{6}\right)=17$, but $r\left(K_{4}, W_{6}\right)=19$, since one would normally expect that the off-diagonal Ramsey number would not exceed the maximum of the corresponding diagonal Ramsey numbers.

The wheel $W_{5}=K_{1}+C_{4}$ with 4 spokes has chromatic number 3, thus it would not be surprising for $r\left(W_{5}\right)<r\left(K_{4}\right)$. In fact, the next result verifies that this is true.

THEOREM $3 r\left(W_{5}\right)=15$.

## 2 Ramsey Numbers for Wheels

For any integer $k \geq 4, W_{k}$ will denote the wheel $K_{1}+C_{k-1}$ with $k$ vertices and $k-1$ spokes. Thus, $W_{4}$ is isomorphic to $K_{4}$. Also, $W_{3}$ will denote the complete graph $K_{3}$. For graphs $G$ and $H$ the Ramsey number $r(G, H)$ is the smallest positive integer $n$ such that for every graph $F$ with at least $n$ vertices, either $F \supseteq G$ or $\bar{F} \supseteq H$. If $H=G$, then $r(G, H)$ will simply be denoted by $r(G)$. Specific notation and terminology will be introduced as needed, but we will generally follow the notation of [2].

Using computational techniques described in section 3 the Ramsey numbers $r\left(W_{i}, W_{j}\right)$ for $3 \leq i, j \leq 6$ can be determined. They are listed in Table 1 .

Those entries in Table 1 not marked with an asterisk are already in the literature. The classical Ramsey numbers $r\left(W_{3}\right)=6$ and $r\left(W_{3}, W_{4}\right)=9$ are well known. In [9] Greenwood

## TABLE 1

$$
r\left(W_{i}, W_{j}\right)
$$

| $i^{j}$ | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: |
| 3 | 6 | 9 | 11 | 11 |
| 4 | 9 | 18 | 17 | $19^{*}$ |
| 5 | 11 | 17 | 15 | $17^{*}$ |
| 6 | 11 | $19^{*}$ | $17^{*}$ | $17^{*}$ |

and Gleason proved $r\left(W_{4}\right)=18$. More generally, Chvátal and Harary in [3] and [4] determined all Ramsey numbers of pairs of graphs with at most 4 vertices. Clancy in [6] calculated most of the Ramsey numbers for pairs of graphs with at most 4 and 5 vertices respectively. In particular, $r\left(W_{3}, W_{5}\right)=11$ can be found there. The Ramsey table of Clancy was expanded by Hendry in [10] to include most pairs of graphs with at most 5 vertices, and this table includes $r\left(W_{4}, W_{5}\right)=17$ and $r\left(W_{5}\right)=15$. All Ramsey numbers for a triangle versus any graph with at most 6 vertices were determined in [8]; in particular, $r\left(W_{3}, W_{6}\right)=11$.

Chvátal and Schwenk in [5] proved that $17 \leq r\left(W_{6}\right) \leq 20$, and the upper bound was lowered to 19 in [7]. The following graph $H_{1}$ on 16 vertices described in [5] gives the lower bound for $r\left(W_{6}\right)$. (We will, when possible, denote $(i, j)$ by just $i j$.)

$$
\begin{gathered}
V\left(H_{1}\right)=\{0,1\} \times\{0,1, \cdots, 6,7\} \\
E\left(H_{1}\right)=\{(i j, k \ell):|j-\ell|=0,1,4,7\} .
\end{gathered}
$$

The graph $H_{1}$ is transitive, so the neighborhoods of all of the vertices of $H_{1}$ are isomorphic. It is straightforward to verify that the neighborhoods of 00 in $H_{1}$ and $\bar{H}_{1}$ are the graphs in Figure 1. Neither of these neighborhoods of 00 contain a $C_{5}$, so clearly $r\left(W_{6}\right)>16$. Also, the neighborhood in $H_{1}$ contains no $C_{4}$, so $r\left(W_{5}, W_{6}\right)>16$.


Figure 1: Neighborhood of the vertex 00

For a lower bound for $r\left(W_{4}, W_{6}\right)$, first consider the graph $H_{2}^{\prime}$ of order 16 defined as follows:

$$
\begin{gathered}
V\left(H_{2}^{\prime}\right)=\{0,1\} \times\{0,1, \cdots, 6,7\} \\
E\left(H_{2}^{\prime}\right)=\{(i j, k \ell):|j-\ell|=1,2,6,7\} .
\end{gathered}
$$

(This graph is sometimes expressed as $\bar{K}_{2} \otimes C_{8}^{2}$.) Let $H_{2}$ be the graph of order 18 obtained from $H_{2}^{\prime}$ by adding adjacent vertices $\alpha$ and $\beta$ with $\alpha$ adjacent to those pairs in $H_{2}^{\prime}$ that end in an even integer and $\beta$ adjacent to those pairs that end in an odd integer. The graph $H_{2}$, which is pictured in Figure 2, is a 9-regular graph of order 18.


Figure 2: $\mathrm{H}_{2}$

There are clearly two orbits of the automorphism group of $H_{2}$, with one class containing $\alpha$ and $\beta$, and with the other class containing the remaining 16 vertices. It is straightforward
to check that the neighborhood of $\alpha$ (and likewise $\beta$ ) in $H_{2}$ is isomorphic to $K_{4,4} \cup K_{1}$. Also, the neighborhood of $\alpha$ in $\bar{H}_{2}$ is isomorphic to $K_{4} \cup K_{4}$. The neighborhoods of 00 in $H_{2}$ and $\bar{H}_{2}$ are pictured in Figure 3. There is no $C_{3}$ in the neighborhood of any vertex in $H_{2}$, and no $C_{5}$ in the neighborhood of any vertex in $\bar{H}_{2}$. It follows that $r\left(W_{4}, W_{6}\right)>18$.


Figure 3: Neighborhood of the vertex 00

Given graphs $G$ and $H$, a graph $F$ is said to be $(G, H)$ - free if $F \nsupseteq G$ and $\bar{F} \nsupseteq H$. Of course, the Ramsey number $r(G, H)$ is the smallest number such that there is no $(G, H)$-free graph with that number of vertices. The verification that $r\left(W_{6}, W_{6}\right)=17, r\left(W_{4}, W_{6}\right)=18$ and $r\left(W_{5}, W_{6}\right)=17$ involves an exhaustive computer search to determine all nonisomorphic graphs that are $(G, H)$-free for the appropriate graphs $G$ and $H$. The procedure is described in detail in the next section. These calculations yielded the numbers in the Tables 2, 3 and 4 for the pairs $\left(W_{6}, W_{6}\right),\left(W_{5}, W_{6}\right)$, and $\left(W_{4}, W_{6}\right)$ respectively.

Table 2 indicates that there are precisely two $\left(W_{6}, W_{6}\right)$-free graphs of order 16. These two graphs are the graphs $H_{1}$ and $\bar{H}_{1}$ described by Chvátal and Schwenk in [5]. Likewise, the graph $H_{1}$ is the unique ( $W_{5}, W_{6}$ )-free graph of order 16 indicated in Table 3. The two ( $W_{4}, W_{6}$ )-free graphs of order 18 indicated in Table 4 are the graph $H_{2}$ pictured in Figure 2, and the graph obtained from $H_{2}$ by deleting the edge between the vertices $\alpha$ and $\beta$ of $H_{2}$.

It is surprising that the two maximum $\left(W_{6}, W_{6}\right)$-free graphs are so different in the diagonal Ramsey case $r\left(W_{6}\right)$. Usually, the extremal graphs in such cases are self-complementary or nearly so. Also, Table 2 shows the extremely large decrease in the number of $\left(W_{6}, W_{6}\right)$-free graphs as the order changes from 15 to 16 , which is unusual. The more typical pattern is given in Table 3 and Table 4.

The known values in Table 1 were also verified using the same search techniques. As a consequence of these calculations, the number of $\left(W_{i}, W_{j}\right)$-free graphs were determined for

TABLE 2
Nonisomorphic $\left(W_{6}, W_{6}\right)$-free graphs

TABLE 3 Nonisomorphic ( $W_{5}, W_{6}$ )-free graphs

TABLE 4 Nonisomorphic ( $W_{4}, W_{6}$ )-free graphs

| \# of vertices | \# of graphs |  |  |
| :---: | :---: | :---: | :---: |
| 1 | 1 |  |  |
| 2 | 2 |  |  |
| 3 | 4 |  |  |
| 4 | 10 |  |  |
| 5 | 29 |  |  |
| 6 | 112 |  |  |
| 7 | 543 |  |  |
| 8 | 3546 |  |  |
| 9 | 28233 |  |  |
| 10 | 232337 |  |  |
| 11 | 1651381 |  |  |
| 12 | 8437954 |  |  |
| 13 | 27039916 |  |  |
| 14 | 43625194 |  |  |
| 15 | 34035296 |  |  |
| 16 | 43072 |  |  |
| 17 | 148 |  |  |
| 18 | 2 |  |  |
| total | 115097780 |  |  |
|  |  |  |  |
|  |  |  |  |

$i, j=3$ or 4 , and these values are given in Tables 5,6 and 7 . (Table 7 can be found in [12].)
The same computational techniques used to verify the entries in Table 1 can also be used to determine $r\left(W_{3}, W_{k}\right)$ for larger values of $k$. In particular, it can be shown that $r\left(W_{3}, W_{7}\right)=13, r\left(W_{3}, W_{8}\right)=15, r\left(W_{3}, W_{9}\right)=17, r\left(W_{3}, W_{10}\right)=19$, and $r\left(W_{3}, W_{11}\right)=21$. ¿From this information it is reasonable to conjecture that $r\left(W_{3}, W_{k}\right)=2 k-1$ for $k \geq 6$. This is consistent with the result in [1] that $r\left(K_{3}, G_{k}\right)=2 k-1$ for any sparse graph $G_{k}$ of order $k$ (sparse, in this case, means at most $17 k / 15$ edges). Information on the number of ( $W_{3}, W_{j}$ )-free graphs for $3 \leq j \leq 11$ is given in Table 8.

## 3 Computational Procedures

This section describes the computational process by which we generated the set of all ( $W_{i}, W_{j}$ )-free graphs for various $(i, j)$. Similar methods have been used before in the construction of cubic graphs [13] and several Ramsey number computations [12], [14].

TABLE 5
Nonisomorphic $\left(W_{5}, W_{5}\right)$-free graphs

| \# of vertices | \# of graphs |
| :---: | :---: |
| 1 | 1 |
| 2 | 2 |
| 3 | 4 |
| 4 | 11 |
| 5 | 28 |
| 6 | 104 |
| 7 | 402 |
| 8 | 1876 |
| 9 | 7246 |
| 10 | 18162 |
| 11 | 18792 |
| 12 | 6028 |
| 13 | 533 |
| 14 | 62 |
| total |  |
|  |  |

TABLE 6 Nonisomorphic $\left(W_{4}, W_{5}\right)$-free graphs

| \# of vertices | \# of graphs |
| :---: | :---: |
| 1 | 1 |
| 2 | 2 |
| 3 | 4 |
| 4 | 10 |
| 5 | 26 |
| 6 | 94 |
| 7 | 401 |
| 8 | 2307 |
| 9 | 15452 |
| 10 | 104314 |
| 11 | 531892 |
| 12 | 1437877 |
| 13 | 865055 |
| 14 | 111153 |
| 15 | 2891 |
| 16 | 82 |
| total | 3071561 |

TABLE 7
Nonisomorphic $\left(W_{4}, W_{4}\right)$-free graphs

| \# of vertices | \# of graphs |
| :---: | :---: |
| 1 | 1 |
| 2 | 2 |
| 3 | 4 |
| 4 | 9 |
| 5 | 24 |
| 6 | 84 |
| 7 | 362 |
| 8 | 2079 |
| 9 | 14701 |
| 10 | 103706 |
| 11 | 546356 |
| 12 | 1449166 |
| 13 | 1184231 |
| 14 | 130816 |
| 15 | 640 |
| 16 | 2 |
| 17 | 1 |
| total | 3432184 |

Let us denote by $W F(i, j ; n)$ the set of all $\left(W_{i}, W_{j}\right)$-free graphs with $n$ vertices. The result of applying the permutation $\alpha$ to the labels of any labelled object $X$ will be denoted by $X^{\alpha}$, and also $\operatorname{Aut}(G)$ is the automorphism group of the graph $G$, represented as a group of permutations of $V(G)$.

Suppose that $\theta$ is a function defined for any $G \in \bigcup_{n \geq 2} W F(i, j ; n)$ which satisfies these properties:
(i) $\theta(G)$ is an orbit of $\operatorname{Aut}(G)$,
(ii) the vertices in $\theta(G)$ have maximum degree in $G$, and
(iii) for any $G$, and any permutation $\alpha$ of $V(G), \theta\left(G^{\alpha}\right)=\theta(G)^{\alpha}$.

It is easy to implement a function satisfying the requirements for $\theta$ by using the program nauty [11]. Given $\theta$, and $G \in W F(i, j ; n)$ for some $n \geq 2$, the parent of $G$ is the graph $\operatorname{par}(G)$ formed from $G$ by removing the first vertex in $\theta(G)$ and its incident edges. The properties of $\theta$ imply that isomorphic graphs have isomorphic parents. It is also easily seen that $\operatorname{par}(G) \in W F(n-1)$. Since $W F(i, j ; 1)=\left\{K_{1}\right\}$, we find that the relationship "par" defines a

TABLE 8
Nonisomorphic ( $W_{3}, W_{j}$ )-free graphs

| j | $r\left(W_{3}, W_{j}\right)$ | Total \# <br> $r\left(W_{3}, W_{j}\right)$-free <br> graphs | $\# r\left(W_{3}, W_{j}\right)$-free <br> graphs of order <br> $r\left(W_{3}, W_{j}\right)-1$ |
| :---: | :---: | :---: | :---: |
| 3 | 6 | 9 | 1 |
| 4 | 9 | 48 | 3 |
| 5 | 11 | 106 | 1 |
| 6 | 11 | 269 | 37 |
| 7 | 13 | 808 | 61 |
| 8 | 15 | 2862 | 92 |
| 9 | 17 | 13268 | 141 |
| 10 | 19 | 107355 | 201 |
| 11 | 21 | 1742876 | 288 |

rooted directed tree $T$ whose vertices are the isomorphism classes of $\bigcup_{n \geq 1} W F(i, j ; n)$, with the isomorphism class $\left\{K_{1}\right\}$ as the root. If $\nu$ is a node of $T$, then the children of $\nu$ are those nodes $\nu^{\prime}$ of $T$ such that for any $G \in \nu^{\prime}$ we have $\operatorname{par}(G) \in \nu$. The set of children of $\nu$ can be found by the following algorithm, whose correctness follows easily from the definitions:
(a) Let $G$ be any representative of the isomorphism class $\nu$. Suppose that $G$ has $n$ vertices and maximum degree $\Delta$.
(b) Let $L=L(G)$ be a list of all subsets $X$ of $V(G)$ such that
(b.1) either $|X|>D$, or $|X|=D$ and $X$ does not include any vertex of degree $D$,
(b.2) if $G(X)$ is the graph of order $n+1$ formed from $G$ by appending a new vertex $x$ adjacent to $X$, then $G(X)$ is $\left(W_{i}, W_{j}\right)$-free and $x \in \theta(G(X))$.
(c) Remove isomorphs from amongst the set $\{G(X) \mid X \in L\}$. The remaining graphs form a set of distinct representatives for the children of $\nu$.

It is not hard to show that any isomorphs at step (c) are due to the equivalence of two sets $X$ under $\operatorname{Aut}(G)$. In the computational process, we have the choice of using generators for $\operatorname{Aut}(G)$ to remove such equivalent sets, or using canonical labelling to detect isomorphs amongst the graphs $G(X)$. Both methods are available using the facilities of nauty; we chose the second for computational convenience even though the first should be slightly faster.

This approach has a number of important advantages over other methods. In particular, isomorph rejection need be performed only within very small families of graphs. For example, even though $|W F(4,4,14)|=43625194$, no isomorphism class of $W F(4,4,13)$ has more than 49 children. Secondly, the guaranteed non-isomorphism of the outputs permits them to be processed as they are generated, without the need to store them. Thirdly, it is very easy to split the generation task into completely independent pieces which can be run separately.

The execution time for these computations was typically about 50 milliseconds per output graph on a Sun workstation rated at 12 mips . The longest computation was for $\left(W_{4}, W_{6}\right)$-free graphs, which took about 2.5 mip-years in total.

## References

[1] S. A. Burr, P. Erdős, R. J. Faudree, C. C. Rousseau and R. H. Schelp, An Extremal Problem in Generalized Ramsey Theory, ARS Combinatoria 10, (1980), 193-203.
[2] G. Chartrand and L. Lesniak, Graphs and Digraphs, Wadsworth \& Brooks/Cole, Monterey, California (1986).
[3] V. Chvátal and F. Harary, Generalized Ramsey Theory for Graphs II, Small Diagonal Numbers, Proc. Amer. Math. Soc. 32, (1972), 389-394.
[4] V. Chvátal and F. Harary, Generalized Ramsey Theory for Graphs III, Small OffDiagonal Numbers, Pac. J. Math. 41, (1972), 335-345.
[5] V. Chvátal and A. Schwenk, On the Ramsey Number of the Five-Spoked Wheel, Graphs and Combinatorics. Springer-Verlag, Berlin, (1974), 247-261.
[6] M. Clancy, Some Small Ramsey Numbers, J. Graph Theory 1, (1977), 89-91.
[7] R. J. Faudree, On the Ramsey Number of the Five-Spoked Wheel, Congressus Numerantium 44, (1984), 47-64.
[8] R. J. Faudree, C. C. Rousseau, and R. H. Schelp, All Triangle - Graph Ramsey Numbers for Connected Graphs of Order Six, J. Graph Theory 4, (1980), 293-300.
[9] R. E. Greenwood and A. M. Gleason, Combinatorial Relations and Chromatic Graphs, Canad. J. Math. 7, (1955), 1-7.
[10] G. R. T. Hendry, Ramsey Numbers for Graphs with 5 Vertices, J. Graph Theory 13, (1989), 245-248.
[11] B. D. McKay, nauty User's Guide (version 1.5), Tech. Rpt. TR-CS-90-02, Dept. Computer Science, Austral. Nat. Univ. (1990).
[12] B. D. McKay and S. P. Radziszowski, A new upper bound for the Ramsey number $R(5,5)$, Australasian J. Combinatorics, to appear.
[13] B. D. McKay and G. F. Royle, Constructing the cubic graphs on up to 20 vertices, Ars Combinatoria 21A (1986) 129-140.
[14] B. D. McKay and K. M. Zhang, The value of the Ramsey number R(3, 8), J. Graph Theory, to appear.

