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Abstract

This paper studies the probability that a random tournament with specified
score sequence contains a specified subgraph. The exact asymptotic value is found
in the case that the scores are not too far from regular and the subgraph is not too
large. An n-dimensional saddle-point method is used. As a sample application, we
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prove that almost all tournaments with a given score sequence (not too far from
regular) have a trivial automorphism group.



1 Introduction

A tournament is a digraph such that between every pair of vertices there is exactly one
arc. Throughout this paper, we fix the vertex set to be V. ={1,2,... ,n}. Let dj, d;“ be
the in-degree and out-degree of vertex j in a tournament. Define §; = d;“ —d; and call
81,09, . ..,0, the excess sequence of the tournament. Let 6 = max{|d|,..., ||}

Let H be a digraph with vertex set V' and arc set A(H) such that between ev-
ery pair of distinct vertices there is at most one arc. We use d(H) and dj (H) to
denote the out-degree and in-degree, respectively, of vertex j in H. Define §;(H) =
aF(H) — d7 (H), d;(H) = d' () + d; (), 6(H) = max{[6,(H)],...,10,(H)]}, and
d(H) = max{d,(H),...,d,(H)}.

Let T(H;6y,...,0,) be the number of tournaments that contain a specified digraph
H and have excess sequence 0y, ...,0,. As special cases, we have T(dy,02,...,0d,) to de-
note the number of all tournaments that have excess sequence d1,...,d,, and T(n) =
T(0,0,...,0) to denote the number of labelled regular tournaments with n vertices.

Spencer [1] evaluated T'(n) to within a factor of (1 4+ o(1))" and obtained the estimate
T(01,...,6,) =T(n) exp((—% + 0(1))2 672/71)
j=1

for tournaments close to regular. The asymptotic value of T'(n) was obtained much later
by McKay [2], who showed that

T(n) ~ <2n+1>(n1)/2<ﬁ>1/2 (n odd).

nm €

Recently, McKay and Wang [3] obtained the asymptotic value of T'(dy,...,d,) for 6 =
o(n®*). The following is an immediate consequence of [3, Theorem 4.4].

Theorem 1 Suppose § = o(n?/?). Then

T(5 5 ) n1/2 on+1 (7171)/2e 1 1 1 iéQ
..., 0p ~ X _ [ — - — :
breees nm P{™3 on n? ; J

1 n A 1 n ) 2
1203 2.5 _4—n4<26j> )
j=1

J=1

McKay suggested that a similar argument can be used to obtain asymptotics for
T(H;01,...,0,). We carry out this task in this paper. To simplify the analysis, we shall
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restrict ourselves in the range d = o(n*?) and d(H) = O(n'/>"¢'), where € is any positive
constant,.

For a given digraph H and a given excess sequence 4, ds, ..., 0,, define
1 1
Bro= 5o > (20:8;(H) = 5 (H)) + 5= > 075;(H)
1<j<n 1<j<n

b S (), (1)

1<j<n  1<j<n

and
2
(J,k)EA(H)
We shall prove

Theorem 2 Suppose § = o(n*?), d(H) = O(n'/?>=¢) and d(H) § = o(n), where € is any
positive constant. Then

T(H, 61, 62, ceey 6n)/T(61,62, .. ,6n) ~ 2—m exp(m/n + ﬂl + ﬂg)

uniformly as n — oo.

The rest of the paper is organized as follows. In Section 2 we derive the asymptotic
value of an integral. In Section 3, we use Cauchy’s Theorem to represent T'(H; 01, 0o, . - ., )
as an integral and then apply the saddle point method and the results from Section 2 to
obtain Theorem 2. In Section 4, we discuss several consequences of Theorem 2.

2 An Integral

In this section, we approximate the value of an n-dimensional integral we will need later.
Define

Un(t) = {2 = (z1,22, ..., 2n) ‘ 7] <t,i=1,2,...,n}

Lemma 1 Let E, F and 0 < € < 1/20 be constants and let A;i(n), Bg(n), Cjr(n),
Dji(n), aj(n) be real-valued functions.
Suppose

(i)

—_

n—

(1455 + Apyl) = O(n'27%)
=1
uniformly for all 1 <k <n—1, and

<
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(i) Buln) = O(n*), Cyaln) = O(n~*), Duln) = O %), as(m) = O(n /™)
uniformly for 1 < 5,k <n —1.

Define
1 1
flz) = exp<—§(n—1) Z (1—aj(n)):c§—|—§z.rjxk+nE Z T
1<j<n—1 £k 1<k<n—1
2
+ F( Z xi) + Z Ajp(n)zz, +in Z By(n)z}
1<k<n—1 j#k 1<k<n—1
+iY  Ci(n)aiz; + > Dip(n)ziz; + 0(1)>,
j#k J#k
where x = (x1,%9,...,Tpn_1). Then
21\ (n—=1)/2
/ f(z)de = nm(i) exp< > aj(n)/2+3E+F—|—0(1)>.
U1 (n=1/2+¢) n 1<j<n—1

Proof. Let I be the above integral and define the linear transformation 77 :
zi=(1- aj(n))1/2:rj, 1<j<n-1.

Let V} be the image of U,,_1 (n~"/2¢) under T}. Tt is clear that V} is between U,,_(n~"'/2+¢/2)
and U,_1(n~"/?*2¢) and

I = H (l—aj(n))—l/Qx/ exp(—%(n—l)Zz?—i—%szzk
1<j<n—1 Vi 7k
2
—l—nEZz;lﬂLF(Zz?) +ZA;-k(n)zjzk+in Z Byi(n)z}

j#k 1<k<n-1
+iY Cie(n)zizi+ Y Dj(n)ziz; + o(l))dz,
i#k i#k
where A, satisfies the same conditions as Ajy.

Next we perform a second linear transformation 75 to diagonalise the major quadratic
terms of the integrand:
zi=y;—Bum, 1<j<n-—1,
where f = 1/(v/n+ 1) and p,, = Z;L;ll y* for any m. Let V5, be the image of V; under
T,. Tt is easily determined that the determinant of 75 is \/n, and so

1= va I a-am)2x [

exp (—%nug +nEpy + Fu2
1<j<n—1 V2



+ZA n)Y;ye +in Z Bi(n

j#k 1<k<n-—1
1 3 Contnliy + 30 Dty +of1 >)dy,
J#k J#k

The region of integration V5 is somewhat irregular, but by the same method as used
in [2, Theorem 2.1], we can see that it can be replaced by U,_;(n~'/2¢) with negligible
change of value.

Finally we use an average technique introduced in [4, Lemma 3] to show that some
unsymmetrical terms are negligible. Let fo(y) = —snus + nEpy + Fpd and let f(y) be
the integrand of the previous integral.

For 1 < m < n, define

n—1 n—1 n—1
Ynly) = exp <fo(y) S Ayt in Y Bun)g
n—1 n—1 n—1 n—1
+i303 Culnuty + 3 3 D).
k=1 j=m k=m j=m

where A%;(n), Cjj(n) and Dj;(n) are interpreted as zero for 1 < j <n — 1. Then

hi(y) = fy) exp(o(1),  ¥nly) = exp(fo(v)),

and
wm (y) = merl(y) eXp(Z)a
with
n—1
Z = (A5, (n) + A7) Yiym + i 0B (n)ys,
j=m
n—1 n—1 n—1
+0 Y Coktiitm + > Dimyiti + > Donkyms-
k=1 j=m k=m
Define

775771(-74) = %(¢m(y) + 77”7’7’L(y17 vy Ym—15 = Yms Ym+1, - - '?yn—l))‘

Since U,_1(n~"/?*¢) is symmetric about the origin, we have

/ U (y) dy = / Um (y) dy.
Up—1(n=1/2+e) Up—1(n=1/2+¢)
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Using
(e +e77))2 = exp(O(ZQ))

we obtain, for y € U,_;(n~'/?*¢), that

&m(y) = merl (y) eXp(O(nilik))

uniformly over m, and hence

/ wm(y) dy - / ’meJrl(y) dy
Up—1(n=1/2+¢) Un_1(n=1/2+¢)
= exp (O(n_l_zf)) /

Up—1 (n—1/2+6

| Ym+1(y)| dy.
Applying the same argument to |y, (y)|, we obtain

/ ()] dy = exp (O (™)) / s (3)] dy.
Un_l(n—1/2+e) Un_l(n—1/2+s)

Therefore

/ )] dy = exp (0 29)) [ o),
Up—1(n—1/2+¢) Up_1(n—1/2+¢)

and finally

/ V1 (y) dy —/ Un(y) dy
Up—1(n—1/2+e) Up_1(n=1/2+¢)
= exp(O(n_QE))/

Un_l(n71/2+e

Putting these results together, we find that

T T a=as)2x [ folw) .

1<j<n—1 Un—1(n=1/2%e)

which is covered by [3, Theorem 2.1]. This gives the desired result on noting that

H (1 —aj(n)) "% ~ exp (% Z aj>. |

1<j<n—1 1<j<n—1



3 Proof of Theorem 2

Throughout this section, we assume & = o(n*?), d(H) = O(n'/>=¢), d(H) 6 = o(n), and
that ¢ < 1/100 is a positive constant.

For a given digraph H, define x,, = 1if (j, k) € A(H), and x,; = 0 otherwise. Also
define Vi = 6]' — 6](H) Let

1
) = Glor,ae,.om) = ] @'oe+ae) [ —

—1 —1 :
€T:;T Tr. T
1<j<k<n (jk)EA(H) "Ik T Tk

Then T(H; 4y, . ..,6,) is the coefficient of #5* - - - 0" in G(=). Setting x; = r; exp(if;), we
have by Cauchy’s Theorem that

T(H;0y,...,6,) = (2m)™ H r;(;j / G(rie, . .. rpe’) exp <—i Z 6j9j> dae.
n ()

1<j<n 1<j<n
Define
7“92- exp(i(Gj — Gk)) + 72 exp(i(@k — Gj))
Tk (0) = 72 4 2 )
TR
o0 = e X 60)) I w0 I @m0,
1<j<n 1<j<k<n (k)EA(H)
and

= /U g @)

Since ¢(0) is invariant under the translation of any ¢; by 7, we obtain

T(H;61,...,0,) = 7 "I H r;(sj H (rj/re +1i/T5)
1<j<n 1<j<k<n

x I /s +rd). (3)

(J:k)EA(H)

Since the integrand is invariant under a uniform translation of 6; by 6,, and Z;’:l 9; =0,
we have
I:ﬂ'/ 9(91,92,...,0,,_1,0) d0’,
Un_1(7/2)
where @ = (0y,...,0, 1). For a positive constant e satisfying ¢ < €'/6, let I; be the
contribution to I from 6 € U,_;(n~"/?*). As in [3], we first estimate I; and then show



that I; ~ I. In the following analysis, we shall assume 6’ € U,_;(n~"/?*¢) and 6,, = 0. To
apply the saddle point method, it is convenient to choose r; = /(1 + b;)/(1 — b;), where

bj = vi/n+ di(H)y;/n* = 3 (e + Xip) %/ + %5 Y i /n
k=1 k=1

It is important to note that b; = v;/n + o(1/n) = o(n"/*) and Y7, b; = 0. Let
aje = (r] =)/ (r} +717) = (bj — b) /(1 — biby).
Using Taylor expansion, we have, for 8’ € U,_;(n~'/?*¢), that
Tin(0) = exp(ia(0; — 0) + (=3 + 3a2,)(0; — 00

+ Lagi(0; — 01)* — L0, — 0,) + O(n_Q“')).

Noting that S, (xjk + X&) = d;(H) = O(n'/*=) and expanding the powers of 6; —

we obtain
g(@) = exp(i Z ( Z Gk —5j+6j(H) - Z (Xjk"'ij)ajk)gj
1<j<n N 1<k<n 1<k<n
+ > (—%(n—1)+ > a§k/2+dj(H)/z>9§
1<j<n—1 1<k<n
+ %20]0;9 + Z(—aik/Z — Xjk:(l — a?k))ﬁjﬁk
ik ik
+in Y O 40> On )00
1<j<n—1 J#k
2
— 5 Y 9;*-%( > 9§> +Zej9,§+o(1)>.
1<j<n-—1 1<j<n—1 j#k

Using (4), (5) and the comment after (4), we have

> ap =7+ di(H)y/n— Y (e + xki)w/n + o(n™?)

1<k<n 1<k<n

and

> (e + xki)age = di(H)y/n= Y O+ Xig)ve/n+ o(n ),
1<k<n 1<k<n

(4)

(5)

(6)

gka



and hence

g() = exp< > <—%(n—1)+ > agk/2+dj(H)/2>9§.

1<j<n-—1 1<k<n
+1D 000+ (—ad/2 — xjr(1 = a3y)) 0,0
ik i#k

+in Y O +iY_0n 0,6,

1<j<n—1 7k

2

—in Y 9;*-5( > 9§> +Zej9;°;+o(1)>. (7)

1<j<n—1 1<j<n—1 J#k

Applying Lemma 1 and using

n—l Z Z Jk_n2262+0

1<]<n 1 1<k<n 1<j<n
and
s > il +o(1),
1<g<n 1
we obtain

(n—1)/2
11~7m1/2<2%> exp(m/n—i— Z 592/712—1/2). (8)

1<j<n

The proof of the fact that the contribution to I from the region other than that of I;
is negligible is essentially the same as that of [3] and will be omitted.

Using (4) and (5) with some calculation, we obtain

H (rj/me + 1r/T5) H r;(;j

1<j<k<n 1<j<n
LT R P L o . 2
2n £~ 1 12n3 4= 7 Apt —
1<j<n 1<j<n 1<j<n
1
+— > (6 (H) v + 0k(H)y)
(J:k)eA(H)
1 1
b 3 0 - o X d(i )+ ol1)) )
1<5<n 1<5<n
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and

T A+

(k) EA(H)
exp< Z i Z d;(

1<j<n 1<g<n
*"“‘ > i v :E: 0;(H)8; &
1<j<n 1<j<n 1<j<n
1
T > «7j—7%y/2+5ﬂf07k+5ﬂfﬂvﬁ—+00)>. (10)
(J,k)EA(H)

Now Theorem 2 follows from (3) and (8)—(10).

4 Consequences

From Theorem 2, we see that T(H, 1,0, . ..,0,) usually depends on the structure of the
digraph H. However, it can have much simpler form in some special cases. Noting that

= o ST 5 - B) +oll), Br=—55 3 (5 8) +o()

"gEn (k) EA(H)

Y 16;(H)] = O(n),

1<j<n

when

we obtain the following two corollaries.

Corollary 1 Suppose § = o(n?/?), d(H) = O(n'/?>=¢), d(H)§ = o(n) and
Zlgjgn 0;(H)| = O(n). Then
1
T(H, 61, 62, ey (Sn)/T((Sl, 52, RN 6n) ~ 27 eXp<% + — Z (26](H)59 — 6]2(H))

2n 4~
1<j<n

- # > (G- 5k)2>.

(Jk)EA(H)

Corollary 2 Suppose § = o(n??), m = O(n'/?=¢), and 5(H)§ = o(n). Then

1
T(H:6,.0.....00)/T(51. 00 ..0,) ~ 2 mexp( = S~ 6;(H)S: ).
(s B T B 80) ~ 2 e (50 6,005 )

1<j<n
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In particular,

T(H, 51, 52, ey 6n)/T(61, 62, ey 6n) ~ 2—m
uniformly for all 6 = o(n*?) and m = O(n'/?).

For regular tournaments, we have

Corollary 3 Let T,,(H) be the number of reqular tournaments with n vertices containing
the digraph H. Suppose d(H) = O(n'/?>=). Then, for odd n,

on+1 (n—1)/2 n 1/2 1\™
nn ~ (%) () )

xexp(%—% Z 5]2.(1'17)—2%12 Z (5j(H)—5k(H))2>.

1<j<n (J,k)EA(H)

A simple application of Theorem 2 is the unsurprising fact that very few tournaments
with § = o(n?/?) have nontrivial automorphisms. This allows us to estimate the number
of isomorphism types.

Corollary 4 Suppose § = o(n?*3). Then the number of unlabelled tournaments with
excess sequence 81,09, ..., 0 is asymptotically T (01,09, . ..,0,)/n!.

Proof. Consider a random (labelled) tournament T with excess sequence 4y, da, . . ., Iy,.
It suffices to prove that the expected number of automorphisms of 7" is asymptotically 1.

We know that |Aut(7)| is odd, because T is a tournament. Let g be a non-trivial
permutation of V' of odd order. Define S = S(g) to be the set of vertices moved by g,
and let k = |5].

Consider the set F of pairs of distinct vertices defined by

E={{i,j},{i%j% | ieS,1<j—i<12[Inn] (mod n) }.

It is easy to see that E (considered as an undirected graph) has maximum degree
at most 48[Inn], and that |E| = m for 6k[Inn] < m < 48k[Ilnn]. Define a simple
undirected graph G = G(F, g) whose vertices are the elements of F and whose edges are
the pairs {e, e} for which both e and €9 are in E. From the definition of E, G has at
most m/2 components.

Now consider digraphs H which are orientations of £. Within each component of G,
there are only two orientations that are consistent with ¢ being an automorphism of T,
and so there are at most 2™/2 possibilities for H with that consistency. From Theorem 2,
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we have that each such H is a subgraph of 7' with probability less than 27™ exp(mn~'/3)
for sufficiently large n. Consequently, the probability that ¢ is an automorphism of 7" is
at most

27™/2 exp(mn~3) < n2*

for large n.

There are less than n* permutations of V' that move exactly k vertices, so the total
expected number of nontrivial automorphisms of 7" is asymptotically at most

Zn_k = 0(n™?) = o(1).

This completes the proof. Note that the bound O(n™3) is much larger than the real value;
we have been content to find a bound tending to 0. 1§
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