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Abstract.

We obtain the asymptotic number of labelled tournaments with a given score sequence

in the case where each score is n/2 + O(n3/4+ǫ) for sufficiently small ǫ > 0. Some conse-

quences for the score sequences of random tournaments are also noted. The method used

is integration in n complex dimensions.

1. Introduction.

A tournament is a digraph in which, for each pair of distinct vertices v and w, either

(v,w) or (w, v) is an edge, but not both. A tournament is regular if the in-degree is equal

to the out-degree at each vertex. Let v1, v2, . . . , vn be the vertices of a labelled tournament

and let d−j , d
+
j be the in-degree and out-degree of vj for 1 ≤ j ≤ n. d+

j is also called the score

of vj . Define δj = d+
j − d−j and call δ1, δ2, . . . , δn the excess sequence of the tournament.

Let NT (n; δ1, . . . , δn) be the number of labelled tournaments with n vertices and excess

sequence δ1, . . . , δn. It is clear that NT (n; δ1, . . . , δn) = 0 unless all the excesses have

different parity from n; we will assume this without further mention for the entire paper.

As in [3], let RT (n) = NT (n; 0, . . . , 0) be the number of labelled regular tournaments with

n vertices.

The first attack that we are aware of on the asymptotics of tournaments was due to

Joel Spencer [6]. In particular, Spencer evaluated RT (n) to within a factor of (1 + o(1))n

and obtained the estimate

NT (n; δ1, . . . , δn) = RT (n) exp
(

(

− 1
2 + o(1)

)

∑n
j=1 δ

2
j

n

)

for tournaments close to regular. The asymptotic value of RT (n) as n → ∞ was obtained

by B. D. McKay [3]: for any ǫ > 0,

RT (n) =
(2n+1

πn

)(n−1)/2

n1/2e−1/2
(

1 +O(n−1/2+ǫ)
)

(n odd).

+ Supported in part by Australian Research Council grant 90SARC1045
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We are concerned with the asymptotic value of NT (n; δ1, . . . , δn). Since the generating

function
∏

1≤j<k≤n(x−1
j xk + xjx

−1
k ) enumerates all tournaments by the excess at each ver-

tex, NT (n; δ1, . . . , δn) is the coefficient of xδ1

1 · · · xδn
n . We will estimate this value by using

the saddle-point method on the integral provided by Cauchy’s Theorem.

The major results of this paper first appeared in the doctoral thesis of the second

author [7], of which the first author was the supervisor.

2. An integral.

In this section, we will use the averaging method [5] to approximate the value of an

n-dimensional integral we will need later. Define the real n-dimensional cube

Un(t) = {x = (x1, x2, . . . , xn)
∣

∣ |xi| ≤ t, i = 1, 2, . . . , n}

Theorem 2.1. Let ǫ > 0 be sufficiently small. Suppose 0 < t′ ≤ t are constants, and that

(i) for 1 ≤ j, k ≤ n − 1, Bk(n) and Cjk(n) are purely imaginary functions which are

uniformly O(n−1/4+ǫ),

(ii) for 1 ≤ j, k ≤ n − 1, A(n), Djk(n), Ek(n) and F (n) are real functions such that

t′ ≤ A(n) ≤ t, |Djk(n)| ≤ t, |Ek(n)| ≤ t and |F (n)| ≤ t for n > 0.

Further suppose that δ > 0 and that

f(x) = exp
(

−A(n)n

n−1
∑

k=1

x2
k + n

n−1
∑

k=1

Bk(n)x3
k +

∑

j 6=k

Cjk(n)x2
kxj

+
∑

j 6=k

Djk(n)x3
kxj + n

n−1
∑

k=1

Ek(n)x4
k + F (n)

(

n−1
∑

k=1

x2
k

)2

+O(n−δ)
)

is integrable for x ∈ Un−1(n
−1/2+ǫ). Then

∫

Un−1(n−1/2+ǫ)

f(x) dx

=
( π

A(n)n

)(n−1)/2

exp
(3

∑n−1
k=1 Ek(n)

4A(n)2n
+

F (n)

4A(n)2
+O(n−1/4+ǫ + n−δ)

)

.

Proof. Define µ2 =
∑n−1

k=1 x
2
k and Wn−1(ρ) = Un−1(n

−1/2+ǫ) ∩ {x |µ2 = ρ2} for ρ ≥ 0.

We approach the integral by considering integration first over Wn−1(ρ) and then over ρ,

although this is not the way we obtain the final estimate. Note first that Wn−1(ρ) = ∅ if

ρ > nǫ.
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For x ∈Wn−1(ρ) and ρ ≤ nǫ, we have

∣

∣

∣
n

n−1
∑

k=1

Bk(n)x3
k

∣

∣

∣
≤ tρ2n1/2+2ǫ,

∣

∣

∣

∑

j 6=k

Djk(n)x3
kxj

∣

∣

∣
≤ tρ2n2ǫ,

∣

∣

∣
n

n−1
∑

k=1

Ek(n)x4
k

∣

∣

∣
≤ tρ2n2ǫ,

∣

∣

∣

∑

j 6=k

Cjk(n)x2
kxj

∣

∣

∣
≤ tρ2n1/2+2ǫ,

∣

∣

∣
F (n)

(

n−1
∑

k=1

x2
k

)2∣
∣

∣
≤ tρ2n2ǫ.

We now divide the region of integration into three parts. Let 0 < ∆ < 1/4 − ǫ/2 and

define

K1 = Un−1(n
−1/2+ǫ) ∩

{

x
∣

∣ 0 ≤ ρ < (2A(n))−1/2(1 − n−∆)
}

,

K2 = Un−1(n
−1/2+ǫ) ∩

{

x
∣

∣ (2A(n))−1/2(1 − n−∆) ≤ ρ ≤ (2A(n))−1/2(1 + n−∆)
}

, and

K3 = Un−1(n
−1/2+ǫ) ∩

{

x
∣

∣ (2A(n))−1/2(1 + n−∆) < ρ ≤ nǫ
}

.

The integral over K1 can be bounded by multiplying the range of ρ by the maximum

value of the integrand in that range. Using the fact that the surface area of an n-dimensional

sphere of radius ρ is 2πn/2ρn−1/Γ (n/2), we find

∣

∣

∣

∫

K1

f(x) dx
∣

∣

∣
≤

( π

A(n)n

)(n−1)/2

exp
(

−n1−2∆ +O(n1/2+ǫ)
)

,

and similarly for the integral over K3. Both of these integrals will turn out to be negligible

compared to that over K2, which we now consider.

The function f(x) shows a lot of variation on Wn−1(ρ), ρ ≈ (2A(n))−1/2, making

direct estimation of the integral difficult. Instead, we take advantage of the the fact that

an integral over a region symmetrical about the origin is invariant under averaging of its

integrand over sign changes of the arguments.

For 1 ≤ m ≤ n, define

ψm(x) = exp
(

−A(n)n
n−1
∑

k=1

x2
k + n

n−1
∑

k=1

Ek(n)x4
k + F (n)

(

n−1
∑

k=1

x2
k

)2

+ n
n−1
∑

k=m

Bk(n)x3
k

+

n−1
∑

k=1

n−1
∑

j=m

Cjk(n)x2
kxj +

n−1
∑

k=m

n−1
∑

j=m

Djk(n)x3
kxj +

n2

2

m−1
∑

k=1

Bk(n)
2
x6

k

)

and, for 1 ≤ m ≤ n− 1,

ψ̄m(x) = 1
2

(

ψm(x) + ψm(x1, . . . , xm−1,−xm, xm+1, . . . , xn−1)
)

.

Further define η = 3
2
− 8ǫ. Then we have

∫

Un−1(n−1/2+ǫ)

ψ̄m(x) dx =

∫

Un−1(n−1/2+ǫ)

ψm(x) dx.
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For x ∈ Un−1(n
−1/2+ǫ), since

ψm(x) = ψm+1(x) exp
(

Bm(n)nx3
m +

n−1
∑

k=1

Cmk(n)x2
kxm − 1

2Bm(n)
2
n2x6

m

+
n−1
∑

k=m+1

Dmk(n)x3
kxm +

n−1
∑

k=m+1

Djm(n)x3
mxj +Dmm(n)x4

m

)

and 1
2 (ex + e−x) = exp

(

1
2x

2 +O(x4)
)

for small x, we have ψ̄m(x) = ψm+1(x) exp
(

O(n−η)
)

uniformly over m. Furthermore, f(x) = ψ1(x) exp
(

O(n−δ + n−1/2+3ǫ)
)

and

ψn(x) = exp
(

−A(n)n
n−1
∑

k=1

x2
k + n

n−1
∑

k=1

Ek(n)x4
k + F (n)

(

n−1
∑

k=1

x2
k

)2

+
1

2

n−1
∑

k=1

Bk(n)2n2x6
k

)

.

In K2 we have µ2 = (2A(n))−1
(

1 +O(n−∆)
)

, so

ψn(x) = exp
(

−A(n)n

n−1
∑

k=1

x2
k + n

n−1
∑

k=1

Ek(n)x4
k +

1

2

n−1
∑

k=1

Bk(n)
2
n2x6

k +
F (n)

4A(n)2
+O(n−∆)

)

.

The integral of ψn over Un−1(n
−1/2+ǫ) differs from that over K2 by at most

( π

A(n)n

)(n−1)/2

exp
(

−n1−2∆ +O(n1/2+ǫ)
)

,

as in the estimation of the integral of f over K1 ∪K3. Furthermore,

∫

Un−1(n−1/2+ǫ)

ψn(x) dx

= exp
( F (n)

4A(n)2
+O(n−∆)

)

×
n−1
∏

k=1

∫ n−1/2+ǫ

−n−1/2+ǫ

exp
(

−A(n)nx2 +Ek(n)nx4 + 1
2Bk(n)

2
n2x6

)

dx

=
( π

A(n)n

)(n−1)/2

exp
(3

∑n−1
k=1 Ek(n)

4A(n)2n
+

F (n)

4A(n)2
+O(n−1/2+6ǫ + n−∆)

)

. (2.1)

By the same argument as used in [5], we find that

∫

f(x) dx = exp
(

O(n1−η + n−δ)
)

∫

ψn(x) dx. (2.2)

The theorem now follows from (2.1), (2.2), and the fact that the integral over K1 ∪K3 is

negligible.
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3. The major part of the Cauchy integral.

In this section we will begin the estimation of NT (n; δ1, . . . , δn) by approximating the

Cauchy integral in the region from which the major contribution comes. In outline, our

approach will be to expand the integrand in a Taylor series, eliminate the linear term

by choice of contours, and diagonalise the quadratic term by linear transformations. The

integrand will then be in the form required by Theorem 2.1.

By Cauchy’s Theorem,

NT (n; δ1, . . . , δn) =
1

(2πi)n

∮

· · ·
∮

∏

1≤j<k≤n(x−1
j xk + xjx

−1
k )

xδ1+1
1 · · · xδn+1

n

dx1 · · · dxn,

where each integration is around a simple closed contour encircling the origin once in the

anticlockwise direction. Choosing the jth contour to be a circle of radius rj by substituting

xj = rje
iθj for 1 ≤ j ≤ n, we obtain

NT (n; δ1, . . . , δn) =

∏

1≤j<k≤n

(

rk

rj
+

rj

rk

)

(2π)n
∏

1≤j≤n r
δj

j

I1,

where

I1 =

∫

Un(π)

g(θ) dθ,

g(θ) = exp
(

−i
∑

1≤j≤n

(δjθj)
)

∏

1≤j<k≤n

Tjk(θ),

and

Tjk(θ) =
r2k exp

(

i(θk − θj)
)

+ r2j exp
(

i(θj − θk)
)

r2j + r2k
.

We will begin the evaluation of I1 with the part of the domain which will turn out to

give the major contribution. Let I2 be the contribution to I1 of those θ such that either

|θj − θn| ≤ n−1/2+ǫ or |θj − θn + π| ≤ n−1/2+ǫ for 1 ≤ j ≤ n− 1, where θj values are taken

mod 2π. Since the contributions to I2 from different values of θn are the same, and the fact

that translation of any θj by π leaves the integrand unchanged,

I2 = 2nπ

∫

Un−1(n−1/2+ǫ)

g(θ) dθ′,

where θ′ = (θ1, . . . , θn−1) with θn = 0.

For 1 ≤ j, k ≤ n, define

ajk =
r2j − r2k
r2j + r2k

.

Since we will later choose the radii rj such that uniformly rj = 1 + o(1), we can assume

that ajk = o(1). For θ′ ∈ Un−1(n
−1/2+ǫ), we can expand g(θ) using Taylor’s Theorem to
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obtain

g(θ) = exp
(

∑

1≤j≤n

(

∑

1≤k≤n

ajk − δj
)

iθj

+
∑

1≤j<k≤n

(

− 1
2 + 1

2a
2
jk

)

(θk − θj)
2

−
∑

1≤j<k≤n

i
(

1
3ajk − 1

3a
3
jk

)

(θk − θj)
3

+
∑

1≤j<k≤n

(

− 1
12

+ 1
3
a2

jk − 1
4
a4

jk

)

(θk − θj)
4

+O
(

∑

1≤j<k≤n

|θk − θj |5
)

)

. (3.1)

Our next task will be to choose rj for 1 ≤ j ≤ n so that the coefficients of the linear

terms in (3.1) vanish. That is, we need r1, . . . , rn such that

n
∑

k=1

ajk = δj , (1 ≤ j ≤ n). (3.2)

Substitute r2j = (1 + bj)/(1− bj) for 1 ≤ j ≤ n and consider the functions f1, f2 . . . , fn

defined by

fj(b) =
δj
n

− 1

n

n
∑

k=1

bjbk(bj − bk)

1 − bjbk
, (1 ≤ j ≤ n).

Further define b(0) = (δ1/n, . . . , δn/n) and b
(i)
j = fj(b

(i−1)) for i = 1, 2, . . . . Let ‖ · ‖
denote the maximum norm on R

n, i.e., ‖(x1, . . . , xn)‖ = max1≤k≤n|xk|. Define E =

‖(δ1, . . . , δn)‖/n and assume that E = O(n−1/4+ǫ) and E ≤ 1/100. By a routine induction

computation, we find that

‖b(i+1) − b(i)‖ ≤ 3E3+2i15i (3.3)

for i ≥ 0. It follows that b(i) converges to a vector b which satisfies (3.2). Now define w by

wj =
δj
n

+
δj

∑n
k=1 δ

2
k

n4
+

−δ3j
∑n

k=1 δ
2
k + δ2j

∑n
k=1 δ

3
k

n6

+
3δj

(
∑n

k=1 δ
2
k

)2

n7
+

−δ4j
∑n

k=1 δ
3
k + δ3j

∑n
k=1 δ

4
k

n8

+
−6δ3j

(
∑n

k=1 δ
2
k

)2
+ 6δ2j

∑n
k=1 δ

2
k

∑n
k=1 δ

3
k + 2δj

(
∑n

k=1 δ
3
k

)2 − 2δj
∑n

k=1 δ
2
k

∑n
k=1 δ

4
k

n9

+
12δj

(
∑n

k=1 δ
2
k

)3

n10

for 1 ≤ j ≤ n.
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Lemma 3.1. ‖b − w‖ = O(E9).

Proof. The vector w is the same as b(4) except that terms which are O(E9) have been

rejected. By (3.3),

‖b − b(4)‖ ≤ ‖b(5) − b(4)‖ + ‖b(6) − b(5)‖ + · · · = O(E11),

so the lemma follows.

We can now continue our estimation of I2 by substituting the radii corresponding to b,

that is rj =
(

(1 + bj)/(1 − bj)
)1/2

, into (3.1), causing the linear term to vanish. Note that

ajk = (bj − bk)/(1 − bjbk).

Our next step will be to apply a linear transformation which diagonalises the quadratic

term in (4.3). This will be comprised of the transformation used in [3], which is exact for

regular tournaments (ajk ≡ 0), followed by a second which corrects for the error in the first.

Define V = Un−1(n
−1/2+ǫ) and let T : R

n−1 7−→ R
n−1 be the linear transformation

defined by T : θ′ 7−→ y = (y1, y2, . . . , yn−1), where

yj = θj −
n−1
∑

k=1

θk/(n + n1/2)

for 1 ≤ j ≤ n − 1. Let V1 = T (V ) and s = 1/(n1/2 + 1). By straightforward calculations

we have det(T ) = n1/2 and

V1 =
{

y
∣

∣ |yj + s
n−1
∑

k=1

yk| ≤ n−1/2+ǫ for 1 ≤ j ≤ n− 1
}

.

Applying the transformation yields

g(θ) = exp
(

n−1
∑

k=1

(

−n
2

+ 1
2

n
∑

j=1

a2
kj + sa2

nk + 1
2
s2

n−1
∑

l=1

a2
nl

)

y2
k

+
∑

j 6=k

(

− 1
2a

2
kj + sa2

nj + 1
2s

2
n−1
∑

l=1

a2
nl

)

yjyk

+

n−1
∑

k=1

(

1
3

n
∑

j=1

akj − 1
3

n−1
∑

j=1

a3
kj

)

iy3
k

+
∑

j 6=k

(

−akj +O(E2)
)

iy2
kyj

+
n−1
∑

k=1

(

n−1
∑

j=1

(

− 1
12

+ 1
3
a2

kj − 1
4
a4

kj

)

)

y4
k

+
∑

j 6=k

O(1)y3
kyj

−
∑

j 6=k

1
4y

2
ky

2
j

+O(n−1/2+6ǫ)
)

, (3.4)
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where each O( ) term is uniform over the subscript set of the sum involved, and each such

term except the last is independent of y.

Denote

uk = −n
2

+ 1
2

n
∑

j=1

a2
kj + sa2

nk + 1
2s

2
n−1
∑

l=1

a2
nl,

vkj = − 1
2a

2
kj + 1

2 (a2
nj + a2

nk)s + 1
2s

2
n−1
∑

l=1

a2
nl, for k < j,

vkj = vjk for k > j, and vkk = uk. Let A be the diagonal matrix with entries u1, . . . , un−1,

V be the n− 1 × n− 1 matrix with entries vjk, and B = V −A.

Define a linear transformation from y to x by

y = diag
( n

−2uk

)1/2

(I +A−1B)−1/2x.

This transformation exactly diagonalises the quadratic terms in (3.4), as can be seen from

the following lemma, which can be proved by series expansion.

Lemma 3.2. Let A and B be square matrices of the same order, such that A−1 exists,

‖BA−1‖ < 1 and ‖A−1B‖ < 1 for some matrix norm. Then

(I +BA−1)−1/2(A+B)(I +A−1B)−1/2 = A,

where the fractional powers are defined by the usual Taylor series.

Expanding (I +BA−1)−1/2 in a Taylor series, we finally have

g(θ) = exp
(

n−1
∑

k=1

−n
2
x2

k

+

n−1
∑

k=1

(

n−1
∑

j=1

(

1
3akj − 1

3a
3
kj

)( n

−2uk

)3/2
+O(E2)

)

ix3
k

+
∑

1≤j 6=k≤n−1

(

−akj +O(E2)
)

ix2
kxj

+
n−1
∑

k=1

(

n−1
∑

j=1

(− 1
12

+ 1
3
a2

kj − 1
4
a4

kj)
( n

−2uk

)2)
x4

k

+
∑

1≤j 6=k≤n−1

O(1)x3
kxj

−
∑

1≤j 6=k≤n−1

1
4x

2
kx

2
j

+O(n−1/4+6ǫ)
)

. (3.5)
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Using the identity det
(

(I +A−1B)−1/2
)

= exp
(

− 1
2 tr log(I +A−1B)

)

, we find that the

determinant of this transformation is

(

1 +O(E2)
)

(n

2

)(n−1)/2 n−1
∏

k=1

(−uk)−1/2.

Let T ′ : θ′ 7−→ x be the transformation involved in this section and V ′ = T ′(V ).

We know that V ′ ⊆ Un−1(3n
−1/2+ǫ). The asymptotic value of the integral of f(x) over

Un−1(3n
−1/2+ǫ) will be the same with that over Un−1(n

−1/2+ǫ). Furthermore, similar

argument to that of [3, Theorem 2.1] shows that the asymptotic value of the integral of f(x)

over Un−1(3n
−1/2+ǫ)\V ′ is negligible. Therefore, we still keep the region as Un−1(n

−1/2+ǫ).

We can now obtain the following estimate for I2.

Lemma 3.3. Suppose max{|δ1|, . . . , |δn|} = O(n3/4+ǫ) where ǫ > 0 is sufficiently small.

Then

I2 = 2nπn1/2
(2π

n

)(n−1)/2

exp
(

− 1
2 +O(n−1/4+6ǫ)

)

n−1
∏

k=1

(

1 − 1

n

n
∑

j=1

a2
kj

)−1/2
.

Proof. Apply Theorem 2.1 to (3.5), then note that

n

−2uk

=
(

1 − 1

n

n
∑

j=1

a2
kj

)−1
+O(n−1E2).

4. The main results.

In order to complete the estimation of NT (n; δ1, . . . , δn), we need only to show that I2

contributes almost all of I1. We begin with a technical lemma which can be proved using

Taylor series for small x and simple bounds for larger x.

Lemma 4.1. For sufficiently small ǫ > 0,

|1 − λ+ λ cos(x)| ≤ exp(− 1
2λx

2)

whenever |λ− 1/2| ≤ ǫ and |x| ≤ π.

Lemma 4.2. Let m ≥ 2. For 1 ≤ j < k ≤ m, let γjk = 1
2 +O(n−1/2+ǫ) uniformly, where

ǫ > 0 is sufficiently small. Then

∫

R
m−1

exp
(

−
∑

1≤j<k≤m

γjk(φj − φk)2
)

dφ′ =
(2π)(m−1)/2

mm/2−1
exp

(

O(mn−1/2+2ǫ)
)

,

9



where the integration is over φ′ = (φ1, . . . , φm−1) with φm = 0. Moreover, for any

x ≥ m−1/2, the integral over φ′ ∈ Um−1(x) differs from that over R
m−1 by a factor of

at worst 1 − 2m exp(−cx2m) for some c > 0.

Proof. Define γjj = 1
2 and γkj = γjk for 1 ≤ j < k ≤ m. Then the integrand is

exp
(

− 1
2φ′Qφ′T

)

, where Q = (qjk) with qjj = −1 + 2
∑m

k=1 γjk and qjk = −2γjk (j 6= k).

By Theorem III.6.3 of [1], the integral over R
m−1 is (2π)(m−1)/2|Q|−1/2

. Using J to repre-

sent a matrix with every entry one, we note that (I + J)Q is nearly diagonal and obtain

|Q| = mm−2 exp
(

O(mn−1/2+2ǫ)
)

. This gives the first claim.

To obtain the second claim, note from [1] that, apart from a constant, the integrand is

the density of the (m− 1)-dimensional normal variate (X1, . . . ,Xm−1) with mean zero and

covariance matrix Q−1. The variance of Xj is the jth diagonal entry of Q−1, which is seen

to be m−1
(

1 + O(n−1/2+2ǫ)
)

by using Q−1 =
(

(I + J)Q
)−1

(I + J). Hence Prob(|Xj | >
x) ≤ 2 exp

(

− 1
2x

2m(1 +O(n−1/2+2ǫ)
)

.

Define the regions A = {θ
∣

∣ |θ| ≤ 1
8
π}, B = {θ

∣

∣

1
8
π ≤ |θ| ≤ 1

4
π} and C = {θ

∣

∣

1
4
π ≤

|θ| ≤ 1
2
π}. Using symmetry and translations by π as before, we lose a factor of at most

2n+3 from I1 if we assume that all θj lie in A∪B∪C, and at least n/8 lie in C. Now define

I3 =

∫

Un(π/2)

∣

∣g(θ)
∣

∣ dθ

subject to those conditions, and let I3(t) be the contribution from those θ for which exactly

t of the θj lie in C (0 ≤ t ≤ 7
8
n).

Note that
∣

∣Tjk(θ)
∣

∣ =
(

1 − λjk + λjk cos(2(θj − θk))
)1/2

,

where λjk = 1
2 − 1

2a
2
jk = 1

2 + O(n−1/2+2ǫ) for 1 ≤ j, k ≤ n. If θj and θk lie in A and C,

respectively, we have
∣

∣Tjk(θ)
∣

∣ ≤ α = |1 − λ+ λ cos(1
8π)| < 1, where λ is the least value of

λjk. If θj and θk both lie in B ∪C,
∣

∣Tjk(θ)
∣

∣ ≤ exp
(

− 1
2λjk(θj − θk)2

)

, by Lemma 4.1. In all

other cases,
∣

∣Tjk(θ)
∣

∣ ≤ 1. Thus,

I3(t) ≤ 1
4
π

(

n

t

)

αtn/8(π/2)tI(n−t),

where I(n−t) is an integral of the form of Lemma 4.2 with m = n− t. Applying Lemma 4.2,

we find that I3(t) ≤ exp(−ctn)I3(0) for some constant c > 0 independent of t, and so
∑7n/8

t=1 I3(t) ≤ exp(−c′n)I3 for c′ > 0. In I3(0), we can apply Lemma 4.1 to every Tjk(θ).

The integrand then just consists of the quadratic term of (3.1), which contributed all but a

constant to I2. Applying Lemma 4.2 once more, we find that I1 =
(

1 +O(exp(−c′′n2ǫ))
)

I2

for some c′′ > 0. Thus we have the following theorem.
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Theorem 4.3. For ǫ > 0 sufficiently small, suppose max{|δ1|, . . . , |δn|} = O(n3/4+ǫ).

Choose r1, . . . , rn as above. Then

NT (n; δ1, . . . , δn) = n1/2
( 2

nπ

)(n−1)/2
n−1
∏

k=1

(

1 − 1

n

n
∑

j=1

a2
kj

)−1/2

×
∏

1≤j<k≤n

(rk
rj

+
rj
rk

)

∏

1≤j≤n

r
−δj

j exp
(

− 1
2

+O(n−1/4+6ǫ)
)

.

From Lemma 3.1, we have rj =
(

1 +O(E9)
)(

(1 +wj)/(1−wj)
)1/2

. Strengthening the

conditions slightly, we can recast Theorem 4.3 in the following more explicit form.

Theorem 4.4. Suppose δ = max{|δ1|, . . . , |δn|} = o(n3/4). Then, for any ǫ > 0,

NT (n; δ1, . . . , δn) = n1/2
(2n+1

nπ

)(n−1)/2
exp

(

−1

2
− 1

2n

n
∑

j=1

δ2j +
1

n2

n
∑

j=1

δ2j

− 1

12n3

n
∑

j=1

δ4j − 1

4n4

(

n
∑

j=1

δ2j
)2 − 1

30n5

n
∑

j=1

δ6j

− 1

6n6

(

n
∑

j=1

δ3j
)2 − 1

2n7

(

n
∑

j=1

δ2j
)3

+O
( δ4

n3
+ n−1/4+ǫ

)

)

.

In both of the preceding theorems we assume the obvious conditions that δ1, . . . , δn are

integers, of opposite parity to n, that sum to zero.

Theorem 4.4 has an obvious application to the excess sequences of random tourna-

ments. If P (n; δ1, . . . , δn) is the probability that a random (labelled) tournament has ex-

cesses δ1, . . . , δn, then clearly P (n; δ1, . . . , δn) = NT (n; δ1, . . . , δn)/2(
n
2). It is instructive to

compare these values to a simpler probability space. Let D1, . . . ,Dn be random variables

with the binomial distribution Binom(n − 1, 1/2), independent subject only to have sum

n(n − 1)/2. We will call this the D-model. Except for some additional dependence, these

conditions apply to the out-degrees of a random tournament. Let PD(n; δ1, . . . , δn) denote

the probability that 2Dj = n − 1 + δj for 1 ≤ j ≤ n. Then direct computation gives the

following.

Theorem 4.5. Suppose δ = max{|δ1|, . . . , |δn|} = o(n3/4). Then, for any ǫ > 0,

NT (n; δ1, . . . , δn) = 2(
n
2)PD(n; δ1, . . . , δn) exp

(

−3

4
+

1

n2

n
∑

j=1

δ2j − 1

4n4

(

n
∑

j=1

δ2j
)2

− 1

6n6

(

n
∑

j=1

δ3j
)2 − 1

2n7

(

n
∑

j=1

δ2j
)3

+O(
δ4

n3
+ n−1/4+ǫ)

)

.

Interestingly, the argument of the exponential is close to zero for the excess sequences

of almost all tournaments on n vertices. Precisely, with probability 1−O(n−k) for any k, a
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random tournament has
∑

δ2j =
(

1+O(n−1/2+ǫ)
)

n2,
∑

δ3j = O(n5/2+ǫ) and δ = O(n1/2+ǫ),

and the same is true of the D-model.

As an example of how this can be useful, we have the following theorem.

Theorem 4.6. Let f(δ1, . . . , δn) be any function such that
∣

∣f(δ1, . . . , δn)
∣

∣ = O(nk) for

some fixed k, uniformly for the excess sequences of tournaments. Let ET (f, n) and ED(f, n)

denote the expectations of f(δ1, . . . , δn) for random tournaments and for the D-model,

respectively. Then ET (f, n) = O(n−t) +
(

1 +O(n−1/4+ǫ)
)

ED(f, n) for any ǫ, t > 0.

In closing, we mention a checking calculation that adds confidence to Theorem 4.4. Let

0 < α < 1 be constant, ∆ = ∆(n) = o(n3/4) and ᾱ = 1 − α. Define T (∆,α, n) to be the

set of all tournaments on vertices {v1, v2, . . . , vn} such that v1, . . . , vαn have average excess

ᾱ∆ and vαn+1, . . . , vn have average excess −α∆. (Round to integer as necessary.) Since an

equivalent characterisation is that there are 1
2αᾱ(n+∆) directed edges from {v1, . . . , vαn}

to {vαn+1, . . . , vn}, we have

∣

∣T (∆,α, n)
∣

∣ = 2n(n−1)/2−αᾱn2

(

αᾱn2

1
2
αᾱn(n+∆)

)

=
2(n2−n+1)/2

n
√
αᾱπ

exp
(

− 1
2
αᾱ∆2 − 1

12
αᾱ∆4/n2 − 1

30
αᾱ∆6/n4 + o(1)

)

.

Alternatively, one can estimate
∣

∣T (∆,α, n)
∣

∣ by summing Theorem 4.4 over all relevant excess

sequences. The result is precisely the same, and since each of the terms in the exponential

in Theorem 4.4 contribute independent functions of α and ∆ to the answer, this is sufficient

to check that every coefficient is correct provided that the general form is correct.

Further investigation of tournaments by similar methods will be reported in [2] and [4].
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