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Abstract. The method of switchings is a standard tool for enumerative and
probabilistic applications in combinatorics. In its simplest form, it analyses

a relation between two sets to estimate the ratio of their sizes. In a more
complicated setting, there is a family of sets connected by some relations. By

bounding properties of the relations, bounds can be inferred on the relative

sizes of the sets. In this paper we extend the treatment of Fack and McKay
(2007) to allow the graph of sets and relations to be an arbitrary directed

graph. A special case that frequently occurs in bounding tails of distributions

is analysed in detail.

1. Introduction

The simplest example of the method of switchings involves two disjoint finite
sets A,B, and a relation R ⊆ A×B. If dA is the average number of elements of B
that are related to a uniformly chosen random element of A, and dB is the average
number of elements of A that are related to a uniformly chosen random element
of B, then dA|A| = |R| = dB |B|. Thus, estimates of the relative values of dA and
dB provide estimates of the relative sizes of A and B.

Frequently the relation comes from some operation, called a switching for his-
torical reasons, that takes an object in A and modifies it to make an object in B. In
this view, dA is the average number of switchings that can be applied to an object
of A, and dB is the average number of switchings that can make an object of B.

In more complex situations, we might have a large number of disjoint sets and a
switching operation that maps objects in the sets to objects in the same or different
sets. Our aim then is to infer bounds on the relative sizes of the sets by analysing
the switchings. We can model the overall structure by means of a directed graph
that we will call the structure graph G = (V,E). Each v ∈ V is associated with
a finite set C(v), these sets being disjoint. Moreover, whenever there are objects
Q ∈ C(v), R ∈ C(w) such that Q can be taken onto R by a switching, there is a
directed edge (v, w) in E.
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There are many examples in the literature where classes of combinatorial ob-
jects are approximately enumerated by this technique in the case thatG is a directed
path. A few examples are [1, 3, 6, 7, 8, 9, 10, 11]. Fack and McKay [2] gave a
more general analysis, allowing G to be an arbitrary acyclic directed graph, plus
optional loops. An example application is given in [4]. In this case precise estimates
are hard to obtain but the technique provides good tail bounds in many cases.

The advantage of the method is its very wide applicability. For bounding tails
of distributions, it is an additional technique to add to the existing toolkit that
includes martingales and other methods. See [5] for a survey.

In this paper, we complete the analysis of Fack and McKay by allowing G =
(V,E) to be an arbitrary finite directed graph. Loops are allowed, but multiple
edges are not (they have no evident use). We begin with a formal statement of
the problem. Define C(V ) =

⋃
v∈V C(v). Let S be a multiset of ordered pairs of

elements of C(V ) such that (Q,R) ∈ S for Q ∈ C(v), R ∈ C(w), then (v, w) ∈ E.
Let X,Y ⊆ V . For each v ∈ V , define N(v) = |C(v)|, and for W ⊆ V , define
N(W ) =

∑
w∈W N(w). For (v, w) ∈ E, consider the multiset cardinality

s′(vw) =
∣∣{(Q,R) ∈ S : Q ∈ C(v), R ∈ C(w)

}∣∣.
For a vertex v ∈ V , let G−(v) and G+(v) be the set of (directed) edges entering and
leaving v, respectively. Suppose that on average an object in C(v) can be subject
to at least a(v) switchings and can be produced by at most b(v) switchings. Then
we have the following optimisation problem.

Problem A. Suppose that a, b : V → R are positive functions. Maximise
N(Y )/N(X) subject to

N(v) ≥ 0 for all v ∈ V ;(1a)

s′(vw) ≥ 0 for all vw ∈ E;(1b) ∑
w∈G+(v)

s′(vw) ≥ a(v)N(v) for all v ∈ V not a sink;(1c)

∑
w∈G−(v)

s′(wv) ≤ b(v)N(v) for all v ∈ V .(1d)

For purposes of analysis, we will find it convenient to change notation slightly,
at the same time allowing a slight generalisation. For each edge vw ∈ E, define

(2) s(vw) = s′(vw)/b(w), α(vw) = b(w)/a(v).

The inequalities can now be written without reference to the functions a(v) and b(v),
so we generalise to allow any positive function α(e) defined on edges. This gives us
the following problem.
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Problem B. Suppose that α : E → R is a positive function. MaximiseN(Y )/N(X)
subject to

N(v) ≥ 0 for all v ∈ V ;(3a)

s(vw) ≥ 0 for all vw ∈ E;(3b) ∑
w∈G+(v)

α(vw)s(vw) ≥ N(v) for all v ∈ V not a sink;(3c)

∑
w∈G−(v)

s(wv) ≤ N(v) for all v ∈ V .(3d)

We clarify the exact meaning of Problem B by exposing the boundary cases. By
a solution we will mean a pair of nonnegative functions S = (N, s) satisfying (3).
Define the value of a solution S as

f(S) =


−∞ if N(X ∪ Y ) = 0;
N(Y )/N(X) if N(X) > 0;
∞ if N(X) = 0, N(Y ) > 0.

Our task in Problem B is to find a solution S = (N, s) that maximizes f(S). Such
a solution will be called optimal.

2. A sample problem

Consider a k × n array whose rows π1, π2, . . . , πk are independent random
permutations of {1, 2, . . . , n}. An intercalate is a 4-tuple (i1, i2, j1, j2) such that
1 ≤ i1 < i2 ≤ k, 1 ≤ j1 < j2 ≤ n, πi1(j1) = πi2(j2) and πi1(j2) = πi2(j1). An
intercalate is indicated in the following example for n = 9, k = 4.

3 7 1 2 8 9 4 5 6
8 1 3 5 9 4 7 2 6
6 9 5 8 3 7 1 4 2
2 4 9 6 8 1 3 5 7

The number of intercalates has mean 1
2

(
k
2

)
and can be almost as large as n

2

(
k
2

)
(the

exact maximum is unknown). Our problem is to bound the probability that the
number of intercalates is much larger than the mean.

Any particular intercalate can be destroyed by choosing one of its four entries
and exchanging it with one of the n− 2 entries in the same row that don’t belong
to the intercalate. This is the operation we will call a “switching”. For example,
exchanging the upper “1” in the above example with the “6” in the same row gives
this:

3 7 1 2 8 9 4 5 6
8 6 3 5 9 4 7 2 1
6 9 5 8 3 7 1 4 2
2 4 9 6 8 1 3 5 7

Now we set up the optimization problem. The vertices of the graph are {v0, v1, . . . },
where vi represents the set of arrays with i intercalates. An edge from vi to vj
means that a switching is possible from some array with i intercalates to one with
j intercalates. A switching cannot destroy more than 2(k− 1) intercalates at once,
so j− i ≥ −2(k−1). A switching can create new intercalates as well, so some edges
will have j > i.
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Given an array with i intercalates, a switching can be done in 4i(n − 2) ways
(choose an element of an intercalate and what to swap it with). So define a(vi) =
4i(n − 2). (Strictly speaking a(v0) is not supposed to be 0, but since v0 is a sink
a(v0) does not appear in the constraints at all. We could set it to an arbitrary
positive value, but we won’t bother.) Conversely, given any array, we can use a
reverse switching to create an intercalate by first choosing two rows and one column.
This defines the two symbols that are involved unless they are the same. The other
occurrences of those symbols in the two rows may already be in the same column
(so an intercalate is there already), or can be brought into the same column by
one of two possible swaps. So define b(vi) = 2

(
k
2

)
n for all vi. (Note how a(vi) is

a lower bound and b(vi) is an upper bound.) This is our instance of Problem A,
or we can consider it an instance of Problem B with α(vivj) = b(vj)/a(vi) =
k(k − 1)n/

(
4i(n− 2)

)
.

This is all the problem-specific calculation we need. We will complete the
solution in Section 6 after we develop the theory.

3. Basic solutions

We next describe some simple types of solution that we call basic.
By “path” we mean “simple directed path” and by “cycle” we mean “simple

directed cycle”. A loop is a cycle. If F ⊆ E is a set of edges, then define αF =∏
e∈F α(e).

For convenience we define three pairs of functions, which are not necessarily
solutions. If P = (v0, v1, . . . , vk) is a path in G from v0 to vk (k ≥ 0), then
SP = (NP , sP ) has NP = sP = 0 except for N(vk) = 1 and in general

NP (vi) = α(vivi+1) · · ·α(vk−1vk) (0 ≤ i ≤ k)

sP (vi−1vi) = NP (vi) (1 ≤ i ≤ k).

SP satisfies (3) with equality everywhere, except that (3c) reads “0 ≥ 1” at vk
and (3d) reads “0 ≤ αP ” at v0.

If C = (v = v0, v1, . . . , vk = v) is a cycle in G (k ≥ 1), then SC,v = (NC,v, sC,v)
has NC,v, sC,v = 0 except for

NC,v(v) = 1

NC,v(vi) = sC,v(vi−1vi) = α(vivi+1) · · ·α(vk−1vk) (1 ≤ i ≤ k − 1)

sC,v(vk−1v) = 1

SC,v satisfies (3) with equality everywhere, except that (3c) reads “αC ≥ 1” at v.
Under the same conditions, we also define the slightly different S̄C,v = (N̄C,v, s̄C,v)

which has N̄C,v, s̄C,v = 0 except for

N̄C,v(v) = αC

N̄C,v(vi) = s̄C,v(vi−1vi) = α(vivi+1) · · ·α(vk−1vk) (1 ≤ i ≤ k − 1)

s̄C,v(vk−1v) = 1

S̄C,v satisfies (3) with equality everywhere, except that (3d) reads “1 ≤ αC” at v.
As the notation suggests, SC,v and S̄C,v depend on which vertex v is chosen as

the starting vertex of the cycle.

Now we can define the basic solutions. Paths can have zero length and cycles
can be loops, unless specified otherwise.
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Figure 1. The supports of basic solutions

• Consider a path P = (v0, v1, . . . , vk) with vk being a sink of G. A type-1
basic solution is any positive multiple of SP .

• Consider a cycle C = (v = v0, v1, . . . , vk = v) with αC ≥ 1. A type-2
basic solution is any positive multiple of either SC,v or S̄C,v.

• Consider a path P = (v0, v1, . . . , vk) of non-zero length, together with a
cycle C = (w = w0, w1, . . . , w` = w0 = w) with αC > 1, such that P
and C are disjoint apart from vk = w. A type-3 basic solution is any
positive multiple of (αC − 1)SP + SC,w.

• Consider a path P = (v0, v1, . . . , vk) of non-zero length, together with a
cycle C = (w = w0, w1, . . . , w` = w) with αC < 1, such that P and C
are disjoint apart from v0 = w. A type-4 basic solution is any positive
multiple of (1− αC)SP + αP S̄C,w.

• Consider two cycles C1 = (v = v0, v1, . . . , vk = v) and C2 = (w =
w0, w1, . . . , w` = w) which are disjoint apart from a common initial seg-
ment vi = wi (0 ≤ i ≤ m) for some 0 ≤ m < min(k−1, `−1). Assume
αC1 < 1 and αC2 > 1. A type-5 basic solution is any positive multiple
of (αC2 − 1)SC1,v + (1− αC1)SC2,w.

• Consider two cycles C1 = (v = v0, v1, . . . , vk = v) and C2 = (w =
w0, w1, . . . , w` = w), and a path P = x0, x1, . . . , xm of non-zero length.
These must be disjoint except that v = x0 and w = xm. Assume αC1 < 1
and αC2 > 1. A type-6 basic solution is any positive multiple of
(1− αC1)(αC2 − 1)SP + (αC2 − 1)αP S̄C1,v + (1− αC1)SC2,w.

4. Basic solutions suffice

Theorem 1. Consider an instance (G,α,X, Y ) of Problem B. Then if there
are any non-zero solutions at all, there is an optimal solution which is basic.

Proof. The proof is divided into three cases, with almost the same method
in each case.

(i) All solutions have N(X) = N(Y ) = 0.
(ii) Some solutions have N(X) = 0 and N(Y ) > 0.
(iii) Some solutions have N(X ∪ Y ) > 0 but for all such solutions N(X) > 0.
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In each case we define a convex polytope for which some vertex must correspond
to an optimal solution. Then we use the structure of the polytope to discover an
optimal basic solution.

Consider case (i) first. Since positive multiples of solutions are also solutions,
we can assume that N(V ) = 1. Adding this constraint to (3) defines a convex
polytope P consisting of positive solutions. Suppose S = (N, s) is a vertex of P.

We will use the following principle. Suppose T = (NT , sT ) is a pair of functions,
not identically 0, such that S + εT satisfies (3) for all sufficiently small positive or
negative ε. This implies that NT (X) = NT (Y ) = 0, by the definition of case (i).
Also

S + ε′
(
T −NT (V )S) = (1− ε′NT (V )

)(
S +

ε′

1− ε′NT (V )
T

)
,

so S + ε′(T −NT (V )S) ∈ P for sufficiently small ε′. Since S is a vertex of P, this
is only possible if T −NT (V )S = 0, so S is a multiple of T . We call such T a free
direction.

Let H be the subgraph of G induced by the edges e with s(e) > 0 and assume
that S is not a basic solution (implying, as above, that no free direction is a basic
solution). We now consider a list of possibilities for H, in each case assuming that
none of the earlier possibilities occur.

(a) Suppose H has a cycle C with αC = 1. Let v be a vertex of C and define
T = SC,v, Then T is a free direction since it satisfies (3) with equality. This can’t
happen, since T is a type-2 basic solution.

(b) Next suppose that H has two different cycles C1, C2 with a common ver-
tex v. Define T = (NT , sT ) = (αC2 − 1)SC1,v + (1 − αC1)SC2,v. Then T satis-
fies (3) with equality, so T is a free direction. But S cannot be a multiple of T for
αC1 , αC2 < 1 or αC1 , αC2 > 1, since sT contains both positive and negative values.
This also eliminates the case where the intersection of C1 and C2 is not a single
segment, since then there is a third cycle C3 having common vertices with each of
C1 and C2, and it must be the case that either there are two of αC1 , αC2 , αC3 less
than 1 or two greater than 1. The only case remaining is that T is a type-5 basic
solution, which is false by assumption.

(c) Suppose H has a cycle C and a vertex v of C at which either (3c) or (3d)
is a strict inequality. Then at least one of SC,v and S̄C,v is a free direction. Both
cases are impossible, since they violate (3) if αC < 1 and are type-2 basic solutions
if αC > 1.

(d) Suppose H has a (weak) component that is strongly-connected. Then the
component must be a single vertex v, since all cases that include cycles have been
eliminated. Then the type-1 basic solution T = S(v) (treating v as a one-vertex
path) is a free direction.

(e) Let B be a source strong component of H, B′ a sink strong component of
H lying in the same weak component, and P a path from B to B′ which is disjoint
from them except at its endpoints. Either B is a single vertex or a cycle C with
αC < 1 (the last following from (c)), and B′ is either a single vertex (which must
be a sink of G by (3c)) or a cycle C ′ with αC′ > 1. Let T = (NT , sT ) be the type-3,
type-4 or type-6 basic solution that is based on B ∪ P ∪ B′. In the case that B is
a single vertex v with N(v) = 0, modify T by setting NT (v) = 0 also. Then T is a
free direction. The only case where T is not a basic solution is the final modified
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one, but then a basic solution with the same value is obtained by further modifying
T by setting sT (e) = 0 for the edge e of P that leaves v.

That completes the proof for case (i). In case (ii), we define the polytope P
using the constraint N(Y ) = 1 instead of N(V ) = 1. This is to ensure that the
basic solution we derive has N(Y ) > 0. An optimal solution (with value ∞) is
obtained by minimising the linear function N(X), so we can assume the solution is
at a vertex. The justification of “free direction” is the same except that in place of
T−NT (V )S we use of T−NT (Y )S, since in that direction the constraint N(Y ) = 1
is preserved.

For case (iii), we define P using the constraint N(X) = 1. Having eliminated
cases (i) and (ii), we know that the linear function N(Y ) is bounded. Otherwise,
we would be able to find a solution with N(Y ) = 1 and N(X) arbitrarily close to
0, which is not possible unless we are in case (ii). The largest value of N(Y ) occurs
at some vertex of P and the rest of the argument is the same. �

Theorem 1 allows us to immediately identify from the problem structure whether
the optimal f(S) of Problem B is finite or infinite. Define an elementary figure in
G to be one of the following subgraphs: a path ending at a sink, a cycle C with
αC ≥ 1, and a path and a cycle C with αC > 1 such that the path and cycle are
disjoint except that the last vertex of the path lies on the cycle.

Theorem 2. Consider an instance (G,α,X, Y ) of Problem B. Then the fol-
lowing is true of an optimal solution S.

(a) If some elementary figure avoids X but intersects Y , then f(S) =∞.
(b) Otherwise, if some elementary figure intersects X, then f(S) is finite.
(c) Otherwise, f(S) = −∞.

Proof. Let the support of a solution S = (N, s), be the subgraph H = H(S)
induced by the edges e with s(e) > 0. We know from Theorem 1 that (a)-(c) are
true for the supports of basic solutions. These are elementary figures already for
basic solutions of types 1, 2 and 3. For a type-4 basic solution with support H,
there is a type-1 solution with support H − w0w1, which has the same vertex set.
Similarly there is a type-3 solution with the same vertex set as any type-5 or type-6
solution (remove edges vmvm+1 and v0v1, respectively). �

In applications it can sometimes help to simplify the problem at the expense
of a slight increase in the upper bound.

Lemma 1. Let (G,α,X, Y ) be an instance of Problem B. Then none of the
following operations can reduce the value of an optimal solution:

(a) increasing α(e) for an existing edge e;
(b) adding one edge vw with any value of α(vw), where v is a vertex that

already had at least one edge leaving;
(c) deleting all the edges leaving a particular vertex.

Proof. Let S = (N, s) be an optimal solution of (G,α,X, Y ). In each case, a
solution S′ = (N, s′) for the new problem with f(S′) = f(S) is easily found. For
(a), use s′ = s. For (b), use s′(vw) = 0 and s′(e) = s(e) for the existing edges. For
(c), s′ is the restriction of s to the reduced edge set. �
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5. A special case

In this section we analyse an important special case and find an upper bound on
its solution that can be readily applied in many applications. Let (G = (V,E), α,X, Y )
be an instance of Problem B. Define

Z = {v ∈ V : α(vw) ≥ 1 for some vw ∈ E, or v is a sink of G}.

We will make use of the following assumption.

A1. Z 6= ∅, Y ∩ Z = ∅, Z ⊆ X
For W,W ′ ⊆ V , define Q(W,W ′) to be the set of all non-trivial directed paths

in G that start in W , end in W ′, and have no internal vertices in Y ∪ Z. Define

αY Y = max
Q∈Q(Y,Y )

αQ and αY Z = max
Q∈Q(Y,Z)

αQ,

where the maximums over empty sets are taken to be 0.

Theorem 3. Let S be an optimal solution of an instance of Problem B meeting
Assumption A1. Then

f(S) ≤ αY Z
1− αY Y

.

Proof. If Q(Y,Z) = ∅ then f(S) ≤ 0 by Theorem 2, so we will assume
Q(Y,Z) 6= ∅.

We begin by constructing a new graph G′ = (V,E′) from G by, (a) deleting
all the edges that leave vertices in Z and, (b) for all v, w ∈ Y with vw /∈ E, add
the edge vw with α(vw) = αY Y . By Lemma 1 this can only increase the value of
an optimal solution. Now consider the problem with G′ replacing G. Since every
edge e of G′ has α(e) < 1, Theorem 1 tells us that there is an optimal solution
S = (s,N) of type 1 or type 4.

Let H be the support of such an optimal solution. It consists of a path P =
(v0, v1, . . . , vk) and possibly an extra edge vmv0 for some 0 ≤ m < k. If the extra
edge is present in H, let C be the cycle so formed; otherwise put C = ∅. Our
assumptions and definition of G′ imply that P ∩ Z = {vk}. Normalise S so that
N(vk) = 1. Then for 0 ≤ i ≤ k we have

N(vi) =


α(vivi+1) · · ·α(vk−1vk) if vi /∈ C;

α(vivi+1) · · ·α(vk−1vk)
1− αC

if vi ∈ C.

Since vk ∈ X and N(vk) = 1, f(S) ≤ N(Y ). Since the theorem will come from this
upper bound, we will assume that H is the support of the type-1 or type-4 basic
solution which maximizes N(Y ) (even if it isn’t an optimal solution).

We now consider three operations on H that cannot decrease N(Y ) for the
type-1 or type-4 basic solution with support H.

• Suppose the solution is type-1 (C = ∅) and v0 /∈ Y . Then removing v0
from H leaves N(Y ) unchanged.

• Suppose the solution is type-4 and C ∩ Y = ∅. Then removing C from H
leaves N(Y ) unchanged.

• Suppose H has a subpath or cycle H ′ = (w0, w1, . . . , w`), where w0 = w`
if H ′ is a cycle. Suppose ` ≥ 2 and H ′ ∩ Y = {w0, w`}.



COMBINATORIAL ESTIMATES BY THE SWITCHING METHOD 9

– Suppose C = ∅ or vm /∈ {w1, . . . , w`−1}. Then delete {w1, . . . , w`−1}
from H and insert the edge w0w` into H. By the definition of αY Y ,
this operation cannot decrease N(Y ).

– Suppose instead that C 6= ∅ and vm = wj ∈ {w1, . . . , w`−1}. Then
delete {wj+1, . . . , w`−1} from H and insert the edge w0w` into H.
Again, by the definition of αY Y , this operation cannot decreaseN(Y ).

It follows from these considerations that we may assume P∩Y = {v0, v1, . . . , vt},
where 0 ≤ t < k for a type-1 solution and m ≤ t < k for a type-4 solution. So
H ∩ Y is connected and C ⊆ Y . In the case of a type-1 solution, we have

N(Y ) ≤ N(vt)
(
1 + αY Y + · · ·+ αtY Y

)
<

N(vt)
1− αY Y

.

In the case of a type-4 solution, we have

N(Y ) ≤ N(vt)
(

1 + αY Y + · · ·+ αt−m−1
Y Y +

αt−mY Y + · · ·+ αtY Y
1− αm+1

Y Y

)
=

N(vt)
1− αY Y

.

Since any edges of G′ not present in G are within Y , N(vt) ≤ αY Z and the theorem
follows. �

To apply Theorem 3 we need upper bounds on αY Y and αY Z . This may not
be simple, but there are some fairly general cases. We consider three possible
assumptions, each of which comes with a definition of a quantity ᾱ.

A2. Suppose there is a positive function β : V × V → R such that α(vw) =
β(v, w) for each vw ∈ E. Moreover, for all distinct v, w, x with w /∈ Y ∪Z
we have β(v, w)β(w, x) ≤ β(v, x). Define ᾱ = maxv,w∈Y β(v, w).

A2′. In the case of Problem A, b(v) ≤ a(v) for v /∈ Y ∪ Z. Define ᾱ =
maxv,w∈Y

(
b(v)/a(w)

)
.

A2′′. Suppose there is a positive function p : V → R such that α(vw) = p(v)
for all vw ∈ E. Define ᾱ = maxv∈Y p(v).

A path (v0, v1, . . . , vk) is shortcut-free if there is no edge vivj for 0 ≤ i, j − i ≥
2, j ≤ k.

Lemma 2. Let S be an instance of Problem B meeting Assumption A1 and
one of A2, A2 ′, A2 ′′. Then αY Y ≤ ᾱ. Furthermore, if Q(Y,Z) 6= ∅, then αY Z is
realised by some shortcut-free path.

Proof. If Q = (v0, . . . , vk) ∈ Q(Y, Y ), then Assumption A2 implies that αQ ≤
β(v0, vk). Similarly αQ for Q ∈ Q(Y,Z) cannot be reduced by taking a shortcut.
Assumptions A2′ and A2′′ are seen to be special cases of A2: define β(v, w) =
b(w)/a(v) and β(v, w) = p(v), respectively. �

In many common cases, V has a natural ordering according to some parameter
and the edges of G are limited in how much they can decrease the parameter. We
formalise this in another assumption.

A3. V = {x0, x1, . . . , xn} for some n. Furthermore, there are integers M > N
and K > 0 such that Y = {xi : i ≥ M}, Z = {xi : i ≤ N} and for every
edge xixj we have j − i ≥ −K.

In the following we use “increasing” and “decreasing” in their non-strict senses.
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Lemma 3. Let S be an instance of Problem B meeting Assumptions A1, A3
and one of A2, A2 ′, A2 ′′. Then there is a sequence i0 > i1 > · · · > ik such that
i0 ≥M , i1 < M , ik−1 > N , ik ≤ N , ij − ij+1 ≤ K for j = 0, . . . , k − 1, and

αY Z ≤


∏k
j=1 β(xij−1 , xij ) for A2,∏k
j=1 b(xij )/

∏k−1
j=0 a(xij ) for A2 ′,∏k−1

j=0 p(xij ) for A2 ′′.

Furthermore, under any of the following assumptions, it can be assumed that ij =
M − jK for j = 0, . . . , k − 2 and ik−1 = max{M − (k−1)K,N + 1}.

(a) for A2, β(xi, xj) is a decreasing function of i and j;
(b) for A2 ′, a(xi) is an increasing function of i, and b(xi) is a decreasing

function of i;
(c) for A2 ′′, p(i) is a decreasing function of i. In this case we can also assume

ik−1 = M − (k−1)K.

Proof. To take the worst case, we can assume that all edges xixj with j −
i ≥ −K are present. With this assumption, let Q = (xi0 , . . . , xik) ∈ Q(Y,Z)
maximize αQ, and subject to that be lexicographically minimal. The lexicographic
minimality shows that Q is shortcut-free (and therefore i0 > i1 > · · · > ik). It
further shows that ij = M − jK for j = 0, . . . , k− 2, since otherwise we can reduce
some ij by one to violate the minimality without reducing αQ. In the case of (c),
if ik−1 = N + 1 > ik−2 −K, then αQ is not decreased if we decrease ik−1 by one
and delete ik. �

A numerical lemma which can be useful for turning Lemma 3 into an explicit
formula is as follows.

Lemma 4 ([4]). Let k be a positive integer and let q and s be positive real
numbers such that s ≥ kq. Then

s(s− q) · · · (s− (k − 1)q) ≥ sk exp
(
−k2q/s) ≥ (s/e)k.

For convenience we give a moderately sharp bound for a common case.

Corollary 1. Suppose V = {x0, x1, . . . , xn} where x0 is the only sink, and
that Y = {xi : i ≥ M}. Also suppose that for some K > 0, each edge xixj
has j − i ≥ −K and α(xixj) = ρ/i, where ρ > 0 is constant. Then for integer
M > max{ρ,K − 1},

f(S) ≤ 1
1− ρ/M

(ρ/M)k exp(k2K/M) ≤ 1
1− ρ/M

(eρ/M)k,

where k = b(M + min{0,K−ρ−1})/Kc.

Proof. This case matches Lemma 3(c) with N = bρc. Also ᾱ ≤ ρ/M . Now
apply Theorem 3 and Lemma 4. The given value of k satisfies the requirements that
k ≤M/K needed for Lemma 4 and M − (k−1)K ≥ N needed for Lemma 3(c). �

6. Sample applications

We first complete the sample problem we started in Section 2. Then we give
two more examples.
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Figure 2. A 9×9 board with 16 dominoes covering 6 2×2 subsquares

For the problem of Section 2, we can apply Corollary 1. For n ≥ 8, we can use
ρ = 1

3k(k− 1) and K = 2(k− 1). For example, for λ ≥ 2 the probability that there
are more than M = λ

(
k
2

)
intercalates (M integer) is at most

2
( 2e

3λ

)λk/4−k/6−1

.

Cliques in random graphs. Given a random graph with n vertices and m edges,
what is the probability that the number of 4-cliques is large?

A switching consists of choosing a 4-clique, deleting its 6 edges, and inserting
them anywhere in the graph (even if it creates the same 4-clique). If there are i
4-cliques, this can be done in at least

a(i) =
((n

2

)
−m+ 6

6

)
i

ways. The reverse operation is to choose 6 edges and make a 4-clique from them,
which can be done in at most

b(i) =
(
m

6

)(
n

4

)
ways. A switching cannot destroy more than 6m 4-cliques at once. Therefore, we
can apply Corollary 1 with K = 6m.

Dominoes on a chessboard. Consider an n × n chessboard and d dominoes.
Place the dominoes at random on the board in non-overlapping positions, with
all possible configurations being equally likely. What is the probability that the
number of 2×2 squares covered by dominoes is large?

A switching consists of choosing a covered 2× 2 square, removing the domino
covering its upper left quadrant, and putting the domino down somewhere (even in
the same place). If there are i covered 2× 2 squares, this can be done in at least

a(i) =
(
2n(n− 1)− 7d

)
i

ways, since one domino can eliminate up to 7 domino positions. Conversely, choose
any domino and move it to a place where it covers the upper left quadrant of a
2× 2 subsquare which is now covered. This can be done in at most

b(i) = 2d2

ways since there can’t be more than 2d such ways to place one domino and there
were d dominoes to choose from. One switching can eliminate up to 6 covered
subsquares. Therefore, we can apply Corollary 1 with K = 6.
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(4)

(5)

s(vi+1vi)

s(vi+2vi)

Figure 3. Approximating an extra constraint

Extra constraints. This example is artificially simplified in order to illustrate
an extra technique. Suppose we have a family of objects with non-negative integer
weights. Let C(vi) denote the set of all objects of weight i, and let N(vi) = |C(vi)|.
We also have a switching operation which takes each object of weight i onto at least
two objects of weight i−1 or i−2. Moreover, a reverse switching takes each object
of weight i onto at most one object of weight i+ 1 or i+ 2.

Now we seek an upper bound on N(vn)/N(v0), where we assume n is even for
simplicity. This is an elementary case of Problem A, with a(vi) = 2 and b(vi) = 1
for each i. Converting to Problem B as in (2), we find that each edge e has α(e) = 1

2 .
Only type-1 solutions are possible, so the solution in Lemma 3 is best possible. We
find that an optimal path is (vn, vn−2, . . . , v2, v0), and therefore N(vn)/N(v0) ≤
2−n/2.

Now suppose we have the following additional information: on average for the
objects of weight i, at least a fraction 99

100 of reverse switchings produce an object
of weight i− 1 and at most 1

100 produce an object of weight i− 2. In the language
of Problem A, this corresponds to a constraint s′(vi+2vi) ≤ 1

99s
′(vi+1vi), for each

i ≤ n− 2, which after conversion to Problem B becomes

(4) s(vi+2vi) ≤ 1
99s(vi+1vi).

In general, our precise analysis does not cover such constraints, and Theorem 1
does not apply, but we can work with an approximation. Constraint (3d) gives

(5) s(vi+1vi) + s(vi+2vi) ≤ N(vi).

Constraints (4) and (5) define a region like the shaded triangle in Figure 3. We will
replace them by a single constraint like that shown in the figure by a dashed line.

The general form of the new constraint is

(6) s̄(vi+1vi) + s̄(vi+2vi) ≤ N(vi),

where

s̄(vi+1vi) =
100

99 + ∆
s(vi+1vi) and s̄(vi+2vi) =

100∆
99 + ∆

s(vi+2vi)
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for some ∆ ≥ 1. If we now define

ᾱ(vi+1vi) =
99 + ∆

200
and ᾱ(vi+2vi) =

99 + ∆
200∆

,

for each i, then constraint (3c) becomes

(7) ᾱ(vivi−1)s̄(vivi−1) + ᾱ(vivi−2)s̄(vivi−2) ≥ N(vi).

Constraints (6) and (7) define a new instance of Problem B. We now choose ∆ to
optimise the solution. A reasonable value is ∆ = 99

50 , which gives

ᾱ(vivi−1)ᾱ(vi−1vi−2) < ᾱ(vivi−2) = 51
200

.

The optimal path is thus (vn, vn−2, . . . , v2, v0) again, and we obtain the considerably
better bound N(vn)/N(v0) ≤

(
51
200

)n/2.
This technique can be generalized considerably, but the details remain to be

worked out.

7. Conclusions

We have demonstrated a new technique for bounding the tails of distributions
and other similar tasks. An open problem is to extend the theory a probabilistic
setting, where the quantities N(v) are random variables and the quantities s(e) are
expectations.
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