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Abstract.

With the help of a novel computational technique, we show that graphs with up to
11 vertices are determined uniquely by their sets of vertex-deleted subgraphs, even if the
set of subgraphs is reduced by isomorphism type. The same result holds for triangle-
free graphs to 14 vertices, square-free graphs to 15 vertices and bipartite graphs to 15

vertices, as well as some other classes.

1. Introduction.

Given an undirected simple graph G, the isomorph-reduced deck TD(G) of G is a
set containing one member of each isomorphism type of vertex-deleted subgraph of G.
A strong form of the “reconstruction conjecture” is that G is uniquely determined by
ID(G) if |VG| > 4 [4]. For surveys of the graph reconstruction problem, we refer the
reader to [1, 2, 5].

Although it seems unlikely that a counterexample would be small, we believe that
testing this supposition is a useful step. Verification for up to 9 vertices was carried
out by us almost 20 years ago [6], but to our knowledge no previous verification on 10
vertices has been made despite the graphs being available since 1985 [3]. No doubt this
is due to the large number (over 12 million) of such graphs, which causes a nontrivial
problem of data management. The algorithmic challenge is to reduce the number of
pairs of graphs which need to be compared. We solve this problem by modifying an
existing algorithm for graph generation in such a way that any pair of graphs forming
a counterexample would be generated close together. This is sufficiently successful that
we can verify the conjecture for over 3 x 10? small graphs, including all the graphs with

up to 11 vertices.

2. The algorithm.

In [8], we presented a very general technique for generating families of combinatorial
objects without isomorphs. We begin by describing this method in our limited context.

Forn > 1, let G,, denote the set of all labelled simple graphs with vertex-set {1,2,...,n}.

1



Let S,, denote the symmetric group, and Aut(G) be the automorphism group of G, both
as permutation groups acting on {1,2,...,n}.

The construction process relies on a function m(G), whose value is an orbit of
Aut(G). The important necessary property of m(G) is that it be invariant under
relabelling of the argument. Technically: for G € G, and ¢ € S,, we must have
m(G?) = m(G)?.

Armed with m, we can generate nonisomorphic graphs. If W C V(G), let G[W]v
denote the graph formed from G by appending a new vertex v and adding all possible
edges between v and W.

procedure generate(G : labelled graph; n : integer)
if |[V(G)| =n then
output G
else
for each orbit A of the action of Aut(G) on 2V(%) do
select any W € A and form G’ = G[W]v
if v € m(G’) then
generate(G’',n)
endif
endfor
endif

endprocedure

Theorem 1 [8]. For any n > 1, the call generate(K,n) will cause the output of

exactly one graph from each isomorphism class of graphs of order n. 1

The recursive structure of generate defines a rooted tree whose nodes are the iso-
morphism types of graphs, and whose root is K. This lets us call one node the “parent”
or “child” of another in the usual manner. In the notation of the algorithm, the iso-
morphism class of G is the parent of the isomorphism class of G’.

The nontrivial requirements of generate are seen to be the computation of Aut(G)
and m(G"). Details of how this can be done efficiently using the author’s program nauty
[7] are given in [8].

For our current purposes, however, we choose m(G’) quite differently. Starting
with any total ordering T" of unlabelled graphs, define m(G’) in any manner such that
the previous requirements are met and, moreover, for v € m(G’), G’ — v is maximal
amongst the vertex-deleted subgraphs of G’. This additional restriction on m(G”) has

an important consequence.



Theorem 2. Suppose G, and G5 are two distinct graphs of order n having TD(G,) =
ID(G,). Then Gy and G4 have the same parent in generate.

Proof. Our definition of m, and the structure of generate, ensure that the parent of
the isomorphism type of G, is the isomorphism type of G; — v;, where v, is chosen
to make this subgraph maximal under 7'. Similarly for G5 and G5 — v,. However, if
ID(G,) =ID(G,), we must have that G; — v; and G5 — v, are isomorphic. &

The computational method should now be clear. We apply generate to construct
the graphs with n vertices. Comparison of their isomorph-reduced decks is carried out
within the set of children of each graph of order n — 1.

The process we actually applied in our computations was as follows. The ordering
T was chosen to favour fewer edges, then a more complicated function f of the degrees,
then finally a definitive ordering produced by nauty. This definition allows us to com-
pute m(G’) in phases for efficiency. First we find the vertices of maximum degree, then
if there is more than one we find those maximising f(G’ —v). Nearly always that leaves
a single vertex v and we take m(G’) = {v}. If not, we complete the computation of
m(G") using nauty. Note that there may be more than one orbit of vertices v for which
G’ — v is maximal under T', due to pseudosimilarity; we must select one of them to meet
the rules stated above.

In our computations, the sets of children of each node numbered at most a few
hundred (usually much less). Within these small sets, we compared isomorph-reduced

decks using some invariants then, in the rare surviving cases, using nauty.

Instead of considering all graphs, we can restrict attention to some subclasses defined
by a hereditary property. For example, if generate is modified to ignore those graphs
G[W]v which contain a triangle Cj, the result is isomorph-free generation of triangle-
free graphs. We also considered graphs not containing squares C;, and bipartite graphs.
Finally, we considered graphs with maximum degree at most 5. All of these properties
can be easily seen to be determinable from ZD(G), so it is valid to restrict the exploration
to within each subclass.

We conclude with a summary of our results.

Theorem 3. The following classes of graphs are uniquely determined (within the set
of all graphs) by their isomorph-reduced decks:

(a) graphs of order 4—11;

(b) graphs of order 12 and mazimum degree at most 5;

(c) triangle-free graphs of order 4—14;

(d) square-free graphs of order 4—15;



(e) bipartite graphs of order 4-15;

(f) bipartite graphs of order 16 and mazimum degree at most 5. 1

For the record, the number of graphs in each of the classes listed above is respectively

1031291291, 495369040, 490050267, 116180700, 648650952, and 1507524197. The total

cpu time used, on a mixture of Sun workstations, was slightly less than one year.

I wish to thank Mark Ellingham for some useful comments.
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