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Abstract.

For each vertex v of a graph G, we consider the numbers of subgraphs of each
isomorphism class which lie in the neighbourhood or complementary neighbourhood
of v. These numbers, summed over v, satisfy a series of identities that generalise some
previous results of Goodman and ourselves. As sample applications, we improve the
previous upper bounds on two Ramsey numbers. Specifically, we show that R(5, 5) ≤ 49
and R(4, 6) ≤ 41. We also give some experimental evidence in support of our conjecture
that R(5, 5) = 43.

1. Introduction.

We shall only consider graphs without multiple edges or loops. For s, t, n ≥ 1,
an (s, t)-graph is a graph without cliques of order s or independent sets of order t,
and an (s, t, n)-graph is an (s, t)-graph of order n. Similarly, an (s, t, n, e)-graph is an
(s, t, n)-graph with e edges. Let R(s, t), R(s, t, n) and R(s, t, n, e) denote the set of all
(s, t)-graphs, (s, t, n)-graphs and (s, t, n, e)-graphs, respectively. The Ramsey number
R(s, t) is defined to be the least n > 0 such that there is no (s, t, n)-graph.

A regularly updated survey of the most recent results on this subject can be found
in [20].

In Section 2, we derive some identities involving subgraph counts, which form the
basis of our approach. In Section 3, we show that R(5, 5) ≤ 49, which improves over
the previous bound of 50 [17]. Nevertheless, the correct value is more likely to be 43,
for the reasons we give in Section 4. Finally, in Section 5, we show that R(4, 6) ≤ 41
by linear programming methods. Comprehensive surveys of the history of R(5, 5) and
R(4, 6) will be given in the appropriate sections.
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2. Subgraph identities.

For two graphs J and G, let s(J,G) denote the number of induced subgraphs of
G that are isomorphic to J . It will be convenient to permit both J and G to be the
“graph” K0, which has no vertices or edges. In this case we define s(K0, G) = 1 for all
G and s(J,K0) = 0 for all J 6= K0.

A summary of much of what is known about this “algebra of subgraphs” can be
found in [12]. For our purposes, the following theorem is important.

Theorem 2.1.
(a) For each disconnected graph J , there is a sequence of connected graphs J1, J2, . . . , Jk

and a polynomial pJ with rational coefficients such that

s(J,G) = pJ
(
s(J1, G), s(J2, G), . . . , s(Jk, G)

)
for every graph G.

(b) There is no sequence of nonisomorphic connected graphs J1, J2, . . . , Jk and nonzero
polynomial p such that

p
(
s(J1, G), s(J2, G), . . . , s(Jk, G)

)
= 0

for all graphs G.

Proof. Part (a) was proved by Whitney [26], while part (b) follows from a considerably
stronger result of Erdős, Lovász and Spencer [3].

We will need a particular case of part (a) of this theorem, stated as Lemma 2.1
below. For m ≥ 0 and 0 ≤ j ≤ m, define the graphs Tm,j as follows. For m = 0, define
T0,0 = K1. For m > 0, Tm,0 is the disconnected graph Km ∪K1, and for j ≥ 0, Tm,j+1

is formed by adding one edge to Tm,j . It is easy to see that this defines Tm,j uniquely
up to isomorphism and that Tm,m = Km+1.

Lemma 2.1. Suppose G is a graph with n vertices. Then, for m ≥ 0,

(n−m)s(Km, G) =
m∑
j=0

βm,js(Tm,j , G), (1)

where

βm,j =

{
m+ 1, if j = m;
2, if j = m− 1;
1, if 0 ≤ j ≤ m− 2.

Proof. Since n = s(K1, G) and Tm,0 is the only disconnected graph appearing here,
this is an special instance of Theorem 2.1 (a).

2



The cases m = 0, 1 are easy to check, so we can assume m ≥ 2. Both sides of (1)
count the number of subgraphs of the form Km ∪K1, induced or not. The left side of
(1) is obvious in this context. For the right side, consider the number j of edges that
join the Km to the K1. These m+1 vertices induce a subgraph Tm,j . Finally, note that
each subgraph Tm,j can arise in s(Km, Tm,j) = βm,j such ways.

For m = 2, Lemma 2.1 becomes

(n− 2)s(K2, G) = s(T2,0, G) + 2s(T2,1, G) + 3s(K3, G),

which is equivalent to Goodman’s identity [7].

We will find it convenient to adopt the following notational conventions. If G is a
graph, then VG and EG are its vertex set and edge set, respectively. If v ∈ VG and
W ⊆ VG , then NG(v,W ) = {w ∈ W | vw ∈ EG}. The subgraph of G induced by W

will be denoted by G[W ]. Also define the induced subgraphs G+
v = G[NG(v,VG)] and

G−v = G[VG −NG(v,VG)− {v}].

Lemma 2.2. Let J and G be graphs.
(a) If J has k ≥ 1 vertices of degree |VJ | − 1, then

k s(J,G) =
∑
v∈VG

s(J ′, G+
v ),

where J ′ is the result of removing from J a vertex of degree |VJ | − 1.
(b) If J has k ≥ 1 vertices of degree 0, then

k s(J,G) =
∑
v∈VG

s(J ′′, G−v ),

where J ′′ is the result of removing from J a vertex of degree 0.

Proof. In case (a), each subgraph isomorphic to J lies in {v} ∪NG(v,VG) for exactly
k vertices v, so both sides of the identity count induced subgraphs isomorpic to J with
a vertex of maximum degree distinguished. Case (b) is similar.

Each of the subgraphs involved in Lemma 2.1 matches one of the types considered
by Lemma 2.2. This yields a family of identities involving those functions. Let δi,j
denote the Kronecker delta.

Theorem 2.2. For m ≥ 1, every graph G satisfies∑
v∈VG

s(Km, G
−
v ) =

∑
v∈VG

((
n/m− s(K1, G

+
v ) +m− 2

)
s(Km−1, G

+
v )

+ (m− 1)s(Km, G
+
v ) +

m−2∑
j=1

(1 + δj,m−2)j
j + 1

s(Tm−1,j , G
+
v )
)
.
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Proof. The case m = 1 is easy to check directly, so we will assume m ≥ 2.

From Lemma 2.2, using (b) for j = 0 and (a) for j > 0, we have

s(Tm,j , G) =


1

1 + δm,1

∑
v∈VG

s(Km, G
−
v ), for j = 0;

1
j + δj,m

∑
v∈VG

s(Tm−1,j−1, G
+
v ), for 1 ≤ j ≤ m.

Applying Lemma 2.2 (a) for J = Km, we can substitute into Lemma 2.1 to obtain

n−m
m

∑
v∈VG

s(Km−1, G
+
v ) =

∑
v∈VG

s(Km, G
−
v ) +

m∑
j=1

βm,j
j + δj,m

∑
v∈VG

s(Tm−1,j−1, G
+
v ).

(2)

All the subgraphs appearing as the first argument of s( ) in (2) are connected except
Tm−1,0. Using Lemma 2.1 again, we have that

s(Tm−1,0, G
+
v ) =

1
βm−1,0

(
(s(K1, G

+
v )−m+1)s(Km−1, G

+
v )−

m−1∑
j=1

βm−1,js(Tm−1,j , G
+
v )
)
.

Substituting into (2) and collecting similar terms gives the desired identity.

The case of m = 1 is elementary, and the case of m = 2 is equivalent to Goodman’s
identity. Though less obvious, the identity for m = 3 can be derived from Lemma 2
of [15]. The later identities are new as far as we know.

It is interesting to consider the question of the completeness of Theorem 2.2. That
is, what other identities of similar form are there? We have explored this question by
experimental means. Consider identities with the general form∑

v∈VG

p(G+
v , G

−
v ) = 0,

where p is a polynomial in items of the form s(J,G+
v ) and s(J,G−v ) for some family

of connected graphs J . The coefficients can be arbitrary functions of n = s(K1, G).
The restriction to connected J is justified by Theorem 2.1. We further forbid the term
s(K1, G

−
v ), as it can be replaced by n− 1− s(K1, G

+
v ).

Define the degree of p to be the maximum total number of vertices appearing (as
the first argument of s) in a single term of p. Our experiment was to take large numbers
of random graphs of the same order, and count the numbers s(J,G+

v ) and s(J,G−v ) for
each vertex v and small connected graph J . Then we formed a matrix of values of the
possible terms of p, up to some fixed degree with one row per graph and one column
per term. The rank of this matrix, and linear relationships between the columns, tell
us about identities satisfied by the set of graphs we have chosen. In particular, linear
independence can prove the nonexistence of particular types of identity for these graphs
and hence for all graphs. For example, we have established:
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Lemma 2.3. The only identities of degree at most 6, in which p can be separated as
p(G+

v , G
−
v ) = p1(G+

v )+p2(G−v ), are those of Theorem 2.2 and their linear combinations.

If p does not have to separate in the manner of the lemma, we suspect that further
identities exist. For example, the following identity of degree 4 holds for such a large
number of random graphs (many thousands) that we conjecture it to hold always. Let
Pk and Ck denote the path and cycle of length k, respectively.

Conjecture 1. For every graph G,
∑
v∈VG

(
p1(G+

v ) + p2(G−v ) + p3(G+
v , G

−
v )
)

= 0,
where

p1(X) = n(n− 3)s(K1, X)− (n2 + 2n− 6)s(K1,X)2 + 3ns(K1,X)3

− 2s(K1,X)4 + 2(n2 + n− 8)s(K2,X)− 12s(K2,X)2

− 12(n− 1)s(K1, X)s(K2,X) + 12s(K1,X)2s(K2,X) + 72s(C4, X)

+ 12(n− 2)s(K3, X) + 24s(K1,3, X) + 24s(P4,X) + 24s(T3,1,X)

+ 12(n+ 2)s(P3,X)− 24s(K1, X)s(P3,X) + 32s(T3,2,X),

p2(Y ) = 4s(K2, Y )2 − 12s(K1,3, Y )− 8s(C4, Y )− 8s(T3,1, Y )

− 24s(T3,2, Y ) + 2(n− 8)s(P3, Y ),

and

p3(X,Y ) = 4s(K1,X)s(P3, Y )− 2(n− 2)s(K1, X)s(K2, Y )

+ 4s(K1,X)2s(K2, Y ).

We also have a tentative identity of degree 5, but it is even more complicated. We
expect that there is a rich theory of such identities, but we have merely scratched the
surface.

3. A proof that R(5, 5) ≤ 49.

A history of the known bounds on R(5, 5) is presented in Table I. The initials “LP”
refer to linear programming techniques.

Our theorem that R(4, 5) = 25 [17] implies immediately that R(5, 5) ≤ 50. More-
over, it implies that any (5, 5, 49)-graph G must be regular of degree 24, with each G+

v

being a (4, 5, 24)-graph and each G−v being the complement of a (4, 5, 24)-graph. (Note
that Ḡ, the complement of G, is also a (5, 5, 49)-graph.) Applying the case m = 2 of
Theorem 2.2, we find ∑

v∈VG

s(K2, G
−
v ) = 588 +

∑
v∈VG

s(K2, G
+
v ).
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year reference lower upper comments

1965 Abbott [1] 38 quadratic residues in Z37

1965 Kalbfleisch [9] 59 pointer to a future paper

1967 Giraud [6] 58 combinatorics & LP

1968 Walker [24] 57 combinatorics & LP

1971 Walker [25] 55 combinatorics & LP

1973 Irving [8] 42 sum-free sets

1989 Exoo [4] 43 simulated annealing

1992 McKay & Radziszowski [15] 53 (4, 4)-graph enumeration & LP

1994 McKay & Radziszowski [16] 52 LP & computation

1995 McKay & Radziszowski [17] 50 implication of R(4, 5) = 25

1995 McKay & Radziszowski 49 this paper

Table I. The history of bounds on R(5, 5).

Since also s(K2, G
−
v ) =

(
24
2

)
− s(K2, Ḡ

+
v ), we have that∑

v∈VG

(
s(K2, G

+
v ) + s(K2, Ḡ

+
v )
)

= 12936.

However, from the computations reported in [17] we know that (4, 5, 24)-graphs have
at most 132 edges, and that there are no such graphs with maximum degree greater
than 11. This leaves only graphs regular of degree 11, which gives the following key
lemma.

Lemma 3.1. Let G be a (5, 5, 49)-graph. Then, for each vertex v, G+
v and Ḡ+

v are
(4, 5, 24, 132)-graphs which are regular of degree 11.

It is possible to derive some reasonably strong restrictions on those (4, 5, 24, 132)-
graphs which might fit into a (5, 5, 49)-graph, but we decided to aim instead to find all
(4, 5, 24, 132)-graphs. Two such graphs were found previously by Thomason [23], under
the stronger conditions of both regularity and a constant number of triangles on each
edge. These are the graphs H1 and H2 given in Figure 1.

BothH1 andH2 are vertex-transitive, so for information we give their automorphism
groups. Define

g1 = (0 1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22 23),

g2 = (0 12)(1 17)(2 22)(3 15)(4 20)(5 13)(6 18)(7 23)(8 16)(9 21)(10 14)(11 19),

g3 = (1 11)(2 10)(3 9)(4 8)(5 7)(13 23)(14 22)(15 21)(16 20)(17 19),

g4 = (0 12)(1 23)(2 22)(3 21)(4 20)(5 19)(6 18)(7 17)(8 16)(9 15)(10 14)(11 13).

Then Aut(H1) = 〈g1, g2, g3〉, of order 48, and Aut(H2) = 〈g1, g4〉, of order 24.
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H1 H2

0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 1 1 1 1 0 0 1
1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 1 1 1 1 0 0
0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 1 1 1 1 0
0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 1 1 1 1
1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 1 1 1
0 1 0 0 1 0 1 0 0 1 0 0 1 1 0 0 1 0 1 0 0 1 1 1
0 0 1 0 0 1 0 1 0 0 1 0 1 1 1 0 0 1 0 1 0 0 1 1
0 0 0 1 0 0 1 0 1 0 0 1 1 1 1 1 0 0 1 0 1 0 0 1
1 0 0 0 1 0 0 1 0 1 0 0 1 1 1 1 1 0 0 1 0 1 0 0
0 1 0 0 0 1 0 0 1 0 1 0 0 1 1 1 1 1 0 0 1 0 1 0
0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 1 1 1 1 0 0 1 0 1
1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 1 1 1 1 0 0 1 0
0 1 0 0 1 1 1 1 1 0 0 1 0 0 0 0 1 1 0 1 1 0 0 0
1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 0 1 1 0 0
0 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 0 1 1 0
0 0 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 0 1 1
1 0 0 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 0 1
1 1 0 0 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 0
1 1 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 1 1
1 1 1 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 1
1 1 1 1 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0
0 0 1 1 1 1 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 0 0 0
1 0 0 1 1 1 1 1 0 0 1 0 0 0 0 1 1 0 1 1 0 0 0 0





0 1 1 0 1 0 0 0 1 0 1 1 1 0 0 0 1 1 0 0 0 1 0 1
1 0 1 1 0 1 0 0 0 1 0 1 1 1 0 0 0 1 1 0 0 0 1 0
1 1 0 1 1 0 1 0 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 1
0 1 1 0 1 1 0 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0
1 0 1 1 0 1 1 0 1 0 0 0 0 1 0 1 1 0 0 0 1 1 0 0
0 1 0 1 1 0 1 1 0 1 0 0 0 0 1 0 1 1 0 0 0 1 1 0
0 0 1 0 1 1 0 1 1 0 1 0 0 0 0 1 0 1 1 0 0 0 1 1
0 0 0 1 0 1 1 0 1 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1
1 0 0 0 1 0 1 1 0 1 1 0 1 1 0 0 0 1 0 1 1 0 0 0
0 1 0 0 0 1 0 1 1 0 1 1 0 1 1 0 0 0 1 0 1 1 0 0
1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 1 0 0 0 1 0 1 1 0
1 1 0 1 0 0 0 1 0 1 1 0 0 0 0 1 1 0 0 0 1 0 1 1
1 1 0 1 0 0 0 1 1 0 0 0 0 1 1 0 1 0 0 0 1 0 1 1
0 1 1 0 1 0 0 0 1 1 0 0 1 0 1 1 0 1 0 0 0 1 0 1
0 0 1 1 0 1 0 0 0 1 1 0 1 1 0 1 1 0 1 0 0 0 1 0
0 0 0 1 1 0 1 0 0 0 1 1 0 1 1 0 1 1 0 1 0 0 0 1
1 0 0 0 1 1 0 1 0 0 0 1 1 0 1 1 0 1 1 0 1 0 0 0
1 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 0 0
0 1 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 0
0 0 1 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1
0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 0 1 1 0 1 1 0
1 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 0 1 0 1 1 0 1 1
0 1 0 0 0 1 1 0 0 0 1 1 1 0 1 0 0 0 1 0 1 1 0 1
1 0 1 0 0 0 1 1 0 0 0 1 1 1 0 1 0 0 0 1 0 1 1 0


Figure 1. Adjacency matrices for H1 and H2.

From now on, H will denote a (4, 5, 24, 132)-graph. Since H is 11-regular, it is easy
to see that s(K2, H

−
v ) = s(K2, H

+
v ) + 11 for each v. Thus, we can find H by “gluing”

together some X ∈ R(3, 5, 11, e) and Y ∈ R(4, 4, 12, e+ 11) for some e. The number of
possibilities is listed in Table II.

e |R(3, 5, 11, e)| |R(4, 4, 12, e+11)|

15 1 8
16 6 177
17 19 1906
18 31 13332
19 30 58131
20 13 163757
21 4 302088
22 1 370368

Table II. Numbers of potential parts of (4, 5, 24, 132)-graphs.

Theorem 2.2 can help us to reduce the number of possibilities somewhat.

Lemma 3.2. For some v, s(K2, H
+
v ) ≥ 19.

Proof. For 15 ≤ e ≤ 18, the right side of Theorem 2.2 is at most 9 for every graph in
R(3, 5, 11, e), but the left side is at least 10 for every graph in R(4, 4, 12, e+11). (These
numbers were directly computed from the graphs themselves.) Hence no combination
of such graphs can satisfy the identity.
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Given Lemma 3.2, we can construct all of R(4, 5, 24, 132) using the methods de-
scribed in [17], but there are many more cases to process and they are more difficult
computationally. Fortunately, we can take advantage of the regularity to improve the
efficiency of the search.

To describe the improved search, it is necessary to summarise the setting from [17].
That paper should be consulted for more details.

Suppose we have a particular X ∈ R(3, 5, 11) and Y ∈ R(4, 4, 12) and we wish to
build them into H ∈ R(4, 5, 24, 132). We need to choose the edges between X and Y .
A feasible cone is a subset of VY that covers no clique of order 3. To avoid cliques of
order 4, the neighbourhood in Y of each vertex in X must be a feasible cone. The set
of all feasible cones can be packed into a smaller number of intervals of feasible cones,
which are sets of cones of the form [B, T ] = {W | B ⊆W ⊆ T}.

Suppose m = |VX |. If C0, . . . , Cm−1 are feasible cones, then F (X,Y ;C0, . . . , Cm−1)
denotes the graph H with vertex v such that H+

v = X, H−v = Y and NH(i,VY ) = Ci
for 0 ≤ i ≤ m − 1. Similarly, if I0, . . . , Im−1 are intervals, then F(X,Y ; I0, . . . , Im−1)
consists of all (4, 5, 24, 132)-graphs F (X,Y ;C0, . . . , Cm−1) such that Ci ∈ Ii for 0 ≤ i ≤
m−1. The primary tool is a set of collapsing rules, which take as an argument a sequence
(X,Y ; I0, . . . , Im−1) and return a sequence (X,Y ; I ′0, . . . , I

′
m−1) such that I ′i ⊆ Ii for

0 ≤ i ≤ m− 1 and F(X,Y ; I ′0, . . . , I
′
m−1) = F(X,Y ; I0, . . . , Im−1). A collapsing rule is

also permitted to generate the special event FAIL if F(X,Y ; I0, . . . , Im−1) = ∅.

Four collapsing rules are given in [17]. If we have restrictions on the size of feasible
cones, we can add some more rules.

Define two functions K,T : 2VY → 2VY such that, for W ⊆ VY ,

K(W ) =
⋂{
{x, y}

∣∣ x, y ∈W and {x, y} ∈ EH
}

;

L(W ) =
⋂{
{w, x, y, z}

∣∣ w, x, y, z ∈W are distinct and {w, x}, {y, z} ∈ EH
}
,

with the understanding that the value of the intersection is VY if it has no arguments.
These functions can be precomputed quickly for all W ⊆ VY using simple recurrences.

Suppose that for each u ∈ VX , Cu is required to satisfy lu ≤ |Cu| ≤ hu. Let the
corresponding interval be Iu = [Bu, Tu]. Then we can define the following rules.

(a) Suppose u ∈ VX .
if |Bu| > hu, then FAIL.
if |Bu| = hu, then Tu := Bu

(b) Suppose u ∈ VX .
if |Tu| < lu, then FAIL
if |Tu| = lu, then Bu := Tu
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(c) Suppose {u, v} ∈ EX and |Tu| = lu + 1.
if K(Bv ∩ Tu) = ∅, then FAIL
else Bu := Bu ∪

(
Tu −K(Bv ∩ Tu)

)
(d) Suppose {u, v} ∈ EX , |Tu| = lu + 1, and |Tv| = lv + 1.

if |L(Tu ∩ Tv)| ≤ 1, then FAIL
else Bu := Bu ∪

(
Tu − L(Tu ∩ Tv)

)
Lemma 3.3. Rules (a)–(d) are valid collapsing rules.

Proof. Rules (a) and (b) are an obvious application of the size restrictions.

Suppose {x, y} ∈ EY , x, y ∈ Bv∩Tu and |Tu| = lu+1. We can’t have that x, y ∈ Cu
because then {u, v, x, y} is a clique, so we must have one of x, y missing from Cu and
all the rest of Tu equal to Cu (or else |Cu| < lu).

Extending the same argument, we see that exactly one element of K(Bv ∩Tu) must
be avoided and the rest of Tu included. This is rule (c).

Suppose {w, x}, {y, z} ∈ EY , where w, x, y, z are distinct elements of Tu∩Tv, |Tu| =
lu + 1, and |Tv| = lv + 1. As before, exactly one of w and x, and exactly one of y and
z, are not in Cu ∩ Cv. The restrictions on the sizes of Tu and Tv imply that each of
Cu and Cv are missing one of {w, x, y, z} (but not the same one) and so must equal all
of the rest of Tu and Tv, respectively. Applying this idea simultaneously to all pairs of
edges {w, x}, {y, z} gives rule (d).

The method by which these collapsing rules were built into a search procedure was
the same as in [17], so we will not repeat it. Several implementations were made and
compared at intermediate points on a large number of examples. Then the fastest was
run to completion, establishing the following theorem.

Theorem 3.1. The only two (4, 5, 24, 132)-graphs are those in Figure 1.

Theorem 3.2. R(5, 5) ≤ 49.

Proof. If there exists a (5, 5, 49)-graph G, then by Lemma 3.1 and Theorem 3.1 we
know that G+

v and Ḡ+
v are one of H1 and H2. Consider the identity of Theorem 2.2

applied to G for m = 4.

The relevant subgraph counts are as follows.

s(K2, H1) = s(K2,H2) = 132; s(K3, H1) = s(K3, H2) = 176

s(K4, H1) = s(K4,H2) = 0; s(T3,1,H1) = s(T3,1,H2) = 1584

s(T3,2, H1) = s(T3,1, H2) = 792

s(K4, H̄1) = 144; s(K4, H̄2) = 138.
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The terms on the right side of the identity are 132 for both H1 and H2, but the
terms on the left side are 144 and 138 for the two possible subgraphs. Thus the identity
cannot be satisfied and we have a contradiction.

The fact that H1 and H2 cannot be built into a (5, 5, 49) graph was previously
proved by Thomason [23].

4. What is R(5, 5)?

The effort required to bring the upper bound on R(5, 5) down to 49 was considerable,
but still it is a long way from the best lower bound of 43. In this section we explain
why we believe that the correct value is closer to the lower end of this range. In fact,
together with Geoff Exoo, we make the following strong conjecture:

Conjecture 2. R(5, 5) = 43.

We further conjecture, though this time with Geoff’s dissent, that the number of
(5, 5, 42)-graphs is precisely 656.

The same set of 656 (5, 5, 42)-graphs, consisting of 328 graphs and their comple-
ments, was found by several paths. Firstly, we took a few known (5, 5, 42)-graphs found
by Exoo, removed three vertices from them in all possible ways, then extended the
resulting (5, 5, 39)-graphs back to (5, 5, 42)-graphs using a variation of the one-vertex
extension algorithm given in [17]. This process was repeated until no further (5, 5, 42)-
graphs were found.

Needless to say, we checked that none of these 656 graphs can be extended to
(5, 5, 43)-graphs.

The second construction method was devised and coded by Geoff Exoo. Starting
with a random graph on 30 vertices, edges are inserted or deleted using the simulated
annealing rules until a (5, 5, 30)-graph is obtained. Then an extra vertex is appended
randomly and the new graph adjusted in the same way to make a (5, 5, 31)-graph.
This process is repeated until finally a (5, 5, 42)-graph is obtained. The search is very
difficult, and at most several (5, 5, 42)-graphs per day are generated, but we ran it on
many computers for a very long time, making 5812 (5, 5, 42)-graphs altogether. The
result was that each of the 656 known (5, 5, 42)-graphs was constructed at least once,
but no new graphs were found.

A third construction method, using a similar incremental structure but with tabu
search instead of simulated annealing, constructed hundreds of (5, 5, 42)-graphs but
none were new. A number of attempts to bias the search away from where the known
graphs are were unsuccessful in finding anything new. Finally, more than one decade of
cpu time was expended in searching the neighbourhoods of the known (5, 5, 42)-graphs,
defined by the numbers of common edges or the size of common subgraphs. For example,
100 random 36-vertex subgraphs were formed and extended to 42 vertices in all possible
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ways, making over 65 million (5, 5, 42)-graphs that were all isomorphic to the known
graphs.

The fact that several independent processes that start with a random graph repeat-
edly find only the known (5, 5, 42)-graphs leads us to strongly suspect that our collection
of (5, 5, 42)-graphs is complete. It is not possible to put this belief on a quantitative
level, but as a mere illustration suppose that there were in fact 658 (5, 5, 42)-graphs
(one extra and its complement) and that Exoo’s program generates (5, 5, 42)-graphs
uniformly at random (an unlikely proposition). Then after 5812 trials our chance of not
discovering the extra graphs is (656/658)5812 ≈ 2.5× 10−7.

We wish to encourage our readers to devise further heuristic searches for (5, 5, 42)-
graphs, to support this evidence. In fact, we propose the construction of (5, 5, 42)-graphs
as a challenging benchmark for heuristic search methods.

For completeness, we give some information on the known (5, 5, 42)-graphs, restrict-
ing our counts to those with fewer edges than their complements. Of these 328 graphs,
212 have trivial automorphism groups and the others have a single nontrivial involution
without fixed points. The number of edges ranges from 423 to 430, with the number of
graphs in each class being 1, 7, 29, 66, 89, 77, 43, and 16, respectively. (Note the bi-
modal nature of this distribution when the complements are included.) All the vertices
have degrees between 19 and 22, inclusive. The graphs themselves are available from
the authors.

All the isomorphism and automorphism computations required for this paper were
performed by the first author’s program nauty [13]. Distribution of tasks across a
workstation network was performed with the help of autoson [14].

5. A proof that R(4, 6) ≤ 41

A summary of the history of bounds on R(4, 6) can be found in Table III. In this
section we will show how the identities from Section 2 and some data from [17] imply
that R(4, 6) ≤ 41.

First, some words about linear programming. The great majority of available linear
programming codes employ floating point arithmetic and are subject to the usual ques-
tions of correctness and accuracy that inexact arithmetic implies. The linear programs
that arise in our work are not exceptionally large, but often have properties (such as
high-dimensional optimum facets) that give trouble to floating point codes. Some exact
implementations are available, for example in the symbolic algebra package Maple [2],
but they are quite slow in operation.

We have taken a hybrid approach to these problems, helped by the fact that there
are usually exact solutions to our linear programs which are rational points with small
common denominators. Firstly, the routine E04MBF from the NAG library [19] is called
to obtain an approximate solution. Sometimes it is necessary to apply it to the dual
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year reference lower upper comments

1965 Kalbfleisch [9] 30 cyclic graph, not presented

1965 Kalbfleisch [9] 47 bound announced, not derived

1966 Kalbfleisch [10] 34 cyclic graph

1967 Kalbfleisch [11] 46 edge counting

1968 Walker [24] 45 combinatorics & LP

1971 Walker [25] 44 combinatorics & LP

1993 Exoo [5] 35 simulated annealing

1994 McKay & Radziszowski [16] 43 (4, 4)-graph enumeration & LP

1995 McKay & Radziszowski 41 this paper

Table III. The history of bounds on R(4, 6).

program, or to apply it repeatedly with different starting points. When tentative ap-
proximate feasible points in both the primal and dual programs are found, they are
converted to rational points by guessing a common denominator (using continued frac-
tions). These guessed feasible points are then tested for actual feasibility using the
original inequalities and exact arithmetic. If this test succeeds, we have proven the
optimality of the solution. To guard against gross errors, all linear program solutions
were compared to the approximate solutions given by LINDO [22].

Note that strictly speaking we are dealing with integer linear programs, not rational
linear programs. However, in our experience, it is rare for there not to be an integer
feasible point with objective equal to the rounded value of the rational optimum. The
exceptional cases have no importance that we know of, so we will not attempt to present
them here.

We will now describe our approach, in terms of a linear program LP(s, t, n) for an
(s, t, n)-graph G. This is similar to, but more general than, linear programs we have
defined previously [15, 16].

For convenience, for any graph X, define the functions v(X) = s(K1, X), e(X) =
s(K2, X), t(X) = s(K3,X) and p(X) = s(T2,1,X). Then we can write cases m = 2, 3
of Theorem 2.2 as ∑

v∈VG

2e(G−v ) =
∑
v∈VG

g2(G+
v , |VG |) (I2)

and ∑
v∈VG

3t(G−v ) =
∑
v∈VG

g3(G+
v , |VG |), (I3)

where
g2(X,n) = v(X)(n− 2v(X)) + 2e(X),

g3(X,n) = e(X)(n− 3v(X) + 3) + 6t(X) + 3p(X).

12



Suppose we have bounds as follows:

(a) d′ ≤ n−R(s, t−1) and d′′ ≥ R(s−1, t)− 1.

(b) e′1(i) ≤ e(X) ≤ e′′1(i) for every (s−1, t, i)-graph X.

(c) e′2(i) ≤ e(X) ≤ e′′2(i) for every (s, t−1, i)-graph X.

(d) t′(i, j) ≤ t(X) ≤ t′′(i, j) for every (s, t−1, i, j)-graph X.

(e) g′3(i, j) ≤ g3(X,n) ≤ g′′3 (i, j) for every (s−1, t, i, j)-graph X.

The variables of LP(s, t, n) are as follows.

(i) ni is the number of vertices of G having degree i, for d′ ≤ i ≤ d′′.

(ii) gi,j is the number of vertices v of G such that v(G+
v ) = i and e(G+

v ) = j, for
d′ ≤ i ≤ d′′ and e′1(i) ≤ j ≤ e′′1(i).

(iii) hi,j is the number of vertices v of G such that v(G−v ) = i and e(G−v ) = j, for
n− d′′ − 1 ≤ i ≤ n− d′ − 1 and e′2(i) ≤ j ≤ e′′2(i).

The constraints of LP(s, t, n) are as follows. In each case, the sums are taken over
all values of the summation indices for which the summand exists.

(A)
∑
i ni = n.

(B)
∑
j gi,j = ni, for d′ ≤ i ≤ d′′.

(C)
∑
j hn−i−1,j = ni, for d′ ≤ i ≤ d′′.

(D)
2
∑
i,j

jhn−i−1,j =
∑
i,j

(
i(n− 2i) + 2j

)
gi,j .

(E′)
3
∑
i,j

t′(i, j)hn−i−1,j ≤
∑
i,j

g′′3 (i, j)gi,j .

(E′′)
3
∑
i,j

t′′(i, j)hn−i−1,j ≥
∑
i,j

g′3(i, j)gi,j .

The correctness of (A), (B) and (C) is clear from the interpretation of the variables.
Equation (D) is just identity (I2). The two inequalities (E′) and (E′′) are a consequence
of identity (I3), comparing lower bounds for one side against upper bounds for the other.

Let us apply our linear programs to show that there are no (4, 6, 41)-graphs. Since
R(3, 6) = 18 and R(4, 5) = 25, we can take d′ = 16 and d′′ = 17. The (3, 6)-graphs are
known completely [18, 21], so we can find best values of e′1, e′′1 , g′ and g′′. However, the
values e′2, e′′2 , t′ and t′′ depend on the (4, 5, 23)-graphs and (4, 5, 24)-graphs, of which
our knowledge is incomplete. Hence we begin by constructing the linear programs
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LP(4, 5, 23) and LP(4, 5, 24). Using the fact from [17] that (4, 5, 24)-graphs have at
most 132 edges, we find the bounds e′2(23) = 98, e′′2(23) = 130, e′2(24) = 109 and
e′′2(24) = 132. Bounds on t(X) for (4, 5)-graphs can be found in Table IV.

n = 23 n = 24

e t e t e t e t

98 90-98 115 106-153 109 112-112 126 130-168
99 88-104 116 109-154 110 111-117 127 133-169

100 87-109 117 113-156 111 110-121 128 135-170
101 85-113 118 116-157 112 110-125 129 138-172
102 83-117 119 119-158 113 109-128 130 142-173
103 82-121 120 122-160 114 108-131 131 146-174
104 82-125 121 126-161 115 108-135 132 176-176
105 84-128 122 129-162 116 107-138
106 85-131 123 133-164 117 107-142
107 87-134 124 138-165 118 109-145
108 89-137 125 142-166 119 112-148
109 91-141 126 147-168 120 114-151
110 92-142 127 153-169 121 117-154
111 94-144 128 159-170 122 119-156
112 97-146 129 166-172 123 122-159
113 100-149 130 172-173 124 125-162
114 103-151 125 127-165

Table IV. Bounds on the number of triangles in (4, 5, n, e)-graphs.

Having the values in Table IV, we can construct LP(4, 6, 41). It is infeasible, which
demonstrates the following theorem.

Theorem 5.1. R(4, 6) ≤ 41.

It is perhaps worth noting that exactly the same result is obtained without constraint
(E′′). This is also true of the lower bounds in Table IV, which are those needed for
constraint (E′), but not for the upper bounds.

Unfortunately, the linear program LP(4, 6, 40) has many feasible points, so the
existence of a (4, 6, 40)-graph remains a possibility. However, we note that the result
R(4, 6) ≤ 40 would follow if it was known that (4, 5, 22)-, (4, 5, 23)- and (4, 5, 24)-graphs
had at least 93, 105 and 113 edges, respectively. These bounds are quite likely to hold,
but we have not proved them.
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Concerning the exact value of R(4, 6), we expect that the current lower bound of 35
is correct. However, our evidence for this is less persuasive than for our similar feelings
about the conjecture that R(5, 5) = 43. We have 30 (4, 6, 34)-graphs so far, produced
by making modifications to some graphs provided by Exoo, and proved that there are
no others sharing a 31-vertex induced subgraph with one of these 30. However we have
not performed any major heuristic searches.

Finally, we give some information on the known (4, 6, 34)-graphs. Of these 30 graphs,
13 have trivial automorphism groups and the others have a single nontrivial involution
with 8 fixed points. The number of edges ranges from 222 to 227, with the number of
graphs in each class being 2, 4, 8, 10, 5, and 2, respectively. The graphs themselves are
available from the authors.
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