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Abstract.

The Ramsey number R(4, 5) is defined to be the least positive integer n such that every
n-vertex graph contains either a clique of order 4 or an independent set of order 5. With
the help of a long computation using novel techniques, we prove that R(4, 5) = 25.

1. Introduction.

We shall only consider graphs without multiple edges or loops. For s, t, n ≥ 1, an
(s, t)-graph is a graph without cliques of order s or independent sets of order t, and an
(s, t, n)-graph is an (s, t)-graph of order n. Let R(s, t) and R(s, t, n) denote the set of all
(s, t)-graphs and all (s, t, n)-graphs, respectively.

The Ramsey number R(s, t) is defined to be the least n > 0 such that there is no
(s, t, n)-graph. The existence of R(s, t) is a corollary of the celebrated paper of Ramsey
[11], but some decades passed before serious work began on determining actual values. A
good early survey appears in the book [2].

At the time of the paper of Greenwood and Gleason in 1955 [3], only the elementary
bound R(4, 5) ≤ 31 was known; this follows from the values R(3, 5) = 14 and R(4, 4) = 18
immediately. The first significant lower bound R(4, 5) ≥ 25 was found by Kalbfleisch in
1965 [4], who constructed a (4, 5, 24)-graph with a circular symmetry. Kalbfleisch also
stated that he had established the upper bound R(4, 5) ≤ 30. Substantial progress on
upper bounds began with Walker [12, 13], who established R(4, 5) ≤ 29 and later R(4, 5) ≤
28 using some simple linear programs derived from counting subgraphs in an interesting
way. This last bound held for 20 years until the present authors reduced it to R(4, 5) ≤
27 [7]. Firstly, we extended Walker’s method with more subgraph identities and exact
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data about (3, 5)-graphs and (4, 4)-graphs, to make much more powerful linear programs.
Then we used those programs to restrict the space of possible (4, 5, 27)-graphs sufficiently
that a computer could exhaustively search it. Essentially the same method, using better
algorithms, produced the bound R(4, 5) ≤ 26 in 1992 (unpublished).

Unfortunately, as the number of vertices is brought down, the usefulness of the linear
program decreases dramatically, to the extent that for the work described in the current
paper we did not use it at all. Instead we needed to rely primarily on computational
strategies. It was necessary to improve the previous algorithms by more than an order of
magnitude before the computation became feasible, even though we were willing to expend
more than a decade of computer time.

An extensive summary of current knowledge of graph Ramsey numbers, including
generalisations of the classical numbers considered here, can be found in [9].

2. Problem decomposition.

If F is a graph, v ∈ VF and W ⊆ VF , then NF (v,W ) = {w ∈ W | vw ∈ EF}. The
subgraph of F induced by W will be denoted by F [W ]. The special case F [VF −{v}] will
also be written as F − v.

Suppose that x is a vertex of F . Define the induced subgraphs Gx = Gx(F ) =
F [NF (x,VF )] and Hx = Hx(F ) = F [VF−NF (x,VF )−{x}]. If F is a (4, 5, 25)-graph, and
x ∈ VF has degree d, it is clear that Gx is a (3, 5, d)-graph and Hx is a (4, 4, 24−d)-graph.
Since R(3, 5) = 14 and R(4, 4) = 18, we must have that 7 ≤ d ≤ 13. Complete catalogues
of (3, 5)-graphs and (4, 4)-graphs have been previously compiled [7, 8, 10]; for the present
work they were checked extensively. Counts of these graphs according to their order appear
in Table 1. The two (4,4,16)-graphs were previously found by Brass and Mengersen [1].
They also claimed a third, but unfortunately they overlooked the isomorphism of the first
two graphs of their Figure 4. (Note that in the second graph that diagonal of length two
which determines a vertex of degree 9 is obviously misdrawn.)

In principle we could construct all (4, 5, 25)-graphs directly by taking potential pairs
(Gx,Hx) and searching for valid ways to place edges between them, but we avoided this
approach for several reasons. Firstly, the number of such pairs is in the hundreds of
millions, as can be seen from Table 1. Secondly, we expected this computation would
give a null result; i.e., that there are no (4, 5, 25)-graphs. In that event we would have
little output that could be subject to consistency checks or could serve to compare two
implementations. Instead, we will aim to construct a family of (4, 5, 24)-graphs, defined
such that any (4, 5, 25)-graph must be a 1-vertex extension of at least one of the graphs in
our family.

For k = 7, 8, 9, 10, let R′(3, 5, k) be a set of (3, 5)-graphs of order less than k such that
every (3, 5, k)-graph contains at least one of them. Similarly, for k = 11, 12, let R′(4, 4, k)
be a set of (4, 4)-graphs of order less than k such that every (4, 4)-graph contains at least
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n |R(3, 5, n)| |R(4, 4, n)|

1 1 1
2 2 2
3 3 4
4 7 9
5 13 24
6 32 84
7 71 362
8 179 2079
9 290 14701

10 313 103706
11 105 546356
12 12 1449166
13 1 1184231
14 130816
15 640
16 2
17 1

Table 1. Counts of (3, 5)-graphs and (4, 4)-graphs

one of them. The actual choice of these sets is important for efficiency, as we will explain
later. Suppose that F ∗ is a (4, 5, 25)-graph. Choose a vertex v of F ∗ thus:

(i) If x is a vertex of F ∗ of degree d ≤ 10, let v be a vertex of Gx(F ∗) such that Gx(F ∗)−v
contains some member of R′(3, 5, d).

(ii) If x has degree d ≥ 12, let v be a vertex of Hx(F ∗) such that Hx(F ∗) − v contains
some member of R′(4, 4, 24− d).

Since F ∗ cannot be regular of degree 11, having odd order, at least one choice of v is
possible. Hence, at least one subgraph of F ∗ occurs in the set of all (4, 5, 24)-graphs F
such that for some x, Gx(F ) and Hx(F ) are represented by some row of Table 2.

Gx Hx

R′(3, 5, 7) R(4, 4, 17)
R′(3, 5, 8) R(4, 4, 16)
R′(3, 5, 9) R(4, 4, 15)
R′(3, 5, 10) R(4, 4, 14)
R(3, 5, 12) R′(4, 4, 12)
R(3, 5, 13) R′(4, 4, 11)

Table 2. Required choices for (Gx,Hx)
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The process of constructing F from a pair (Gx,Hx) will be called gluing. The number
of gluings required by Table 2 is far too large for naive gluing methods, as about 50-80
edges between Gx and Hx must be chosen. In the following section, we will describe
a gluing algorithm of sufficient efficiency that all the required gluings can be performed
within an acceptable time.

3. Gluing.

Of the six rows of Table 2, the most difficult were the fourth and fifth. In this section
we will provide a detailed description of the gluing algorithm used for the first four rows,
and a brief outline of that used for the other two rows.

For k = 7, 8, 9, we took R′(3, 5, k) = R(3, 5, k − 1). Although smaller sets would have
been more efficient, we wished to take the opportunity to compute the complete set of
(4, 5, 24)-graphs having a vertex of degree 8 or less. For R′(3, 5, 10) we took a set of 53
(3, 5, 9)-graphs chosen, in accord with experiment, to be as sparse as possible.

Suppose that G and H are a (3, 5)-graph and a (4, 4)-graph, respectively. Define
F(G, H) to be the set of all (4, 5)-graphs F such that for some vertex x ∈ VF , Gx(F ) = G
and Hx(F ) = H. We will use F to refer to a representative member of F(G, H). For
definiteness, we will suppose that the vertices of G are labelled with contiguous integers
0, 1, 2, . . . and that induced subgraphs of G are also labelled contiguously 0, 1, 2, . . . in the
order induced from the labelling of G.

Define a feasible cone to be a subset of VH which covers no clique of order 3. If H is
a (4, 4, 14)-graph, there are typically about 4000 feasible cones. The relevance of feasible
cones is that NF (v,VH ) must be a feasible cone for every vertex v ∈ VG . Our problem
is to choose feasible cones C0, C1, . . . , one for each vertex of G, such that no cliques of
order 4 or independent sets of order 5 appear in F . The various positions in which these
forbidden subgraphs might occur are as follows.

K2: Two adjacent vertices v, w ∈ VG have Cv ∩ Cw covering some edge of H.

Et: For some independent set w0, . . . , wt−1 of G, there is an independent set of order 5− t
in H which is completely missed by Cw0

∪ Cw1
∪ · · ·Cwt−1

(t = 2, 3, 4).

The gluing operation can be achieved by a direct backtrack search of depth |VG |, but
this is insufficiently efficient due to the very large number of feasible cones. Instead, we
will partition the set of feasible cones into well-structured families which can be processed
in parallel. An interval of feasible cones, for brevity called an interval , is a set of feasible
cones of the form {X |B ⊆ X ⊆ T} for some feasible cones B ⊆ T . This interval will be
denoted by [B, T ], and we will call B and T its bottom and top, respectively. Obviously,
[B, T ] contains 2|T |−|B| feasible cones. Using a simple heuristic search, the typical set of
4000 feasible cones when H is a (4, 4, 14)-graph can be written as the disjoint union of
about 100 intervals. The dimensions |T | − |B| range from 0 to 8.
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Suppose m = |VG |. If C0, . . . , Cm−1 are feasible cones, then F (G, H; C0, . . . , Cm−1)
denotes the graph F with vertex x such that Gx(F ) = G, Hx(F ) = H, and Ci = NF (i,VH )
for 0 ≤ i ≤ m− 1. Clearly, this is a (4, 5, 24)-graph if and only if conditions K2, E2, E3, E4

are avoided. Similarly, if I0, I1, . . . , Im−1 are intervals, then F(G, H; I0, . . . , Im−1) repre-
sents the set of all (4, 5, 24)-graphs F (G, H; C0, . . . , Cm−1) such that Ci ∈ Ii for 0 ≤ i ≤
m− 1.

Given H, we define three functions H1,H2,H3 : 2V H → 2V H . Namely, for X ⊆ VH
let

H1(X) = {w ∈ VH | vw ∈ EH for some v ∈ X};

H2(X) = {w ∈ VH | vw /∈ EH for some v /∈ X};

H3(X) = {w ∈ VH | {u, v, w} is an independent 3-set of H for some u, v /∈ X}.

These functions can be computed by means of simple recursions. Using them, we can
define some collapsing rules that apply to sequences I0, . . . , Im−1 of intervals. The rules
depend on the graphs G and H. In each case, either some interval is replaced by an interval
contained in it, or the special event FAIL occurs. Suppose Ii = [Bi, Ti] for each i, and
define collapsing rules (a)–(d) as follows:

(a) Suppose {u, v} ∈ EG .
if Bu ∩Bv ∩H1(Bu ∩Bv) 6= ∅ then FAIL
else Tu := Tu −

(
H1(Bu ∩Bv) ∩Bv

)
(b) Suppose {u, v} /∈ EG, where u, v are distinct vertices of G.

if H3(Tu ∪ Tv) 6⊆ Tu ∪ Tv then FAIL
else Bu := Bu ∪

(
H3(Tu ∪ Tv)− Tv

)
(c) Suppose {u, v, w} is an independent 3-set of G.

if H2(Tu ∪ Tv ∪ Tw) 6⊆ Tu ∪ Tv ∪ Tw then FAIL
else Bu := Bu ∪

(
H2(Tu ∪ Tv ∪ Tw)− (Tv ∪ Tw)

)
(d) Suppose {u, v, w, z} is an independent 4-set of G.

if Tu ∪ Tv ∪ Tw ∪ Tz 6= VH then FAIL
else Bu := Bu ∪

(
VH − (Tv ∪ Tw ∪ Tz)

)
In all of the above it should be noted that there is a different collapsing rule for each

vertex in the given edge or independent set. For example, in rule (c) the stated role for
u could equally be played by v or w. The reason these collapsing rules are useful is the
following lemma.

Lemma 1. Suppose that some collapsing rule is applied to I0, . . . , Im−1.
If FAIL occurs, then F(G, H; I0, . . . , Im−1) = ∅.
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Otherwise, F(G, H; I0, . . . , Im−1) = F(G, H; I ′0, . . . , I
′
m−1),

where I ′0, . . . , I
′
m−1 is the sequence of intervals after the rule application.

Proof. Consider Rule (a), for example. Let {y, z} ∈ EH be an edge such that y ∈ Bu∩Bv

and z ∈ Tu ∩ Bv. Clearly u cannot be adjacent to z, since that would imply a 4-clique
{u, v, w, z} (condition K2). Thus, F(G, H; I0, . . . , Im−1) = ∅ if z ∈ Bu; otherwise z can
be removed from Tu. Application of this idea simultaneously to all such edges {y, z} is
precisely Rule (a).

Rules (b)–(d) apply similar ideas to avoid independent 5-sets (conditions E2–E4, re-
spectively).

If the collapsing rules are applied repeatedly, we must eventually encounter either a
FAIL condition or a stable situation where no collapsing rule can FAIL or reduce an interval
strictly. It turns out that the final state is independent of the order of application of the
collapsing rules. This is a special case of the following elementary result.

Let (X,≤) be a partially ordered set, and let Φ be a family of functions from X to X.
Suppose that, for x, x′ ∈ X and φ ∈ Φ we have φ(x) ≤ x and x ≤ x′ ⇒ φ(x) ≤ φ(x′). Call
x ∈ X Φ-stable if φ(x) = x for all φ ∈ Φ. Let Φ∗(x) denote the closure of {x} under Φ.

Lemma 2. For each x ∈ X, Φ∗(x) contains at most one Φ-stable element.

Proof. Suppose that for φ1, . . . , φr, φ
′
1, . . . , φ

′
s ∈ Φ, both y = φr(· · ·φ1(x) · · ·) and y′ =

φ′
s(· · ·φ′

1(x) · · ·) are Φ-stable. Then y = φ′
s(· · · (φ′

1(φr(· · ·φ1(x) · · ·) · · ·) since y is Φ-stable,
and so y ≤ y′ by the stated conditions on Φ. Similarly y′ ≤ y, and so y′ = y.

To apply Lemma 2 for given G and H, let X be the set of all m-tuples (I0, . . . , Im−1)
of intervals, together with the special value FAIL. Define x ≤ x′ if either x = FAIL or
x = (I0, . . . , Im−1), x′ = (I ′0, . . . , I

′
m−1) and Ii ⊆ I ′i for 0 ≤ i < m. Let Φ be the set of all

available collapsing rules, extended to map FAIL onto FAIL always. The requirements for
Lemma 2 are now easily checked, noting that the functions H1, H2 and H3 are monotoni-
cally nondecreasing, nonincreasing and nonincreasing, respectively, and that the finiteness
of Φ∗(x) guarantees that it contains at least one Φ-stable element.

The result of applying collapsing rules until either a FAIL condition or stability occurs
will be called collapsing; it replaces (I0, . . . , Im−1) by C(G, H; I0, . . . , Im−1), where the
latter is either FAIL or a sequence (I ′0, . . . , I

′
m−1) such that I ′i ⊆ Ii for 0 ≤ i ≤ m− 1. The

latter stable sequence is said to be fully collapsed (for G and H).

The fundamental theorem about collapsing is as follows.

Theorem 1. If C(G, H; I0, . . . , Im−1) = FAIL then F(G, H, I0, . . . , Im−1) = ∅.
Otherwise, define (I ′0, . . . , I

′
m−1) = C(G, H; I0, . . . , Im−1). Then F(G, H, I ′0, . . . , I

′
m−1) =
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F(G, H, I0, . . . , Im−1) and if, in addition, |I ′0| = |I ′1| = · · · = |I ′m−1| = 1, then
F(G, H; I ′0, . . . , I

′
m−1) consists of a single (4, 5)-graph.

Proof. All but the final claim follows by repeated application of Lemma 1. For last part,
note that the existence of any 4-clique or independent 5-set would lead to the corresponding
collapsing rule causing condition FAIL.

Note that every time a collapsing rule modifies an interval, the number of feasible
cones it represents is divided by a power of two. This ability of collapsing to purge many
infeasible configurations at the same time is the primary reason for the success of this
approach.

We can now see a search procedure for gluing using intervals. Suppose inductively
that we have all fully collapsed sequences of intervals (I ′0, . . . , I

′
r−1) for G[{0, 1, . . . , r−1}].

Those for G[{0, 1, . . . , r}] have the form C(G[{0, 1, . . . , r}],H; I ′0, . . . , I
′
r−1, Ir), where Ir is

some interval and choices causing FAIL are rejected.

Given all fully collapsed sequences (I ′0, . . . , I
′
m−1) for G, we can easily find F(G, H).

Sequences with |I ′0| = · · · = |I ′m−1| = 1 yield a single solution, as shown in Theorem 1.
Those which have some I ′i = [B′

i, T
′
i ] with B′

i 6= T ′
i can be recursively split into the dis-

joint configurations C(G, H; I ′0, . . . , [B′
i ∪{w}, T ′

i ], . . . , I ′m−1) and C(G, H; I ′0, . . . , [B′
i, T

′
i −

{w}], . . . , I ′m−1) for some w ∈ T ′
i −B′

i, with values causing FAIL being rejected as usual.

This algorithm is already more than one order of magnitude faster than simple back-
tracking with feasible cones, but further substantial improvement is possible. One source
of unnecessary inefficiency is that there are typically 100 intervals that might be chosen for
Ir, and most of them lead to FAIL conditions for moderate r. We can reduce the required
number of collapsing operations markedly with the help of a simple look-ahead. This is
achieved with the help of a data-structure which has a further great advantage: many
different G’s can be processed simultaneously.

Suppose 1 ≤ a2 ≤ a3 ≤ · · · are integers such that ai < i for i ≥ 2. We will define two
relations on the set of labelled graphs, where the labels are the integers {0, 1, . . . ,m − 1}
if the order is m. Suppose that J is such a graph with m ≥ 2 vertices. Then

parent(J) = J [{0, 1, . . . ,m− 2}]
and

adjunct(J) = J [{0, 1, . . . , am − 2,m− 1}],

where the final vertex of adjunct(J) is given the label am − 1 in accordance with our
convention for labelling subgraphs. It follows from the definitions that parent(J) and
adjunct(J) have m− 1 and am vertices, respectively.

From Lemma 2 we easily have the following.
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Lemma 3. Let I0, . . . , Im−1 be intervals. If C(parent(J),H; I0, . . . , Im−2) is FAIL or
C(adjunct(J),H; I0, . . . , Iam−2, Im−1) is FAIL, then C(J,H; I0, . . . , Im−1) is FAIL. Oth-
erwise, suppose (I ′0, . . . , I

′
m−2) = C(parent(J),H; I0, . . . , Im−2) and (I ′′0 , . . . , I ′′am−1) =

C(adjunct(J),H; I0, . . . , Iam−2, Im−1). Then,

C(J,H; I0, . . . , Im−1) = C(J,H; I ′0 ∩ I ′′0 , . . . , I ′am−2 ∩ I ′′am−2, I
′
am−1, . . . , I

′
m−2, I

′′
am−1),

where the value is taken as FAIL if any of the intersections are empty.

The primary usage of Lemma 3 is to reduce the number of collapsing operations needed
to deduce the fully collapsed configurations for J from those for parent(J). Instead of per-
haps 100 possibilities for Im−1 we typically have only a few, the others having caused FAIL
when tried for adjunct(J). Furthermore, the collapsing operations required for adjunct(J)
are independent of Im−2 and so need not be repeated if only Im−2 changes.

To implement these ideas efficiently we construct an object consisting of a pair of
superimposed rooted trees. We will call it a double tree. For definiteness, suppose we wish
to glue a single H to a family R′ = R′(3, 5, k). The nodes of the double tree are labelled
graphs, namely the members of R′ and recursively the parent and adjunct of every node.
The graph K1 has no parent or adjunct; call it the root. The edges (J, parent(J)) form a
rooted tree called the parent tree, of which those nodes and edges on a path from a member
of R′ to the root constitute the main branches (a subtree of the parent tree). The edges
(J, adjunct(J)) form another tree, called the adjunct tree. Since parent(adjunct(J)) =
parent m−am+1(J), where m = |VJ | and am ≥ 2, the total number of nodes in the double
tree is at most k − 1 times the number in the main branches.

In order to reduce the total number of nodes in the double tree, especially close to the
root, the members of R′ were labelled so that their leading subgraphs coincided as much
as possible. Experiments showed that placing sparse subgraphs first was the most efficient
on average for our purposes.

Now the primary gluing algorithm can be described. Beginning at the root, the main
branches of the double tree are scanned in depth-first order. For the root, all intervals are
collapsed. For other nodes, the collapsed configurations for the parent and the adjunct are
combined as described in Lemma 3. A time-stamping system is used to detect when the
configurations for the adjunct are known already or need to be computed. Computation at
the adjunct might recursively require computations at the adjunct of the adjunct, and so
on. Typical experience was that whenever the adjunct configurations were required they
were already valid about 90% of the time.

Further speed-up, of a factor of 2–3, was achieved by employing the symmetries of the
low-order nodes in the double-tree. We found it adequate to employ all the symmetries of
the nodes of order 4 or less.

For the final two rows of Table 2, an alternate but similar algorithm was used. Instead
of searching in a space of structure derived from a set of possibilities for G, using intervals
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in H, the roles of G and H were reversed. Intervals were defined in the power set of VG ,
and the search space structure was derived from the set of possibilities for H. Since H is
a (4, 4)-graph, collapsing rule (d) was not needed, but a new collapsing rule for triangles
in H was used. The much larger number of (4, 4)-graphs compared to (3, 5)-graphs led
us to choose R′(4, 4, k) to consist of graphs smaller than k − 1 vertices. For k = 12 we
used 23 (4, 4, 7)-graphs and 51 (4, 4, 8)-graphs. For k = 11 we used 28 (4, 4, 8)-graphs and
113 (4, 4, 9)-graphs. Experience led us to favour dense graphs, and label them with their
densest subgraphs first. In each case, the gluing operation as previously described takes us
to graphs on 21 or 22 vertices. These were extended in all possible ways to 24 vertices using
a method that applies collapsing rules to determine the edges incident with the remaining
vertices of H as well as those between G and H.

4. One-vertex extensions.

Our final requirement is an algorithm for extending (4, 5)-graphs by a single vertex.
Suppose F is a (4, 5, n)-graph. We wish to find all manners in which a new vertex v can
be joined to F to make a (4, 5, n + 1)-graph. Clearly it is necessary and sufficient that
N(v,VF ) does not cover any triangle of F and hits every independent 4-set of F .

Let X1, X2, . . . , Xr be a list containing all the triangles and independent 4-sets of F , in
some order. Similarly to the gluing algorithm, we will consider intervals [B, T ] of subsets
of VF . The extension algorithm uses a set I of such intervals.

I := {[∅,VF ]}
for i := 1 to r do

if Xi is a triangle then
for each [B, T ] ∈ I such that Xi ⊆ T do

if Xi ⊆ B then
Delete [B, T ] from I.

else
Replace [B, T ] by [B ∪ {y1, . . . , yj−1}, T − {yj}] for j = 1, . . . , k,

where Xi −B = {y1, . . . , yk}.
endif

endfor
else [if Xi is an independent 4-set]

for each [B, T ] ∈ I such that Xi ∩B = ∅ do
if Xi ∩ T = ∅ then

Delete [B, T ] from I.
else

Replace [B, T ] by [B ∪ {yj}, T − {y1, . . . , yj−1}] for j = 1, . . . , k,
where Xi ∩ T = {y1, . . . , yk}.

endif
endfor

endif
endfor
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At completion of the algorithm, I will contain a set of disjoint intervals whose union
is the set of possible neighbourhoods N(v,VF ). We will leave the proof of this claim to
the reader.

The efficiency of the algorithm depends considerably on the order of the elements in
the list X1, . . . , Xr. A reasonably good method is to sort on greatest element, then second
greatest, and so on, with the triangles and independent 4-sets being sorted in together.
With careful implementation this algorithm can achieve typical extensions from 24 to 25
vertices in about 10 milliseconds, which is more than one order of magnitude faster than
straightforward searching without using intervals.

5. Computations and verification.

Two separate implementations of the algorithms described in Sections 3 and 4 were
constructed, one by each author. The general structure of the two implementations was
similar, but the detail was quite different. For example, different partitions of the set
of feasible cones into intervals, and different adjunct orders ai were used. The generated
(4, 5, 24)-graphs were compared for each individual gluing operation, or sometimes in small
groups, with no discrepancy being found. Some representative gluings were also performed
using independent unsophisticated searches, again with identical results. Isomorphism
testing was performed using the program nauty distributed by the first author [5].

The two implementations required 3.2 years and 6 years of cpu time on Sun Microsys-
tems computers (mostly Sparcstation SLC). This was achieved without undue delay by
employing a large number of computers (up to 110 at once).

As a result of these computations, about 250000 (4, 5, 24)-graphs were found. These
were shown to not be induced subgraphs of (4, 5, 25)-graphs using two independent pro-
grams for extending (4, 5, n)-graphs to (4, 5, n+1)-graphs. Thus we have our main theorem.

Theorem 2. R(4, 5) = 25.

Due to the great length of the computation, and the complexity of the algorithms, we
sought further evidence of the correctness of the output. Firstly, we did a large number of
additional gluing operations, including enough to find all (4, 5, 24)-graphs with maximum
degree at least 12 and those regular of degree 11. The latter computation required addi-
tional techniques and will be described in another paper. These results imply the bound
R(5, 5) ≤ 49. We also found many additional (4, 5, 24)-graphs by random search. We then
closed our catalogue of (4, 5, 24)-graphs under small perturbations, as follows.

For integer k, define the relation ∼k on the set of (4, 5, 24)-graphs by F1 ∼k F2 if
F1 and F2 have a common k-vertex subgraph (up to isomorphism). Using one of the
extension programs mentioned above, we found the closure of our catalogue of (4, 5, 24)-
graphs under ∼22. This was achieved by taking each (4, 5, 24)-graph and for each pair of
vertices removing those vertices then extending the resulting subgraph back to 24 vertices
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using the algorithm of Section 4. This process was repeated until it stabilised. Some large
subfamilies were closed under the weaker relation ∼21.

Eventually, a collection of 350904 (4, 5, 24)-graphs had been formed, none of which
extend to a (4, 5, 25)-graph. Some statistics about this collection will be given in the
next section. We then searched the collection for all those graphs which should have
been generated by each of the original gluing operations and compared the results to the
solutions found by the gluing programs. The comparison succeeded in every case; i.e., our
extra work (perhaps another two years of cpu time) failed to demonstrate incompleteness
in the gluing programs. We believe that this is strong evidence for the correctness of those
programs.

6. The structure of R(4, 5).

In the course of the project, and through some auxiliary computations, we collected
a significant amount of information on R(4, 5). Since it is of importance to our further
investigations, for example into bounds on higher Ramsey numbers, we will record some
of it here.

Firstly, we consider the number of (4, 5, n)-graphs for each n. The one-vertex extension
method of Section 4 can be fitted easily into the general scheme of [6] to make a program
generating (4, 5)-graphs without isomorphs. For our purposes it is sufficient to note that
the method of [6] represents the isomorphism classes as the nodes of a rooted tree with
root K1. The parent of each (4, 5, n)-graph is a (4, 5, n− 1)-subgraph (n ≥ 2).

Using this method we generated all (4, 5, n)-graphs for n ≤ 11. It would be feasible
for n = 12 but we did not do it. For n ≥ 12 we used a simple procedure to estimate the
number of graphs without exhaustive generation. Let p2, p3, . . . , p24 be probabilities. Each
time an isomorphism class of order n is generated, reject it with probability 1 − pn, each
such rejection being independent of the others. Then the total number of (4, 5, n)-graphs,
multiplied by p2p3 · · · pn, is the expectation of the number of nodes generated and accepted
at order n. A large number of such experiments were performed. In Table 3, the values are
exact for n ≤ 11 and are estimates based on our random sampling for 12 ≤ n ≤ 22. Few
graphs of order n > 22 were generated, due to the small number of them relative to the
large hump at order 19. The value for n = 23 is a barely more than a guess. We expect
that the correct value for n = 24 is at most a few hundred beyond the number given.

Also in Table 3 we record our current best bounds on e(4, 5, n) and E(4, 5, n), the
minimum and maximum number of edges in (4, 5, n)-graphs, respectively. This updates
Table II in [7]. The exact values were found by direct computation. The upper bounds
on e(4, 5, n) and the lower bounds on E(4, 5, n) were proved by constructing examples.
Otherwise, the bounds are derived from linear programming as explained in [7], with the
exception that the bound E(4, 5, 18) ≤ 88 is a trivial consequence of E(4, 5, 17) = 79.

In Table 4, we give some further information on the known (4, 5, 24)-graphs. The table
contains the numbers of known graphs, and known ranges for some of their parameters.
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n |R(4, 5, n)| e(4, 5, n) E(4, 5, n)

1 1 0 0
2 2 0 1
3 4 0 3
4 10 0 5
5 28 1 8
6 114 2 12
7 627 3 16
8 5588 4 21
9 81321 6 27

10 1915582 8 33
11 67445833 10 40
12 3.22× 109 12 48
13 1.85× 1011 17 53
14 1.11× 1013 22 60
15 5.96× 1014 27 66
16 2.32× 1016 32 72
17 5.17× 1017 41 79
18 4.97× 1018 48-50 85-88
19 1.46× 1019 56-57 92-97
20 8.5× 1018 66-68 100-105
21 5.5× 1017 75-77 107-114
22 1.9× 1015 86-88 114-122
23 1011 98-102 121-130
24 ≥ 350904 109-116 132

all 2.91× 1019

Table 3. Statistics for (4, 5)-graphs

There might exist graphs lying outside those ranges, but it is certain that the catalogue
is complete if the minimum degree is 6, 7, 8 (1979, 7491, 51803 graphs respectively), or
the maximum degree is 12 or 13 (74375, 961 graphs, respectively), or the graph is regular
of degree 11 (2 graphs). For each number of edges (e), the table gives ranges for the
number of independent 3-sets and 4-sets (i3 and i4), the number of triangles (c3), and the
minimum and maximum degree (δ and ∆). Of those 350904 graphs, 10872 have nontrivial
automorphism groups, and five have vertex-transitive automorphism groups.
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