
The Asymptotic Number of Claw-free Cubic

Graphs

Brendan D. McKay

Computer Science Dept.

Australian National University

Canberra, ACT 0200, Australia

bdm@cs.anu.edu.au

Edgar M. Palmer

Mathematics Dept.

Michigan State University

East Lansing, MI 48824-1027

palmer@math.msu.edu

Ronald C. Read

Dept. of Combinatorics and Optimization

Faculty of Mathematics

University of Waterloo

Waterloo, Ontario N2L 3G1

rcread@math.uwaterloo.ca

Robert W. Robinson

Computer Science Dept.

415 GSRC

University of Georgia

Athens, GA 30602-7404

rwr@pollux.cs.uga.edu

Abstract

Let Hn be the number of claw-free cubic graphs on 2n la-
beled nodes. In an earlier paper we characterized claw-free
cubic graphs and derived a recurrence relation for Hn. Here
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we determine the asymptotic behavior of this sequence:

Hn �
(2n)!

e
p
6�n

�
n

2e

�n=3
e
(n=2)1=3

:

We have veri�ed this formula using known asymptotic esti-
mates of cubic graphs with loops and multiple edges and also
by the method of inclusion and exclusion.

1 Introduction

At the 1992 Kalamazoo conference at Western Michigan Univer-
sity, M. D. Plummer (see [Pl95]) asked for the probabilistic behavior
of hamiltonicity in claw-free cubic graphs, in the planar case and in
general. In our �rst paper [PaRR9x] approaching these problems,
we used combinatorial reductions to derive a second order, linear ho-
mogeneous equation with polynomial coe�cients whose power series
solution is the exponential generating function for claw-free cubic
graphs. From this we derived the following recurrence relation for
Hn, the number of labeled claw-free cubic graphs of order 2n:

Hn+1 = (6n�5)
 
2n+ 1

3

!
Hn�1 + 60(2n2�7)

 
2n+ 1

5

!
Hn�2

+ 420(12n�31)
 
2n+ 1

7

!
Hn�3 � 60480(4n�19)

 
2n+ 1

9

!
Hn�4

� 3326400(6n2 � 54n+ 127)

 
2n+ 1
11

!
Hn�5

� 172972800(9n2 � 108n+ 347)

 
2n+ 1
13

!
Hn�6

� 54486432000(n� 1)

 
2n+ 1
15

!
Hn�7

+ 59281238016000(n� 7)

 
2n+ 1
17

!
Hn�8

+ 422378820864000(18n� 97)

 
2n+ 1
19

!
Hn�9
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+ 6563766876226560000

 
2n+ 1
21

!
Hn�10

+ 673229602575129600000

 
2n+ 1
23

!
Hn�11: (1.1)

Of course Hn�j is zero whenever j > n. With the initial condi-
tions H0 = 1 and H1 = 0, (1.1) can be used to compute the values
of H2; � � � ; Hn+1 using just O(n) arithmetic operations each. In this
way we computed the values shown in Table 2 of [PaRR9x], where
one �nds, for example, that H26 is

1016031492424337300070147499566814430489390287664828

5295864422890087890625: (1.2)

In this paper, which forms the second stage of our approach to
Plummer's problems, we determine the asymptotic behavior of Hn.

Theorem 1.1. The number Hn of labeled claw-free cubic graphs
of order 2n has the asymptotic value:

Hn � (2n)!

e
p
6�n

�
n

2e

�n=3

e(n=2)
1=3
: (1:3)

We will derive the asymptotic result of the theorem in two ways.
The �rst depends on the characterization of claw-free cubic graphs
developed in [PaRRx] as well as the known asymptotic behavior of
cubic general graphs (see [BeC78] or [Bo80]). The second method
takes a more direct approach using inclusion and exclusion, which
eliminates considerable fussing over negligible contributions.

For general graph theoretic terminology we use [HP73] except for
adopting the more conventional names \nodes and edges" instead of
\points and lines". We assume a basic knowledge of labeled enu-
meration techniques using egf 's, such as is found in Chapter 1 of
[HP73], as well as the terminology developed in [PaRR9x] used to
characterize claw-free cubic graphs. From here on we frequently refer
to the later as cfc's. In a cfc a node may be in exactly two triangles
precisely if it is a node of degree 3 in an induced subgraph isomor-
phic to K4�e; we call such a subgraph a diamond. A maximal set of
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diamonds which are adjacent in series is called a string of diamonds.
A connected graph in which every node is contained in a diamond is
called a ring of diamonds. A ring of diamonds must contain at least
2 diamonds.

2 Formulas for cubics and claw-free cubics

The notions of dilation and expansion of cubic general graphs,
explained fully in [PaRR9x], form the basis of our characterization
of cfc's. Roughly speaking, a general cubic G is dilated by replacing
each node u by a triangle, i.e. three new mutually adjacent nodes,
say ua; ub and uc. If u and v are adjacent in G, then ua and va
are adjacent in the dilation G0. As a consequence, G0 is a cubic
multigraph in which each node belongs to a triangle and the only
multiple edges come from loops in G. Each loop in G gives rise to
an instance of the con�guration known as a trumpet in G0. Next G0

is expanded by placing a string of at least one diamond on just one
edge of every double edge of all the trumpets and arbitrary (possibly
empty) strings of diamonds on the edges of G0 that correspond to
original edges of G. The end result is a graph G00 which is a cfc. Let
Gn be the number of labeled cfc's of order 2n that can be built in
this way, i.e. by dilating and expanding general cubic graphs which
have no components isomorphic to the triple edge of order 2. Our
next goal is to determine the asymptotic behavior of Gn.

Let g(2m; `; d) be the number of labeled cubic general graphs of
order 2m with ` loops, d double edges and no triple edges. Then if s
is the number of single edges in such a graph, of course

3(2m) = 2s+ 4d+ 2`:

Then we de�ne F (2n; `; d) to be the number of cfc's of order 2n
built from general cubics with ` loops, d double edges and no triple
edges by dilating vertices and expanding edges. For �xed n; ` and d,
we have

F (2n; `; d) =
X

g(2m; `; d)

 
2n

6m

!� 6m
3;:::;3

�
(2m)!

(3!)2m�`�2d(32 � 2)d3`
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3m

j � `

!! 
4j

4; : : : ; 4

!
12j ; (2.1)

where the sum is over all values of m and j with 2n = 3(2m)+4j and
j � `. Here is a sketch of the justi�cation of this formula. Suppose G
is a cubic general graph counted by g(2m; `; d). First we choose 6m
labels from the 2n available and we arrange them in 2m unordered
groups of three each for dilation. The number of ways to do this is 

2n

6m

! 
6m

3; : : : ; 3

!
=(2m)!:

Then it can be seen that the number of ways to form the adjacencies
in a dilation is

(3!)2m�`�2d(32 � 2)d � 3`:
Since a diamond must be assigned to each loop, there are j � ` � 0
remaining which can be strung on any of the 3m original edges of the

dilation in
��3m

j�`

��
ways. Note that we use the repeated parenthe-

ses to indicate combinations with repetition. Now there are
� 4j
4;:::;4

�
ways to arrange the remaining labels in groups for the diamonds and
12 ways to assign labels to each of the j groups. On applying the
multiplication principle, we arrive at (2.1).

Now Gn can be expressed in terms of the F (2n; `; d):

Gn =
X

F (2n; `; d); (2.2)

where the sum is over all relevant values of ` and d.
To evaluateGn asymptotically we begin with a lemma for F (2n;`;d).

Lemma 2.1. For both `; d = o(
p
n),

F (2n; `; d) � e�2

`!d!

 �
2

n

�2=3
=2

!`
(2n)!p
6�n

�
n

2e

�n=3

e(n=2)
1=3
:

Proof. The basis for this result is the following formula for
g(2m; `; d) which holds for both ` and d = o(

p
m):

g(2m; `; d) � e�2

`!d!

(6m)!

23m(3m)!
�
n
(3!)2m�`�2d(32 � 2)d � 3`

o
: (2.3)
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It can be derived using inclusion and exclusion on two types of prop-
erties for loops and double edges (see also [BeC78]).

It can also be shown that for all ` and d

g(2m; `; d) = O(1)
(6m)!

23m(3m)!

1

(3!)2m
2`2d

`!d!

and hence the total number of general cubic graphs of nodes 2m is
dominated by the graphs for which (2.3) holds. It requires some more
work to show that (2.3) holds for the summands which dominate
in (2.1). Then on substituting the right side of (2.3) in (2.1) and
eliminating m we obtain

F (2n; `; d) � e�2

`!d!

r
3

2�
(2n)!

X�
n� 2j

2e

�n�2j
3

1

(n� 2j)1=2

 
n�j�`�1

j�`

!�
1

2

�j

; (2.4)

where the sum is over all j � ` with 2n = 3(2m) + 4j, as above in
(2.1).

An application of the ratio test on the right side of (2.4) shows
that the sum peaks for j near (n=2)1=3. And for j = O((n=2)1=3) we
have �

n� 2j

2e

�n�2j
3 1

(n� 2j)1=2
� 1p

n

�
n

2e

�n=3 � 2
n

�2j=3
and  

n� j � `� 1

j � `

!
� nj�`

(j � `)!
:

Some calculation shows that the sum in (2.4) is dominated by
the terms for which j � 3n1=3. And the extra terms added in (2.5)
below are seen to be negligible.

This implies

F (2n; `; d) � e�2

`!d!

 �
2

n

�2=3
=2

!`r
3

2�n
(2n)!

�
n

2e

�n=3

X
j�`

�
(n=2)1=3

�j�`

(j � `)!
: (2.5)
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Notice that the sum is over those values of j that satisfy the
equation 2n = 3(2m) + 4j and hence n � 2j � 0 (mod 3). For
example if n is a multiple of 3 and ` = 0, then the sum in (2.5)
retains every third term in the exponential series for (n=2)1=3. The
extraction from a power series of every r-th term is fully explained
in Wilf's book [Wi90] (see pp. 47-48) and all of the details are given
for the case we need with r = 3. As a consequence, the sum in (2.5)
is asymptotic to (exp((n=2)1=3))=3 from which the formula in the
lemma follows. 2

On applying the lemma to formula (2.2) for Gn together with
justi�cation for inclusions and exclusions of negligible terms, we have

Gn � e�2
(2n)!p
6�n

�
n

2e

�n=3

e(n=2)
1=3X

`;d

��
2
n

�2=3
=2

�`

`!d!
: (2.6)

But the sum in (2.6) is just

exp

(
1 +

�
2

n

�2=3
=2

)
;

and so

Gn � e�1
(2n)!p
6�n

�
n

2e

�n=3

e(n=2)
1=3
:

Note that the contribution to these cfc's built from cubic general
graphs with loops is negligible.

Let Bn denote the number of claw-free cubic graphs of order 2n
whose components consist of K4's, rings of diamonds and dilations
and expansions of triple edges. We call these exotic components and
set B0 = 1. Of course B1 = 0; B2 = 1 and B3 = 60. Now the total
number of cfc's can be expressed in terms of the Bn and Gn:

Hn =
nX

k=0

 
2n

2k

!
BkGn�k: (2.7)

Our next task is to show that the number of cfc's with exotic
components is negligible, i.e.

Hn � Gn: (2.8)
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Let '(z) be the egf for cfc's whose components are all exotic,
i.e.

'(z) =
1X
n=0

Bn
zn

(2n)!
:

In [PaRR9x] we showed that the contributions to '(z) made by the
components isomorphic to K4's and rings of diamonds is

p
b exp(�5z2=24);

where

b = b(z) = (1� z2=2)�1:

And the egf for components derived from triple edges is

exp(z3b3=12):

Thus

'(z) =
p
b exp(�5z2=24 + (zb)3=12):

Since '(z) is regular in the complex open disk jzj < p
2, we know

Bn=(2n)! = o(cn)

for any c > 1=
p
2. Hence Bn=(2n)! is bounded above for all n by

cn times a suitable constant. Similarly Gn is bounded above for
all n by a suitable constant times its established asymptotic value.
Consequently

nX
k=1

 
2n

2k

!
BkGn�k

Gn
= o(1)

nX
k=1

�
2e

n

�k=3 ck

(2k)!

= o(n�1=3) = o(1):

This establishes (2.8) and hence the main theorem stated in the
introduction.
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3 Direct application of inclusion and exclu-

sion

In this section we apply the method of inclusion and exclusion
to count claw-free cubic graphs. We begin with some new notation.
Let cfc(k; s; t) be the number of claw-free cubic graphs with k com-
ponents isomorphic to K4, s diamonds and t other triangles. Then
the number of nodes is

2n = 4k + 4s+ 3t;

and we de�ne
2m = 4s+ 3t:

Clearly

cfc(k; s; t) =
1

k!

 
2n

4; : : : ; 4; 2n� 4k

!
cfc(0; s; t);

and so we focus on cfc(0; s; t). The number of ways in which labels
can be chosen for the s diamonds and t other triangles is� 2m

4;:::;4;3;:::;3

�
s!t!

 
4

2

!s

=
(2m)!

4ss!6tt!
:

Now we must connect the 2s+3t = 2m�2s nodes of degree 2 together
using m� s edges. The number of ways to do this is

(2m� 2s)!

2m�s(m� s)!

but some are forbidden. We are not permitted to add an edge be-
tween two nodes of a triangle, because a multiple edge results. And
we cannot join two nodes in a diamond without creating a K4. Let
i indicate the number of joins of a triangle to itself. Then there are�t
i

�
3i ways to do this. Let j be the number of joins of a diamond to

itself. Then there are
�s
j

�
ways for this to happen.

For a particular i+ j bad joins, the number of ways to place the
remaining edges is

(2m� 2s� 2i� 2j)!

2m�s�i�j(m� s� i� j)!
:
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Hence by inclusion and exclusion

cfc(0; s; t) =

8<
:

tX
i=0

sX
j=0

(�1)i+j3i
 
t

i

! 
s

j

!
(2m�2s�2i�2j)!

2m�s�i�j(m�s�i�j)!

9=
;

(2m)!

4ss!6tt!

=
(2m)!

4ss!6tt!

(2(m� s))!

2m�s(m� s)!
P (s; t)

where

P (s; t) =
tX

i=0

sX
j=0

(�1)i+j

 
t

i

! 
s

j

!
6i2j

(m� s)i+j

(2(m� s))2i+2j
: (3.1)

Since this formula was derived by inclusion and exclusion, the
Bonferroni inequalities apply. Note that m � s � m=2 and so as
m!1 for i+ j = o(

p
m) we have

(m� s)i+j

(2(m� s))2i+2j
=

1 + o(1)

22i+2j(m� s)i+j
: (3.2)

Now it can be shown that the sum in (3.1) is dominated by the
terms for which (3.2) holds. In fact we can substitute the right side
of (3.2) in (3.1) and apply the binomial theorem to obtain

P (s; t) �
�
1� 3

2(m� s)

�t �
1� 1

2(m� s)

�s

As m!1, we have both

t=(m� s)2 ! 0 and s=(m� s)2 ! 0

and so

P (s; t) � exp

� �3t
2(m� s)

�
exp

� �s
2(m� s)

�
= e�1+s=(2m�2s)

We summarize these results as follows.

Theorem 3.1. With 2n = 4k + 2m; 2m = 4s+ 3t and m!1

cfc(k; s; t) � (2n)!

(4!)k(2n� 4k)!k!

(2m)!

2m�s(m� s)!

(2m� 2s)!

4ss!6tt!
e�

2m�3s
2m�2s
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uniformly over the variables k; s and t.
Now let cfc(m) denote the total number of claw-free cubics with

2m nodes and no components of order 4. Then

cfc(m) =
X

cfc(0; s; t)

where the sum is over all solutions of 2m = 4s+ 3t. In applying the
theorem to obtain an asymptotic estimate of cfc(m), it is convenient
to assume that 3jm and hence 3js. The same asymptotic evaluation
of cfc(m) can be obtained for other values of m.

Since the approximation in the theorem is uniform in s and t we
have

cfc(m) � (2m)!

2m

X
3js

1

2s
(2m� 2s)!

(m� s)!s!6tt!
e�

2m�3s
2m�2s (3.3)

The sum on the right side of (3.3) is dominated by the values of
s for which s = o(

p
m). For these values of s, we also have t ! 1

and so Stirling's formula can be applied to show

t! = (1 + o(1))
p
2�

r
2m

3

�
2m

3e

�2m=3 �2m
3

��4s=3

and

(m� s)m�s = (1 + o(1))
mm�s

es

After some simpli�cation we �nd that the contribution of the
terms for which s = o(

p
m) to the right side of (3.3) is

(1 + o(1))
(2m)!

e
p
6�m

�
m

2e

�m=3

3
X
3js

((m=2)1=3)s

s!

which leads to the same estimate for Hn in the main theorem. As for
the terms omitted, Stirling's formula still serves to obtain a suitable
upper bound on this remainder to show that they are negligible.

4 Connectedness of claw-free cubics

Let Cn be the number of connected claw-free cubic graphs of
order 2n. Then Hn and Cn are related by the following well-known
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relation (compare (2.7)):

Hn =
nX

k=2

 
2n

2k

!
k

n
CkHn�k:

Therefore, to show that almost all cfc's are connected, i.e. Hn �
Cn, we need only show that

n=2X
k=2

 
2n

2k

!
HkHn�k=Hn = o(1) (4.1)

Using the formula (1.3) of our main theorem, Stirling's formula and
simple estimates, we �nd that the left side of (4.1) is

O(1)

n=2X
k=2

1p
k

�
k

n� k
� expf�1 + 3=

3
p
2k2g

�k=3

Now this sum is split in two parts according as k � log n or k >
log n. Then it can be shown that for 2 � k � log n, the value of the
sum is O(n�2=3+") and for log n < k � n=2 it is O(n�1=3+"), where
" > 0 is arbitrary. Hence (4.1) is satis�ed. We could also establish
this using the fact that almost all cfc's are derived from general cubic
graphs which are in turn almost surely connected. Furthermore, we
could show that the later have almost surely no bridges except those
caused by loops. But we have already seen that cfc's derived from
general cubics with loops are negligible. Hence cfc's almost surely
have vertex connectivity � � 2. Since they have about (n=2)1=3

diamonds, we know also that � < 3 almost surely.

Corollary 4.1 Almost all claw-free cubic graphs have vertex
connectivity � = 2.

This result is in contrast with cubic graphs, which have � = 3
almost surely [Wo79].

5 Conclusion

Let's see how good our asymptotal is by comparing the estimate
with data from [PaRR9x]. For n = 26, our table shows that the
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number H26 of cfc's of order 52 is 10:1603149 � 1072 (see (1.2)).
On the other hand, the estimate from our theorem is 10:931� 1072,
which is the right order of magnitude but nevertheless a bit on the
high side.

There is another check that can be made. Suppose we assume
that for some constants c > 0 and a > 0

Hn+1=Hn�1 � cna:

Then for �xed k

Hn�k=Hn�1 � 1=(
p
cna=2)k�1:

Now on dividing both sides of the recurrence relation (1.1) by Hn�1

and combining terms we can examine the exponents of the positive
terms and �nd that the only possible solution comes from the second
term, which shows that we must have

cna � 25p
c
n7�a=2:

Hence
Hn+1

Hn�1
� (25n7)2=3;

a result which also follows from formula (1.3) of our main theorem.
It also follows easily from our theorem and the formula ((2.3)

above with ` = d = 0) of the second author [Re59] for the asymptotic
number of cubic graphs that almost all cubic graphs have claws.

Finally we make a few comments about the number Un of unla-
beled cfc's of order n. For any graph G, labeled or not, let s(G) be
the number of automorphisms of G. Since the number of ways to
label a graph of order 2n is (2n)!=s(G),

Un =
X

s(G)=(2n)!

where the sum is over all labeled cfc's of order 2n. We denote the
number of diamonds in a cfc by j(G). Then

s(G) � 2j(G)
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and

Un �
X

2j(G)=(2n)! : (5.1)

The right side of this inequality can be estimated by using formula

(2.4) without the last factor
�
1
2

�j
. On summing over ` and d as in

section 2 the result is the asymptotic estimate

X
2j(G)=(2n)! � 1

e
p
6�n

�
n

2e

�n=3

e2(
n
2
)1=3 :

Of course estimating the right side of (5.1) gives us only a lower
bound for Un. We still have to show that the contributions of all the
cases in which s(G) is actually bigger than 2j(G) are negligible. This
can probably be established using the fact that cfc's are derived from
general cubic graphs. Evidently the latter have almost surely the
identity group (see [McW84]) for the case involving cubic graphs).
Thus the automorphisms of almost all cfc's necessarily come from
ipping diamonds.
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